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Current profiles of molecular nanowires: Density-functional theory Green’s function
representation

Oleg Berman* and Shaul Mukamel†

Department of Chemistry, University of California, Irvine, California 92697-2025, USA
~Received 20 August 2003; published 30 April 2004!

The Liouville-space Green function formalism is used to compute the current-density profile across a single
molecule attached to electrodes. Time ordering is maintained in real, physical, time, avoiding the use of
artificial time loops and backward propagations. Closed expressions for molecular currents, which only require
density-functional theory calculations for the isolated molecule, are derived to fourth order in the molecule/
electrode coupling.
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I. INTRODUCTION

There is a considerable interest in measuring1–14 and
computing15–22currents in single molecules attached to ele
trodes. The current-voltage (I -V) characteristics of such de
vices are strongly nonlinear, and should be recast in term
high-order conductivities.12–14 Controlling molecular cur-
rents has important applications to nanodevices such as
lecular wires and rectifiers.12–14

The first-principles computation of molecular curren
poses a serious challenge that was addressed by m
approaches.17,18 Standard quantum chemistry packages
not designed to compute current-carrying states. Nonequ
rium Green function techniques widely used for comput
currents in macroscopic systems, e.g., semiconductors23,24

were adopted for single-molecular currents.15–17 The under-
lying diagrammatic perturbative expansion requires the co
putation of extra information in the intermediate steps, wh
is not needed for computing the current. This includes
dependence of the Green function on two times, involv
coherence between states with a different number
electrons.17 In a different approach the time-depende
charge distribution in a donor-acceptor junction was stud
by calculating the tunneling currents at the Hartree-Fo
level in terms of the donor and acceptor states.25

An ab initio algorithm for calculating molecular curren
developed by Lang21,22 is based on the self-consistent sol
tion of a system of four equations:~1! The Kohn-Sham inte-
gral equation for the wave function of the molecule1 elec-
trodes@Eq. ~3.1! in Ref. 21#, ~2! Equation for the potentia
difference between the complete~molecule 1 electrodes!
system and the bare electrodes@Eq. ~3.2! in Ref. 21#, ~3!
Equation for the Green function of the molecule in an effe
tive potential given by the sum of the exchange correlat
and the electrostatic potential@Eq. ~3.13! in Ref. 21#. The
latter is determined by~4! the Poisson equation with bound
ary conditions setting the potential to be equal to the che
cal potentials difference of the electrodes@Eq. ~6! in this
paper#. These equations, together with the boundary con
tions, yield the wave function of the entire~molecule1 elec-
trodes! system which can be used to compute the finite c
rent. This algorithm was applied for calculating the curren
a chain of three Al atoms with the substitution of one ato
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by sulfur, and for a chain of ten carbon atoms. The electro
were modeled as a semi-infinite ideal metal~homogeneous
electron gas or Jellium model!. The same approach was su
sequently applied to calculate the current in a benze
1,4-dithiol molecule connected to ideal metal electrodes,
the effect of inserting a single gold atom between the m
ecule and a metallic surface was investigated.4

Mujica, Kemp, Roitberg, and Ratner20 proposed to solve
self-consistently the Hartree-Fock equation for the Gre
function of the complete~molecule1 electrodes! system and
the Poisson equation for the electrostatic potential, with
same boundary conditions of Lang.21,22 The molecule was
described by the Hubbard Hamiltonian, the electrodes w
taken to be an ideal metal, and the current is computed f
the Green function. This approach is easier to implem
compared to density-functional theory~DFT!,21,22 since it
only requires the solution of two rather than four se
consistent equations. However, DFT21,22 takes into account
exchange-correlation effects more rigorously.

Kosov applied a variational Kohn-Sham densit
functional ~DFT! equation for electrons in molecular wire
~benzene-1,4-dithiolate molecule covalently bonded to t
gold electrodes!.18 By variational minimization of the tota
energy, where an arbitrary given current is imposed a
constraint,18 a ten atom gold cluster participates in the bon
ing with a molecule. The device contains 32 atoms. T
results in a system of two self-consistent equations, sim
to the Hartree-Fock approach,20 which is simpler than the
equations of Refs. 21, 22, yet treats exchange-correlation
fects as rigorously as DFT.21,22

All these approaches, which employ DFT for the mo
ecule1 electrodes, require the solution of a system of se
consistent equations, but do not give closed expressions
the current.

In this paper we compute the current profile in a molec
perturbatively in the ratio of the coupling of the molecul
electrons with the electrodes and the separation betw
Kohn-Sham orbital energies. Our approach yields a clo
expression for the current density^Ĵ(r )& in terms of Kohn-
Sham orbitals of the molecule alone, which enter vario
Green functions in the frequency domain. The molecu
electrodes coupling potential of Lang’s approach21 is treated
to the lowest order required to yield a finite current. We u
©2004 The American Physical Society30-1
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a Liouville-space~superoperator! many-body Green function
technique, which provides a convenient description of n
equilibrium effects.26,27 The Liouville-space TDDFT~time-
dependent density-functional theory! formulation of nonlin-
ear response based on the single electron density matrix
developed in Refs. 28, 29, and subsequently extende
superconductors.30 One advantage of working in the highe
dimensional Liouville space is that we need only consi
time-ordered quantities in real~physical! time and Wick’s
theorem therefore assumes a particularly compact form;27 in
contrast to Hilbert-space Green function perturbat
theory24,31,32no special contours or analytic continuations a
necessary.

