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Current profiles of molecular nanowires: Density-functional theory Green’s function
representation
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The Liouville-space Green function formalism is used to compute the current-density profile across a single
molecule attached to electrodes. Time ordering is maintained in real, physical, time, avoiding the use of
artificial time loops and backward propagations. Closed expressions for molecular currents, which only require
density-functional theory calculations for the isolated molecule, are derived to fourth order in the molecule/
electrode coupling.
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[. INTRODUCTION by sulfur, and for a chain of ten carbon atoms. The electrodes
were modeled as a semi-infinite ideal meflabmogeneous
There is a considerable interest in measurifyand  electron gas or Jellium modelThe same approach was sub-
computing®~??currents in single molecules attached to elec-sequently applied to calculate the current in a benzene-
trodes. The current-voltage-{/) characteristics of such de- 1,4-dithiol molecule connected to ideal metal electrodes, and
vices are strongly nonlinear, and should be recast in terms dhe effect of inserting a single gold atom between the mol-
high-order conductivitie¥?~** Controlling molecular cur- ecule and a metallic surface was investigdted.
rents has important applications to nanodevices such as mo- Mujica, Kemp, Roitberg, and Ratrfmproposed to solve
lecular wires and rectifier$ self-consistently the Hartree-Fock equation for the Green
The first-principles computation of molecular currentsfunction of the completémolecule+ electrodessystem and
poses a serious challenge that was addressed by matiye Poisson equation for the electrostatic potential, with the
approache$’!8 Standard quantum chemistry packages aresame boundary conditions of LaAl?? The molecule was
not designed to compute current-carrying states. Nonequilibdescribed by the Hubbard Hamiltonian, the electrodes were
rium Green function techniques widely used for computingtaken to be an ideal metal, and the current is computed from
currents in macroscopic systems, e.g., semicondutidfs, the Green function. This approach is easier to implement
were adopted for single-molecular curreltst’ The under- compared to density-functional theoffpFT),?2?2 since it
lying diagrammatic perturbative expansion requires the comenly requires the solution of two rather than four self-
putation of extra information in the intermediate steps, whichconsistent equations. However, DET? takes into account
is not needed for computing the current. This includes theexchange-correlation effects more rigorously.
dependence of the Green function on two times, involving Kosov applied a variational Kohn-Sham density-
coherence between states with a different number ofunctional (DFT) equation for electrons in molecular wires
e|ectron§_7 In a different approach the time-dependent(benzene-l,4-dithi0|ate molecule Covalently bonded to two
charge distribution in a donor-acceptor junction was studie@old electrodes'® By variational minimization of the total
by calculating the tunneling currents at the Hartree-Fockenergy, where an arbitrary given current is imposed as a
level in terms of the donor and acceptor stéfes. constraint:® a ten atom gold cluster participates in the bond-
An ab initio algorithm for calculating molecular currents ing with a molecule. The device contains 32 atoms. This
developed by Larfd??is based on the self-consistent solu- 'esults in a system of two self-consistent equations, similar
tion of a system of four equationét) The Kohn-Sham inte- to the Hartree-Fock approaéhwhich is simpler than the
gral equation for the wave function of the molecuteelec- ~ equations of Refs. 21, 22, yet treats exchange-correlation ef-
trodes[Eq. (3.1) in Ref. 21, (2) Equation for the potential fects as rigorously as DF:*
difference between the completenolecule + electrodes All these approaches, which employ DFT for the mol-
system and the bare electroddzy. (3.2) in Ref. 21], (3) ecule + electrodes, require the solution of a system of self-
Equation for the Green function of the molecule in an effec-consistent equations, but do not give closed expressions for
tive potential given by the sum of the exchange correlatiorthe current.
and the electrostatic potentifEq. (3.13 in Ref. 21. The In this paper we compute the current profile in a molecule
latter is determined by4) the Poisson equation with bound- Perturbatively in the ratio of the coupling of the molecular
ary conditions setting the potential to be equal to the chemiélectrons with the electrodes and the separation between
cal potentials difference of the electrodi&q. (6) in this ~ Kohn-Sham orbital energies. Our approach yields a closed
papel. These equations, together with the boundary condiexpression for the current densi@(r)} in terms of Kohn-
tions, yield the wave function of the entiteolecule+ elec-  Sham orbitals of the molecule alone, which enter various
trodeg system which can be used to compute the finite curGreen functions in the frequency domain. The molecule/
rent. This algorithm was applied for calculating the current inelectrodes coupling potential of Lang’s appro#dk treated
a chain of three Al atoms with the substitution of one atomto the lowest order required to yield a finite current. We use
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a Liouville-spacegsuperoperatgrmany-body Green function V2¢h(r)=—e(o(r)—gq(r)), (5
technique, which gpargvides a convenient description of non-
equilibrium effects®2’ The Liouville-space TDDFTtime- with the boundar i Ay _ By _