II. THE MODEL HAMILTONIAN

We shall partition the electronic Hamiltonian of a mo
ecule withN electrons connected to two electrodesA andB,
in the form

Ĥ5Ĥ01V̂, ~1!

where Ĥ0 represents the noninteracting molecule and e
trodes andV̂ is the molecule/electrodes coupling,

V̂5E dxE dx8U~x,x8!†c†~x!@cA~x8!1cB~x8!#

1@cA†~x8!1cB†~x8!#c~x!‡. ~2!

The spatial coordinatesx andx8 run over the molecule and
the electrode regions, respectively@x[(r ,t) is a coordinate
of electrons within the molecule andx8[(r 8,t) is a coordi-
nate of electrons in the electrodes region#. U(x,x8) is the
coupling potential between the molecule and electrod
c(x) is the field operator of electrons in the molecu
whereascA(x8) and cB(x8) are the field operators of elec
trons in the two electrodes. These operators satisfy Fe
anticommutation relations,33,34

c~r1!c†~r2!1c†~r2!c~r1!5d~r12r2!,

c~r1!c~r2!1c~r2!c~r1!50,

c†~r1!c†~r2!1c†~r2!c†~r1!50. ~3!

We assume that the electrodes interact with the mole
only at two points of contact (r0

A andr0
B). Kosov considered

the coupling between the molecule and the electrodes re
sented by 10 gold atoms;18 participation of only a restricted
domain of the electrodes in the molecule/electrode coup
was also assumed in the ‘‘extended molecule’’ model.17 We
then have

U~r ,r 8!5f~r !@d~r 82r0
A!1d~r 82r0

B!#, ~4!

wheref(r ) is defined as the potential, induced by the diffe
ence between the charge density of the isolated mole
%0(r ) and of the molecule coupled to the electrodes%(r ).17

f(r ) is obtained by solving the Poisson equation in the m
ecule (r 0

A,r ,r 0
B) @Eq. ~5.3! in Ref. 17#,
15543
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¹2f~r !52e„%~r !2%0~r !…, ~5!

with the boundary conditionsf(r0
A)5mA and f(r0

B)5mB .
HeremA andmB are the chemical potentials of electrodesA
andB, respectively,W5mA2mB is the external voltage, and
e is electron charge.

The Poisson equation for the total electrostatic potentia
the molecule coupled to the electrodesUel(r ) is17,19

¹2Uel~r !52e%~r !, ~6!

with the boundary conditionsUel(r0
A)5mA and Uel(r0

B)
5mB . The boundary conditions should reflect the change
the electrostatic potential in the interior of the left~right!
electrodes when current is flowing, which is smaller than
chemical potential difference of electrodes@Eq. ~5.4! in Ref.
17#.35 This difference should be negligible for large electro
spacings, for which the current is small, but should be
table for small spacings. Our boundary conditions thus h
in the small current limit~large electrode spacings!.

To lowest order in the molecule/electrodes coupling
use the unperturbed charge density of the isolated mole
in the right-hand-side~rhs! of the Poisson equation%(r )
5%0(r ), and Eq.~6! gives

¹2Uel~r !52e(
a

wa~r !wa* ~r !, ~7!

where the sum runs over all occupied molecular Kohn-Sh
orbitalswa(r ). Using%(r )5%0(r ), we obtain from Eq.~5!
@Eq. ~5.6! in Ref. 17# ¹2f(r )50, f(r0

A)5mA , f(r0
B)

5mB . By solving this equation, we obtain that the couplin
potential is linear inr ,

f~r !5~r0
A2r0

B!21@mBr0
A2mAr0

B1~mA2mB!r #. ~8!

There are two contributions to the charge density in the P
son equation@Eq. ~6!#: The charge density of the isolate
molecule and the variation of the charge density due to
coupling with the electrodes induced by the extern
voltage.17,21 To lowest order in the coupling potential w
neglect the latter, and the electrostatic potential in the m
ecule is calculated using the unperturbed charge density@Eq.
~7!#. We thus neglect all screening effects and the poten
profile across the junction is assumed to be linear@Eq. ~8!#.
This holds for low voltages. The electronic structure of t
molecule enters inĤ0. The external voltage, which is th
difference between the chemical potentials of the electro
(W[mA2mB), enters in the Hamiltonian of the molecule
electrodes couplingV̂ in Eq. ~1! through the coupling poten
tial U @Eqs. ~4! and ~8!#. Our perturbative approach hold
provided the coupling potential of the molecular electro
with the electrodes„the external voltage@Eq. ~8!#… is smaller
than the difference between Kohn-Sham orbital energies
corresponds to lowest-order expansion in the molec
electrodes coupling potential of Lang’s approach.21
0-2
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III. PERTURBATIVE CALCULATION OF THE CURRENT

Our goal is to compute the expectation value of the c
rent operator

Ĵ~x!52
ie\

2m
~¹r2¹r̄ !c~x!c†~ x̄!ux5 x̄ , ~9!

wheree andm are the electron charge and mass, respectiv
We start with the interaction picture expression for t

expectation value ofĴ(x), using the partitioning@Eq. ~1!# of
the Hamiltonian.27 We define the Liouville operatorsL5L0
1V2 corresponding to Eq.~1! whereL0[(H0)2 i.e., L0X
[H0X2XH0. The zero-order time evolution operator is d
fined as

G0~t2 ,t1![u~t22t1!expF2
i

\
L0~t22t1!G , ~10!

whereu(t) is the Heaviside step function. Throughout th
paper we denote operators in the interaction picture by a t
(˜), i.e.,

Ãn~t![G 0
†~t,0!AnG0~t,0!n51,2 or n5L,R. ~11!

The current is given by

^Ĵ~x!&52K T̂J̃1~x!expF2
i

\E2`

t

dtṼ2~t!G L , ~12!

where the Liouville-space superoperators with indices1 and
2 are defined in Appendix A,27 and the time-ordering opera
tor in Liouville-spaceT̂ is defined in Eq.~B11!.27 This natu-
ral time ordering follows chronologically the various inte
actions with the electrodes. The precise order in wh
superoperators appear next to aT̂ operator is immateria
since at the end the order will be fixed byT̂. T̂ before an
exponent means that each term in the Taylor expansio
this exponent should be time ordered.

The current can be also expressed in terms of the mol
lar electron density matrixr̃(r ,r 8,t) in the interaction picture

r̃~r , r̄ ,t ![Tr@c̃~r ,t !c̃†~ r̄ ,t !r0#, ~13!

wherer0 is unperturbed many-electron density matrix of t
isolated molecule uncoupled to the electrodes, and the
rent is

^Ĵ~x!&52
ie\

2m
~¹r2¹r̄ !r̃~r , r̄ ,t !ux5 x̄ . ~14!

A finite current requires at least two interactions with ea
electrode. We, therefore, computed the current to fourth
der in Ṽ,

^ Ĵ~x!&52
ie\

2m
~¹r̄2¹r !S~x,x̄!ux5 x̄ , ~15!

where
15543
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S~x,x̄!52
1

4! S i

\ D 4E
2`

t

dt1E
2`

t

dt2E
2`

t

dt3E
2`

t

dt4E dr1

3E dr18E dr2E dr28E dr3E dr38E dr4E dr48

3^T̂r̃~x,x̄,t !Ṽ2~r4 ,t4!Ṽ2~r3 ,t3!Ṽ2~r2 ,t2!

3Ṽ2~r1 ,t1!&0 , ~16!

wherer̃(x,x̄,t)5c̃(x)c̃†( x̄).
We next expandS(x,x̄) in Eq. ~16! in ‘‘left’’ and ‘‘right’’

operators in Liouville space.27 To that end we introduce the
field operator corresponding to both electrodes

cM~x8![cA~x8!1cB~x8!. ~17!

Substituting Eq.~2! into Eq. ~17! we get

S~x,x̄!5
1

4! S i

\ D 4E
2`

t

dt1E
2`

t

dt2E
2`

t

dt3E
2`

t

dt4E dr1

3E dr18E dr2E dr28E dr3E dr38E dr4E dr48

3U~x4 ,x48!U~x3 ,x38!U~x2 ,x28!U~x1 ,x18!

3I ~x1 ,x18 ,x2 ,x28 ,x3 ,x38 ,x4 ,x48 ,x,x̄!, ~18!

whereI is given by Eq.~A4!. In Appendix A we use super
operator algebra to bring it to the form of Eq.~A8!. Factor-
izing that equation, using Wick’s theorem for fermion sup
operators@Eq. ~74! in Ref. 27#, we obtain

I 5
1

4! (
nh ,nk50,1;i , j 50,1

~21!P

3F )
h,k50, . . . ,4;k,l 50,1

^T̂„cnh

Mka i~xh
k !cnk

Mla j~xk
l !…&

3~12dh,0dnk,1dk,1!~12dk,0dnk,1dk,1!G , ~19!

whered is the Kronecker symbol: fornh50 cnh
5cL and

for nh51 cnh
5cR , for k51 cMk(xk)5cM(x8) and for k

50 cMk(xk)5c(x), for i 50 ca i5c and for i 51 ca i

5c†. P51/2(nL
di f1nR

di f) is a number of sum of permuta
tions of cL andcR , wherenL

di f is a number of contractions

in the rhs of Eq.~19! ^T̂„cL(xn)cL(xm)…&, whennÞm, and
nR

di f is a number of contractions in the rhs of Eq.~19!

^T̂(cR(xn)cR(xm))&, whennÞm.
We assume that the molecule contacts each electrode

single point (r0
A and r0

B) with the coupling potential

U~r ,r 8!5(
ab

Uabwa* ~r !wb~r 8!, ~20!

whereU(r ,r 8) is determined by Eq.~4!, wa(r ) is the ath
Kohn-Sham orbital of the molecule, and
0-3
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Uab5E drE dr 8U~r ,r 8!wa~r !wb* ~r 8!

5„wb* ~r0
A!1wb* ~r0

B!…E drf~r !wa~r !, ~21!

wheref(r ) is determined by Eq.~8!. Below we denoteUa
[Uaa .

Substituting the expansion of the frequency domain Gr
functions and coupling potential in Kohn-Sham orbita
@Eqs.~C4! and ~20!# in the expressions forI ~Appendixes B
and C!, and substitutingI in Eq. ~18! andS in Eq. ~15!, we
obtain

^Ĵ~x!&52
e

m\3
~¹ r̄2¹r !ur→ r̄E dv

2pE dv1

2p E dv2

2p

3d~v2v12v2!F (
b51

N

(
i 51

21

I iwb~r !wb* ~ r̄ !G .