. : . ) y conditiong(rg) =ua and ¢(rg) = ug.
dependent density-functional thepriprmulation of nonlin- oo and - are the chemical pote/?wtials of electrodes

ear response based on the single electron density matrix w - _
developed in Refs. 28, 29, and subsequently extended %ﬁgiigstsrggcélr\\/aerlé\e/v #a~ up is the external voltage, and

3%5;@?82;%&&? S%%imizg;:tf V"\‘/’gr:fgg dmom; cr:](ljgnhs(ia(;-er The Poisson equation for the total eIectrosEz;ttig potential in
time-ordered quantities in redphysica) time and Wick's the molecule coupled to the electroddg(r) is
theorem therefore assumes a particularly compact férim:;
contrast to Hilbert-space Green function perturbation V2Ue((r)=—eo(r), (6)
theory?*3132no special contours or analytic continuations are
necessary. with the boundary conditiondJq(r5)=pua and Ug(r5)
= ug. The boundary conditions should reflect the change of
Il. THE MODEL HAMILTONIAN the electrostatic potential in the interior of the léfight)
" ) o electrodes when current is flowing, which is smaller than the
We s'hall partition the electronic Hamiltonian of a mol- chemical potential difference of electroddy. (5.4) in Ref.
ecule withN electrons connected to two electrodeandB,  17)35his difference should be negligible for large electrode
in the form spacings, for which the current is small, but should be no-
table for small spacings. Our boundary conditions thus hold
in the small current limi{large electrode spacings
_ To lowest order in the molecule/electrodes coupling we
use the unperturbed charge density of the isolated molecule
in the right-hand-sidgrhs) of the Poisson equatio@(r)
=po(r), and Eq.(6) gives

H=Ho+V, (1)

whereH, represents the noninteracting molecule and elec
trodes and/ is the molecule/electrodes coupling,

\7=f dxf dx" U(x,x [ OO[AX") + ¢B(x')]
+LPATX) + BT () (0], ) Vzum(r):—eg Pa(r)@i(r), @)

The spatial coordinatesandx’ run over the molecule and

the electrode regions, respectiv¢ly=(r,t) is a coordinate where the sum runs over all occupied molecular Kohn-Sham
of electrons within the molecule and=(r',t) is a coordi-  orbitals ¢, (r). Usingo(r)=g,(r), we obtain from Eq(5)
nate of electrons in the electrodes rediod(x,x’) is the [Eq. (5.6) in Ref. 17 V2¢(r)=0, d’(fé):MA, ¢(rg)

coupling potential between the molecule and electrodes. ;. By solving this equation, we obtain that the coupling
#(x) is the field operator of electrons in the molecule, potential is linear irr,

whereasy”(x’) and ¢8(x’) are the field operators of elec-
trons in the two electrodes. These operators satisfy Fermi

anticommutation relatiors:3* B(r)=(rg—16) [ palo— paro+(ua—mp)rl. (8
Y)Y () + g (r) g(ry)=8(ry—r2), There are two contributions to the charge density in the Pois-
son equatiofEq. (6)]: The charge density of the isolated
P(r) (ra) +i(ra) (ry) =0, molecule and the variation of the charge density due to the
coupling with the electrodes induced by the external
)t (r)+ ¢l (r)g'(ry)=0. (3)  voltage!”?! To lowest order in the coupling potential we