~22!

Equation ~22! is our final expression for the current. Th
twenty one termsI i contributing to the current are given i
Appendix D.

If the external voltage is zero,mA5mB5m0. Settingm0
50, Eq. ~8! gives f(r )50 andU(r ,r 8)50 everywhere in
the molecule. All twenty one termsI i contributing to the
current Eqs.~D2!–~D22! then vanish.

IV. DISCUSSION

In this paper we have derived a closed expression@Eq.
~22!# for the current profile within a molecule attached
electrodes, in terms of Green functions of the isolated m
ecule. The external voltageW[mA2mB is equal to the dif-
ference between the chemical potentials of electrodesA and
B. Only one characteristic of the electrodes, the Fermi ene
levels mA and mB , enters these Green functions, t
molecule/electrodes coupling potential and the final exp
sion for the molecular current@Eqs.~C15!–~C19!#. This ex-
pression only requires DFT calculations for the molec
alone~which enters in the Green functions of the molecule
the expression for the current! rather than the molecule an
electrodes as used in Refs. 17, 18, 20–22. The deriva
employs the Liouville-space Green function technique,27 and
the current is expanded to fourth order in the molecu
electrodes coupling our formula for the current@Eq. ~22!#
should agree with Lang’s approach21 to lowest order in the
molecule/electrodes coupling potential.

We have established a one-to-one correspondence
tween Liouville-space and Hilbert-space Green functions
fermions ~Appendixes B and C!. For completeness, simila
relations for boson Green functions are given in Appendix
The only difference is the definition of the time ordering
Liouville space @Eq. ~B11! for fermions vs Eq.~E1! for
bosons#.

Liouville space provides a fully time-ordered descripti
of the current since we only need to propagate the den
matrix forward in time. In contrast, the wave function
15543
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Hilbert space involves both forward and backward propa
tions. The choice is between following the ket only, movi
forward and backward or following the joint dynamics of th
ket and the bra and moving only forward.27 Artificial time
variables ~Keldysh loops! commonly used in many-body
theory,24,31,32which are necessary for the wave function p
ture, are avoided by the density matrix in Liouville spa
which uses the real laboratory time scale throughout the
culation.
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APPENDIX A: SUPEROPERATOR ALGEBRA FOR THE
CURRENT

A Liouville-space operatorAa is labeled by a Greek sub
script wherea5L,R,1,2. It is defined by its action on an
ordinary ~Hilbert-space! operatorX,27

~AaX! i j [(
k,

~Aa! i j ,k,Xk, . ~A1!

Aa is thus atetradic operator with four indices.ALX[AX
denotes action from the left andARX[XA denotes action
from the right. We then obtain using Eq.~A1!,

~AL! i j ,k,5Aikd j , , ~A2!

~AR! i j ,k,5A, jd ik . ~A3!

Note that the order of thej , indices in Eq.~A3! has been
reversed.

We further define the symmetric and the antisymme
combinationsA1[ 1

2 (AL1AR) and A2[AL2AR . We then
have the tetradic matrix elements (A2) i j ,k,5Aikd j ,
2A, jd ik , (A1) i j ,k,5 1

2 @Aikd j ,1A, jd ik#. Note that
@AL ,BR#50. This commutativity of left and right operator
is made possible by the larger dimensionality of Liouvi
space, simplifies algebraic manipulations and results in m
useful relations.27

Using the above definitions of the Liouville-space alg
bra, we can representI in Eq. ~18! in the form

I 5
1

4! (
aÞb50,1

^T̂c~x!c†~ x̄!„ca~x1!cMb~x18!…2

3„ca~x2!cMb~x28!…2„c
a~x3!cMb~x38!…2

3„ca~x4!cMb~x48!…2&. ~A4!

Here, for a51 ca(x1)5c†(x1), and, for a50 ca(x1)
5c(x1). In the rhs of Eq.~A4! there are sixteen terms.
0-4
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We can now expand Eq.~A4! in ‘‘left’’ and ‘‘right’’
Liouville-space operators.27 We note that the superoperat
corresponding to any functionf of an operatorQj can be
expressed in terms ofQj 1 andQj 2 , i.e.,27

@ f ~Qj !#2[ f ~QjL !2 f ~QjR!5 f ~Qj 11 1
2 Qj 2!

2 f ~Qj 12 1
2 Qj 2!, ~A5!

and

2 @ f ~Qj !#1[ f ~QjL !1 f ~QjR!5 f ~Qj 11 1
2 Qj 2!

1 f ~Qj 12 1
2 Qj 2!. ~A6!

Using these relations, we have

„ca~x1!cMb~x18!…2

5„ca~x1!cMb~x18!…L2„ca~x1!cMb~x18!…R

5cL
a~x1!cL

Mb~x18!2cR
Mb~x18!cR

a~x1!, ~A7!

substituting Eq.~A7! in Eq. ~A4!, we obtain

I 5
1

4! (
h,k,l,n5L,R

(
aÞb50,1

^T̂„cL~x!cL
†~ x̄!ch

a~x1!

3ch
Mb~x18!ck

a~x2!ck
Mb~x28!cl

a~x3!

cl
Mb~x38!cn

a~x4!cn
Mb~x48!…&. ~A8!

Equation ~A8! which has 196 terms is used to derive E
~19!.

APPENDIX B: RELATIONS BETWEEN LIOUVILLE- AND
HILBERT-SPACE GREEN FUNCTIONS

In this appendix we establish a one-to-one corresp
dence between Liouville- and Hilbert-space Green functio

Standard field theory is formulated in terms of four typ
of Hilbert-space Green functions.24,31,32Using the notation of
Ref. 24, they are

Gc~x,x̄![2 i ^Tc~x!c†~ x̄!&

52 iu~ t2 t̄ !^c~x!c†~ x̄!&1 iu~ t̄ 2t !^c†~ x̄!c~x!&,

~B1!

Gc̃~x,x̄![2 i ^T̃c~x!c†~ x̄!&

52 iu~ t̄ 2t !^c~x!c†~ x̄!&1 iu~ t2 t̄ !^c†~ x̄!c~x!&,

~B2!

G.~x,x̄![2 i ^c~x!c†~ x̄!&, ~B3!

G,~x,x̄![ i ^c†~ x̄!c~x!&, ~B4!

Gc, Gc̃, G. and G, are known as the time-ordered
antitime-ordered, ‘‘greater’’ and ‘‘lesser’’ Keldysh Gree
functions, respectively.T is a time-ordering operator in Hil
15543
.

-
s.

bert space, which takes any product of Fermi field opera
z andx and reorders them in ascending times from right
left, i.e.,

Tz~t1!x~t2![H z~t1!x~t2! t2,t1

2x~t2!z~t1! t1,t2

1

2
@z~t1!x~t1!2x~t1!z~t1!# t25t1 .

~B5!

T̃ is an antitime-ordering operator in Hilbert space, whi
reorders any product of Fermi field operators in descend
times from right to left, i.e.,

T̃z~t1!x~t2![H 2x~t2!z~t1! t2,t1

z~t1!x~t2! t1,t2

1

2
@z~t1!x~t1!2x~t1!z~t1!# t25t1 .

~B6!

Four types of the Green functions naturally appear
Liouville space,

GLL~x,x̄!52 i ^T̂~cL~x!cL
†~ x̄!!&, ~B7!

GRR~x,x̄!52 i ^T̂~cR~x!cR
†~ x̄!!&, ~B8!

GLR~x,x̄!52 i ^T̂~cL~x!cR
†~ x̄!!&, ~B9!

GRL~x,x̄!52 i ^T̂~cR~x!cL
†~ x̄!!&, ~B10!

where T̂ is a time-ordering operator in Liouville space
which rearranges all superoperators so that time decre
from left to right, i.e.,27

T̂zn~t1!xm~t2!

[H zn~t1!xm~t2! t2,t1

2xm~t2!zn~t1! t1,t2

1

2
@zn~t1!xm~t1!2xm~t1!zn~t1!# t25t1 ,

~B11!

wherezn(t) is a Liouville-space Fermi superoperator, andn
andm can be either1, 2, or L or R.

We next establish the connection between the Hilbe
space @Eqs. ~B1!–~B4!# and Liouville-space@Eqs. ~B7!–
~B10!# Green functions. ForGRL andGLR we have

GRL~x,x̄!52 iTr @ T̂cR~x!cL
†~ x̄!r0#52 iTr @c†~ x̄!r0c~x!#

52 iTr @c~x!c†~ x̄!r0#5G.~x,x̄!, ~B12!

GLR~x,x̄!52 iTr @ T̂cL~x!cR
†~ x̄!r0#52 iTr @c~x!r0c†~ x̄!#

52 iTr @c†~ x̄!c~x!r0#5G,~x,x̄!, ~B13!
0-5
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wherer0 is unperturbed many-electron density matrix of t
isolated molecule uncoupled to the electrodes.

We next turn toGRR andGLL . For x. x̄, we have

GRR~x,x̄!52 iTr @ T̂cR~x!cR
†~ x̄!r0#52 iTr @r0c†~ x̄!c~x!#

52 iTr @c†~ x̄!c~x!r0#, ~B14!

GLL~x,x̄!52 iTr @ T̂cL~x!cL
†~ x̄!r0#52 iTr @c~x!c†~ x̄!r0#.

~B15!

For x, x̄ we analogously obtain

GRR~x,x̄!52 iTr @c~x!c†~ x̄!r0#, ~B16!

GLL~x,x̄!52 iTr @c†~ x̄!c~x!r0#. ~B17!

Comparing Eqs.~B14!, ~B16! with Eq. ~B2!, we see that
GRR(x,x̄)5Gc̃(x,x̄). Combining Eqs.~B15!, ~B17! with Eq.
~B1!, we get GLL(x,x̄)5Gc(x,x̄). Equations ~B12! and
~B13! provide the other relationGRL(x,x̄)5G.(x,x̄) and
GLR(x,x̄)5G,(x,x̄).

APPENDIX C: DFT KELDYSH GREEN FUNCTIONS IN
HILBERT SPACE

The four Hilbert-space Green functions@Eqs.~B1!–~B4!#
are not independent. To obtain the relations between them
introduce the retardedGr and the advancedGa Green
functions24

Gr~x,x̄![u~ t2 t̄ !@G.~x,x̄!2G,~x,x̄!#, ~C1!

Ga~x,x̄![u~ t̄ 2t !@G,~x,x̄!2G.~x,x̄!#. ~C2!