) ) neglect the latter, and the electrostatic potential in the mol-
We assume that the electrodes interact with the moleculgcyle is calculated using the unperturbed charge defiity
only at two points of contactrf andrg). Kosov considered (7). We thus neglect all screening effects and the potential
the coupling between the molecule and the electrodes reprerofile across the junction is assumed to be liféar. (8)].
sented by 10 gold aton'}§;participation of only a restricted This holds for low voltages. The electronic structure of the
domain of the elect(odes |51 the moIecuIe/eIecErode CouDl'nQnolecule enters iﬂ:'o- The external voltage, which is the
was also assumed in the “extended molecule” mddéNe itterence between the chemical potentials of the electrodes
then have (W= us—pug), enters in the Hamiltonian of the molecule/
u(r,r')= ¢(r)[5(r’—r§)+ 5(r’—r§)], (4) electrodes couplin in Eq. (1) through t_he coupling poten-
tial U [Egs. (4) and (8)]. Our perturbative approach holds
where¢(r) is defined as the potential, induced by the differ- provided the coupling potential of the molecular electrons
ence between the charge density of the isolated moleculgith the electrodegthe external voltaggEdq. (8)]) is smaller
0o(r) and of the molecule coupled to the electrogds).!”  than the difference between Kohn-Sham orbital energies. It
¢(r) is obtained by solving the Poisson equation in the mol-corresponds to lowest-order expansion in the molecule/
ecule (5<r<rP) [Eq. (5.9 in Ref. 17, electrodes coupling potential of Lang’s approath.
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I1l. PERTURBATIVE CALCULATION OF THE CURRENT _ 1/i\%t t t t
S(X,X)=—m(%) J drlf deJ d7'3f duf drq

Our goal is to compute the expectation value of the cur-
XJdrif drzf dréJ drgj dréf dr4J dr,

rent Operator
X(Tp(x, %OV _(r4,7)V _(r5,75)V_(r,75)

ief =
I == 5 (W= W)y () |x=x" 9

wheree andm are the electron charge and mass, respectively. ~

We start with the interaction picture expression for the XV_(r1,m1))o, (16)
expectation value al(x), using the partitioningEq. (1)] of ~ T — T T
the Hamiltoniarf” We define the Liouville operatoris=L wherep(x,x,t) = $(x) ¢ (x).
+V_ corresponding to Eql) whereLy=(Hy)_ i.e., LoX
=HyX—XH,. The zero-order time evolution operator is de-
fined as

We next expan(S(x,Y) in Eq. (16) in “left” and “right”
operators in Liouville spac¥.To that end we introduce the
field operator corresponding to both electrodes

PM (X =g )+ gB(x'). (17

Substituting Eq(2) into Eq. (17) we get

where 6(t) is the Heaviside step function. Throughout this 1 i\4 e t t t
paper we denote operators in the interaction picture by a tilde S(x,x) = E(ﬁ) J drlf dTZJ d7-3f duj drq

. (10

i
90(72171)59(72_71)@([{_gLo(Tz_Tl)

), ie.,
A(1)=G}(1,00A,Go(7,0)v=+,— or v=L,R. (11) defij drzf dféf dfsf dféf df4J dri
The current is given by XU (Xg,X0)U(X3,X3)U(X2,X2) U (Xq,X1)

><I(Xl,Xi,XZ,Xé,X3,Xé,X4,X£,X,;), (18)

t
<3(x))=—<:l'3+(x)ex;{—;l—f d7V_(7) > (12)

- wherel is given by Eq.(A4). In Appendix A we use super-
operator algebra to bring it to the form of E@\8). Factor-
izing that equation, using Wick’s theorem for fermion super-

operatord Eq. (74) in Ref. 27, we obtain

where the Liouville-space superoperators with indi¢eand
— are defined in Appendix A’ and the time-ordering opera-

tor in Liouville-spaceT is defined in Eq(B11).?” This natu-

ral time ordering follows chronologically the various inter- 1
actions with the electrodes. The precise order in which |=I N (-1)P
superoperators appear next toTaoperator is immaterial C vy k= 0LLI=01
since at the end the order will be fixed By T before an o Mo ke Mii o
exponent means that each term in the Taylor expansion of X k=0 _H4k| 01<T(¢Vﬂk () ‘ﬂykl (X))
this exponent should be time ordered. o