The retarded DFT Green function in real space is given
Eq. ~3.2! of Ref. 17~see Refs. 24,33,34,36!

Gr~x,x̄!5E dv

2p
eiv( t̄ 2t)(

a

wa~r !wa* ~ r̄ !

v2~va2vF!1 id
, ~C3!

whered→0, va is the energy ofa Kohn-Sham orbital mo-
lecular orbital, andvF is the Fermi energy of the molecule

We define retarded DFT Green functionGa
r (v) of the

Kohn-Sham orbitala in the frequency domain

Gr~x,x̄!5E dv

2p
e2 iv(t2 t̄ )(

a
wa~r !wa* ~ r̄ !Ga

r ~v!,

~C4!

where

Ga
r ~v!5~v2va1vF1 id!21. ~C5!

To connectGr , Ga, G., G,, Gc, andGc̃ ~Refs. 24,32!
we use Eqs.~C1! and ~C2! together with

Gc~x,x̄!52Gc̃* ~ x̄,x!, ~C6!

Ga~x,x̄!5Gr* ~ x̄,x!, ~C7!
15543
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Gc~x,x̄!1Gc̃~x,x̄!5G,~x,x̄!1G.~x,x̄!. ~C8!

SinceGr(x,x̄) is given by Eq.~C3!, we can use the system
of five equations~C1!, ~C2!, ~C6!–~C8! to obtain all Keldysh
DFT Green functions for the molecule aloneGa, G., G,,
Gc, and Gc̃. Solving these equations, and switching to t
Kohn-Sham orbital representation in the frequency dom
@see Eqs.~C3!–~C5!# we obtain all Keldysh DFT Green
functions for the molecule,

Ga
c ~v!5~v1vF2va1 id!21u~vF2va!

1~v1vF2va2 id!21u~va2vF!, ~C9!

Ga
c̃ ~v!52~v1vF2va2 id!21u~vF2va!

2~v1vF2va1 id!21u~va2vF!, ~C10!

Ga
a~v!5~v2va1vF2 id!21, ~C11!

Ga
.~v!522p i ~12u~va2vF!!d~v2va1vF!,

~C12!

and

Ga
,~v!52p iu~va2vF!d~v2va1vF!. ~C13!

The Keldysh Green functions for the electrodeA can be
obtained analogously by replacingGr(x,x̄) with DA

r (x,x̄).
The retarded Green function of an electronDA

r (v) in a metal
electrode in frequency domain is

DA
r ~v!.~v2mA1 id!21, ~C14!

wheremA is the Fermi energy level of electrons in electro
A (B). The difference between the chemical potentials of
electrodesA and B is given by the external voltageU5mA
2mB . In Eq. ~C14! we assumed that the electrons in t
metal are at the Fermi level,

DA
c ~v!5~v2mA1 id!21u~v2mA!1~v2mA2 id!21

3u~mA2v!, ~C15!

DA
c̃ ~v!52~v2mA2 id!21u~v2mA!

2~v2mA1 id!21u~mA2v!, ~C16!

DA
a~v!5~v2mA2 id!21, ~C17!

DA
.~v!522p i „12d~v2mA!…, ~C18!

DA
,~v!52p id~v2mA!. ~C19!

Similar expressions apply to electrodeB. The final expres-
sion for the molecular current only depends on the sum
the Green functions of electrodesA and B (Dc5DA

c 1DB
c ,

Dc̃5DA
c̃ 1DB

c̃ , D.5DA
.1DB

. , andD,5DA
,1DB

,).
0-6
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APPENDIX D: THE VARIOUS CONTRIBUTIONS TO THE
MOLECULAR CURRENT

Only terms which contain the contraction

^T̂„cL(xn)cL
†(xm)…&, ^T̂„cR(xn)cR

†(xm)…&,

^T̂„cR(xn)cL
†(xm)…&, and ^T̂„cL(xn)cR

†(xm)…& ~and similar
contractions for the electrodes! can contribute toI in Eq.
~19!, because all other contractions vanish. Therefore, o
twenty one terms survive in the rhs of Eq.~19!. These terms
contain the four types of Liouville-space Green functions
the moleculeGLL , GRR, GLR , andGRL introduced in Ap-
pendix B and of the electrodesDLL5DLL(A)1DLL(B) , DRR
5DRR(A)1DRR(B) , DLR5DLR(A)1DLR(B) , and DRL
5DRL(A)1DRL(B) .

As an illustration we write the expression for one of t
terms contributing toS,

I 1552 iU ~x1 ,x18!U~x2 ,x28!U~x3 ,x38!U~x4 ,x48!GRL~x1 ,x2!

3GLR~x3 ,x4!GLL~x,x̄!DLR~x28 ,x18!DRL~x48 ,x38!. ~D1!

Using the relations of Appendix B, we can recast this in
form of Eq. ~D16!.

Below we present all twenty one terms which contribu
to the current@Eq. ~22!#, using the Kohn-Sham orbitals rep
resentation in the frequency domain. The Greek indices
over the occupied Kohn-Sham orbitalsa,b,g51, . . . ,N,

I 152 i(
a

UbUa
3Gb

.~v!Ga
c ~v1!Ga

c̃ ~v2!

3Dc̃* ~2v2!D,~2v1!, ~D2!

I 252 i(
a

UbUa
3Gb

.~v!Ga
c ~v1!Ga

c ~v2!

3D,~2v2!Dc* ~2v1!, ~D3!

I 352 i(
a

Ub
3UaGb

.~v!Ga
,~v1!Gb

.~v2!

3Dc̃* ~2v2!D,~2v1!, ~D4!

I 45 i(
a

Ub
2Ua

2Gb
c ~v2!Ga

c ~v!Ga
.~v1!

3Dc* ~2v2!D,~2v1!, ~D5!

I 552 i(
a

UbUa
3Gb

c ~v1!Ga
.~v!Ga

c ~v2!

3D,~2v2!Dc* ~2v1!, ~D6!

I 652 i(
a

Ub
2Ua

2Gb
c ~v1!Ga

.~v!Ga
c̃ ~v2!

3D,~2v2!Dc̃* ~2v1!, ~D7!
15543
ly

f

e

n

I 752 i(
a

UbUa
3Gb

,~v!Ga
c ~v1!Ga

c̃ ~v2!

3Dc̃* ~2v2!D.~2v1!, ~D8!

I 852 i(
a

Ub
3UaGb

,~v!Ga
c ~v1!Gb

c ~v2!

3D.~2v2!D* ~2v1!, ~D9!

I 952 i(
a

UbUa
3Gb

,~v!Ga
.~v1!Ga

,~v2!

3D* ~2v2!D.~2v1!, ~D10!

I 105 i(
a

Ub
2Ua

2Gb
c ~v2!Ga

c ~v!Ga
,~v1!

3Dc* ~2v2!D.~2v1!, ~D11!

I 1152 i(
a

UbUa
3Gb

c ~v1!Ga
,~v!Ga

c ~v2!

3D.~2v2!Dc* ~2v1!, ~D12!

I 1252 i(
a

Ub
2Ua

2Gb
c ~v1!Ga

,~v!Ga
c̃ ~v2!

3D.~2v2!Dc̃* ~2v1!, ~D13!

I 1352 i(
ag

UbUgUa
2Gb

c ~v!Ga
c ~v1!Gg

c~v2!

3Dc* ~2v2!Dc* ~2v1!, ~D14!

I 1452 i(
ag

UbUgUa
2Gb

c ~v!Ga
c ~v1!Gg

c̃~v2!

3Dc* ~2v1!Dc̃* ~2v2!, ~D15!

I 1552 i(
ag

UbUgUa
2Gb

c ~v!Ga
,~v1!Gg

.~v2!

3D,~2v2!D.~2v1!, ~D16!

I 1652 i(
ag

UbUgUa
2Gb

c̃ ~v2!Ga
,~v1!Gg

.~v!

3Dc̃* ~2v2!D.~2v1!, ~D17!

I 175 i(
ag

UbUgUa
2Gb

,~v1!Ga
c̃ ~v!Gg

.~v2!

3D,~2v2!D.~2v1!, ~D18!

I 185 i(
ag

UbUgUa
2Gb

c̃ ~v1!Ga
c̃ ~v2!Gg

c~v!

3Dc̃* ~2v2!Dc̃* ~2v1!, ~D19!
0-7



n
ls
a

ith
e-

or

e
to
f

or
tors

ns

ven

-

OLEG BERMAN AND SHAUL MUKAMEL PHYSICAL REVIEW B 69, 155430 ~2004!
I 1952 i(
ag

UbUgUa
2Gb

,~v!Ga
.~v2!Gg

c~v1!

3D,~2v2!Dc* ~2v1!, ~D20!

I 2052 i(
ag

UbUgUa
2Gb

c̃ ~v1!Ga
.~v2!Gg

,~v!

3D,~2v2!Dc̃* ~2v1!, ~D21!

I 2152 i(
ag

UbUgUa
2Gb

,~v!Ga
c ~v2!Gg

.~v1!

3Dc* ~2v2!D,~2v1!. ~D22!

APPENDIX E: RELATION BETWEEN BOSON GREEN
FUNCTIONS IN LIOUVILLE AND HILBERT SPACE

The relations between Liouville-space Green functio
and Keldysh Hilbert-space Green functions for fermions a
apply to boson fields. We consider a system of identical
oms in an external potential.37 The definitions for the Liou-
ville space Green functionsGLL , GLR , GRL , andGRR @Eqs.
~B7!–~B10!# are the same for bosons as for fermions w
the only difference that a time-ordering operator in Liouvill
spaceT̂B is defined as27

T̂Bzn~t1!xm~t2!

[H zn~t1!xm~t2! t2,t1

xm~t2!zn~t1! t1,t2

1

2
@zn~t1!xm~t1!1xm~t1!zn~t1!# t25t1 ,

~E1!

wherezn(t) is a Liouville-space Bose superoperator, andn
andm can be either1, 2, or L or R.

The four types of Hilbert-space Green functions f
bosons are defined as32

Gc~x1 ,x2![2 i ^TBc~x1!c†~x2!&52 iu~ t12t2!

3^c~x1!c†~ x̄!&2 iu~ t22t1!^c†~x2!c~x1!&,

~E2!

Gc̃~x,x̄![2 i ^T̃Bc~x!c†~ x̄!&52 iu~ t62t5!^c~x!c†~ x̄!&

2 iu~ t52t6!^c†~ x̄!c~x!&, ~E3!

G.~x1 ,x2![2 i ^c~x1!c†~x2!&, ~E4!

G,~x1 ,x2![2 i ^c†~x2!c~x1!&. ~E5!