The current can be also expressed in terms of the molecu- K (1= 5. 08, 16c (1= 5. 08, 1642 19
lar electron density matrig(r,r’,t) in the interaction picture 709,19 (1~ 000y, 10c1) |

D n =T DT (D pol, (13)  Whereé is the Kronecker symbol: for,=0 ¥, =t and

_ _ _ for v,=1 ¢, =yg, for k=1 yM(x*)=yM(x") and fork
wherepg is unperturbed many-electron density matrix of the Moroky . o . w
: =0 YMK(X)=¢(x), for i=0 %=y and fori=1 =i
isolated molecule uncoupled to the electrodes, and the cur- ~ ; it . dify -
rent is =¢'. P=1/2(n_ +ng’) is a number of sum of permuta-
tions of ¥ and ¥k, Wheren‘ﬁ'f is a number of contractions

N ief -~ — B in the rhs of Eq(19) (T (Xn) ¥ (X)), Whenn#m, and
(309)= =5 (V= Vp(r,r) = (14 ndif is a number of contractions in the rhs of E(L9)
N , | o (T(r(%n) ¥r(Xm))), Whenn=m.

Afinite current requires at least two interactions with each  We assume that the molecule contacts each electrode at a
electrode. We, therefore, computed the current to fourth orsingle point ¢5 andr§) with the coupling potential

derinV,

ot _ U(r,r)=2 Uugek(Neg(r'), (20)
N B B T
<‘J(X)>_ —%(VT— Vr)S(XvX)|x=x- (15)
whereU(r,r') is determined by Eq(4), ¢,(r) is the ath
where Kohn-Sham orbital of the molecule, and
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Hilbert space involves both forward and backward propaga-
Uaﬁ:f de' dr'U(r,r' )@, (r)ep(r’) tions. The choice is between following the ket only, moving
forward and backward or following the jg;r%t dynamics of the
ket and the bra and moving only forwardArtificial time
=(¢E(f3>+¢’é(f3>)f dré(Meqr), (2D yariaples (Keldysh loops commonly used in many-body
_ _ theory?*3132which are necessary for the wave function pic-
where ¢(r) is determined by Eq(8). Below we denotd),  ¢re ‘are avoided by the density matrix in Liouville space

=Uoa- . ) which uses the real laboratory time scale throughout the cal-
Substituting the expansion of the frequency domain Greeg,|ation.

functions and coupling potential in Kohn-Sham orbitals
[Egs.(C4) and(20)] in the expressions fdr (Appendixes B
and Q, and substitutindg in Eqg. (18) andSin Eq. (15), we ACKNOWLEDGMENTS
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APPENDIX A: SUPEROPERATOR ALGEBRA FOR THE
CURRENT
Xo(w—w1— wy)

A Liouville-space operatoA , is labeled by a Greek sub-
(22 script wherea=L,R,+,—. It is defined by its action on an

. _ _ _ ordinary (Hilbert-spacé operatorX,?’
Equation (22) is our final expression for the current. The

twenty one termg; contributing to the current are given in
Appendix D.

If the external voltage is zerqua= ug= po. Settingug
=0, Eq.(8) gives¢(r)=0 andU(r,r')=0 everywhere in
the molecule. All twenty one terml contributing to the
current Eqs(D2)—(D22) then vanish.

(AX)ij E% (AQij,keXce - (A1)

A, is thus atetradic operator with four indicesA X=AX
denotes action from the left anlixzX=XA denotes action