In Eq. ~E2! TB is a time-ordering operator in Hilbert spac
for bosons, which takes any product of Bose field opera
z, x and reorders them in ascending times from right to le
i.e.,
15543
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TBz~t1!x~t2![H z~t1!x~t2! t2,t1

x~t2!z~t1! t1,t2

1

2
@z~t1!x~t1!1x~t1!z~t1!# t25t1 .

~E6!

T̃B is an antitime-ordering operator in Hilbert space f
bosons, which reorders any product of Bose field opera
in descending times from right to left, i.e.,

T̃Bz~t1!x~t2![H x~t2!z~t1! t2,t1

z~t1!x~t2! t1,t2

1

2
@z~t1!x~t1!1x~t1!z~t1!# t25t1 .

~E7!

In analogy with Appendix B, we can show that for boso
GLL(x1 ,x2)5Gc(x1 ,x2), GRR(x1 ,x2)5Gc̃(x1 ,x2),
GRL(x1 ,x2)5G.(x1 ,x2), GLR(x1 ,x2)5G,(x1 ,x2).

The retarded boson Green function in real space is gi
by32

Gr~x1 ,x2!5E dv

2p
eiv(t22t1)(

a

wa~r1!wa* ~r2!

v2~va2m!1 id
,

~E8!

where d→0, va is the energy ofa eigenvalue,m is the
chemical potential,wa(r1) is the wave function correspond
ing to a eigenvalue of the external potential.

We define retarded boson Green functionGa
r (v) in the

frequency domain,

Gr~x1 ,x2!5E dv

2p
e2 iv(t12t2)(

a
wa~r1!wa* ~r2!Ga

r ~v!,

~E9!

where

Ga
r ~v!5~v2va1m1 id!21. ~E10!

The Keldysh Green functions for bosons are32

Ga
c ~v!5~v1m2va1 id!2122p inad~v2va1m!,

~E11!

Ga
c̃ ~v!52~v1m2va2 id!2122p inad~v2va1m!,

~E12!

Ga
a~v!5~v2va1m!2 id)21, ~E13!

Ga
.~v!522p i ~11na!d~v2va1m!, ~E14!

Ga
,~v!522p inad~v2va1m!, ~E15!

where na5„exp@(va2m)/(kBT)#21…21 is the occupation
number of thea harmonic oscillator (T is temperature and
kB is Boltzmann constant!.
0-8
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H v. Löhneysen, Phys. Rev. Lett.88, 176804~2002!.
8H.B. Weber, J. Reichert, F. Weigend, R. Ochs, D. Beckmann,

Mayor, R. Ahlrichs, and H v. Lo¨hneysen, Chem. Phys.281, 113
~2002!.

9A. Nitzan and M.A. Ratner, Science300, 1384~2003!.
10J.R. Heath and M.A. Ratner, Phys. Today56 ~5!, 43 ~2003!.
11M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, and C.

Lieber, Nature~London! 415, 617 ~2002!.
12Chem. Phys.281, 2 ~2002!, special issue, on Processes in M

lecular Wires, edited by P. Hanggi, M. Ratner, and S. Yalirak
13M.A. Reed, C. Zhou, C.J. Muller, T.P. Burgin, and J.M. Tou

Science278, 252 ~1997!.
14X.D. Cui, A. Primak, X. Zarate, J. Tomfohr, O.F. Sankey, A.

Moore, T.A. Moore, D. Gust, G. Harris, and S.M. Lindsay, S
ence294, 571 ~2001!.

15Y. Xue, Ph.D. thesis, School of Electrical and Computer En
neering, Purdue University, 2000.

16Y. Xue, S. Datta, and M.A. Ratner, J. Chem. Phys.115, 4292
~2001!.
15543
-

-

e

d

.

.

-

17Y. Xue, S. Datta, and M.A. Ratner, Chem. Phys.281, 151~2002!.
18D.S. Kosov, J. Chem. Phys.116, 6368 ~2002!; D.S. Kosov and

J.C. Greer, Phys. Lett. A291, 46 ~2001!.
19V. Mujica, A. Roitberg, and M.A. Ratner, J. Chem. Phys.112,

6834 ~2000!.
20V. Mujica, M. Kemp, A. Roitberg, and M.A. Ratner, J. Chem

Phys.104, 7296~1996!.
21N.D. Lang, Phys. Rev. B52, 5335~1995!.
22N.D. Lang and P. Avouris, Phys. Rev. Lett.84, 358 ~2000!.
23S. Datta,Electronic Transport in Mesoscopic Systems~Cambridge

University Press, Cambridge, 1995!.
24H. Haug and A.P. Jauho,Quantum Kinetics in Transport and Op

tics of Semiconductors~Springer-Verlag, Berlin, 1996!.
25A.A. Stuchebrukhov, Adv. Chem. Phys.118, 1 ~2001!.
26S. Mukamel,Principles of Nonlinear Optical Spectroscopy~Ox-

ford, New York, 1995!.
27S. Mukamel, Phys. Rev. E68, 021111~2003!.
28O. Berman and S. Mukamel, Phys. Rev. A67, 042503~2003!.
29S. Tretiak and S. Mukamel, Chem. Rev.~Washington, D.C.! 102,

3171 ~2002!.
30O. Berman and S. Mukamel, Phys. Rev. B68, 104519~2003!.
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