from the right. We then obtain using EGAL),
IV. DISCUSSION

In this paper we have derived a closed express$oan. (AL)ij ct=AiSje (A2)
(22)] for the current profile within a molecule attached to
electrodes, in terms of Green functions of the isolated mol-
ecule. The external voltagl/= u,— ug is equal to the dif- (AR)ij, e =A¢j i - (A3)
ference between the chemical potentials of electréddesd
B. Only one characteristic of the electrodes, the Fermi energiote that the order of th¢¢ indices in Eq.(A3) has been
levels un and ug, enters these Green functions, thereversed.
molecule/electrodes coupling potential and the final expres- We further define the symmetric and the antisymmetric
sion for the molecular currefEgs. (C19—(C19)]. This ex-  combinationsA, =3(A, +Ag) andA_=A, —Ag. We then
pression only requires DFT calculations for the moleculehave the tetradic matrix elementsA ()i .= A S
alone(which enters in the Green functions of the molecule in_A” Sier (AL)ij = %[Aik(sijA“ 5,.]. Note that
the eXpreSSion for the Currémather than the molecule and [AL !BR]:O' This Commutativity of left and r|ght operators
electrodes as used in Refs. 17, 18, 20-22. The derivatioly made possible by the larger dimensionality of Liouville
employs the Liouville-space Green function technifliand  space, simplifies algebraic manipulations and results in many
the current is expanded to fourth order in the moleculefseful relationg’
electrodes coupling our formula for the currdiq. (22)] Using the above definitions of the Liouville-space alge-
should agree with Lang’s appro&cto lowest order in the bra, we can represehtin Eq. (18) in the form
molecule/electrodes coupling potential.

We have established a one-to-one correspondence be-

tween Liouville-space and Hilbert-space Green functions for _ i A TN e MB/ o
fermions (Appendixes B and € For completeness, similar 41 a;&BE:o’j_ (TYOP 0 (7 (x) P (x1) -
relations for boson Green functions are given in Appendix E. " "

The only difference is the definition of the time ordering in X (g (%) YMP(x2)) - (9 (X3) pMP(x3)) -

Liouville space[Eq. (B11) for fermions vs Eq.(E1) for ,

oy SpacelEa. (B1Y (=D X (0 MB(X3)) ). (A%)

Liouville space provides a fully time-ordered description
of the current since we only need to propagate the densitiere, for a=1 ¢*(x;)=4¢"(x;), and, for a=0 ¢¥“(x;)
matrix forward in time. In contrast, the wave function in = ¢(x;). In the rhs of Eq(A4) there are sixteen terms.
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We can now expand EqA4) in “left” and “right”
Liouville-space operators. We note that the superoperator
corresponding to any functiofi of an operatorQ, can be
expressed in terms @;, andQ;_, i.e.?

[F(QN1-=f(Qju)—f(Qjr) =f(Qj++3Q;-)
—f(Qj+—3Q;-), (AS5)

and
2[f(Qy]+=f(Q;L) +f(Qjr) =
+f(Qj+—3Qj-).

Using these relations, we have

(W (x) yMP(xD)) -

f(Qj++32Q;-)
(AB)

= (P (x) PMP(xDIL— (* (x) PMP(x1)r
= (x) P (x1) — IR P (X)) YiR(X0),
substituting Eq(A7) in Eqg. (A4), we obtain
= % o i (TR0
X P (XD b (x2) 1P (X5) Y (Xa)
NP P (Xa) P (X))

Equation (A8) which has 196 terms is used to derive Eq.
(19.

(A7)
(X) P21

(A8)

APPENDIX B: RELATIONS BETWEEN LIOUVILLE- AND
HILBERT-SPACE GREEN FUNCTIONS

In this appendix we establish a one-to-one correspon
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bert space, which takes any product of Fermi field operators
¢ and y and reorders them in ascending times from right to
left, i.e.,

{(11)x(72) To<Ty
_ ) <
Te(rx(ry)= x(72)L(71) T1<T3
E[g(Tl)X(Tl)_X(Tl)g(Tl)] T2=T1-
(B5)

T is an antitime-ordering operator in Hilbert space, which
reorders any product of Fermi field operators in descending
times from right to left, i.e.,

—x(72){(71) To<Ty
~ )x(72) <
Terom= oM e

5[5(7'1))((71)_)((7'1)5(7'1)] Tp=Ty.

(B6)

Four types of the Green functions naturally appear in
Liouville space,

GLLOGX) == i(T(gL0 9] (%)), (B7)
Gre(xX) = —I(T(YRO)YR(X)), (B8)
GLrOGX) = =T () Ph(X)), (BY)
Gru(xX)= = I{T(r() (X)), (B10)

where T is a time-ordering operator in Liouville space,
which rearranges all superoperators so that time decreases
from left to right, i.e.2’

dence between Liouville- and Hilbert-space Green functions.

Standard field theory is formulated in terms of four types
of Hilbert-space Green functioi$3*2?Using the notation of
Ref. 24, they are

Go(x,x)=—I(Ty(x) ¢ (x))

=i 0(t— ) () YT () +i 0t =) () (X)),
(B1)

GE(x, )=~ I{Ty(x) (%))
=10t =) ()P () +i 6(t— (BT () (X)),

(B2)
G”(x,x)=—I{g(x) (X)), (B3)
G=(x,x)=i{(¢"(})(x)), (B4)

G, G, G~ and G= are known as the time-ordered,
antitime-ordered, “greater” and “lesser” Keldysh Green
functions, respectivelyr is a time-ordering operator in Hil-

TLT)Xu(72)
(T X u(T2) To<T1
- _X,u.( TZ)gy( Tl) 7-1<7-2
1
E[gv(Tl)Xﬂ(Tl)_Xﬂ(Tl)gv(Tl)] T2=T1,
(B11)

where,(7) is a Liouville-space Fermi superoperator, and
and u can be either-, —, orL or R

We next establish the connection between the Hilbert-
space[Eqgs. (B1)—(B4)] and Liouville-space[Egs. (B7)—
(B10)] Green functions. FoGg, andG, g we have

(X)pol=—iTr[ ¥ (x)poth(X)]
(B12)

Gru(X,X)=—ITr[Tyr(x) ¢

—iTr[¢(x) T (X)po] =G~ (x,X),

GLrOXX) = —ITr[ Ty (X) ¥R(X)pol=—iTr[ ¢(x) pots’(X)]
—iTr[¢" () () po] = G=(%,X),

(B13)

155430-5
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wherep is unperturbed many-electron density matrix of the

isolated molecule uncoupled to the electrodes.
We next turn toGgg and G, | . Forx>x, we have

Grr(X,X)=—iTr[ Tyr(X) Yyk(x)pol=—iTr[pod (X) ¥(x)]
= —iTr[¢"(x) (X)), (B14)

GLL(X)=—iTr[ Ty () ¢ (X) pol= =i Tr[(x) ¥T(x) po].-

(B15)

For x<x we analogously obtain
Grr(X,X)=—iTr[¢(x) ¥ (x)pol, (B16)
G (x,x) = —iTr[¢T(x) ¢(x) po]. (B17)

Comparing Eqs(B14), (B16) with Eq. (B2), we see that
Ggrr(X,X) =G¢(x,X). Combining Eqs(B15), (B17) with Eq.
(B1), we get G (x,x)=G%(x,x). Equations(B12) and
(B13) provide the other relatioGg, (X,X)=G”(x,x) and
GLR(Xv;)=G<(Xa;)-

APPENDIX C: DFT KELDYSH GREEN FUNCTIONS IN
HILBERT SPACE

The four Hilbert-space Green functiofisgs.(B1)—(B4)]

are not independent. To obtain the relations between them we

introduce the retardeds” and the advanceds® Green
functiong*
G'(xx)=0(t-)[G™(x,x)-G=(x,x)],  (CI

GAx,X)=0(t—t)[G=(x,Xx) =G~ (x,X)].  (C2)

PHYSICAL REVIEW B 69, 155430 (2004

Go(x,X)+ G (X X)=G=(x,X) +G”(x,x).  (C8

SinceGr(x,Y) is given by Eq.(C3), we can use the system
of five equationgC1), (C2), (C6)—(C8) to obtain all Keldysh
DFT Green functions for the molecule alo@&, G™, G~,

G¢, andG°. Solving these equations, and switching to the
Kohn-Sham orbital representation in the frequency domain
[see EQs.(C3)—(C5] we obtain all Keldysh DFT Green
functions for the molecule,

Gi(w)=(w+ wr—w,+16) 10 wr—w,)

+(w+twr—w,—i8) 0(w,—wg), (C9

GYw) =~ (0+ wp—w,—18) 10(wp—w,)

—(w+twp—w,+i6) 0(w,— wg), (C10

G w)=(w—w,+wg—i6)" 1, (C1)
G, (0)==2m (1= 0(w,~ wp)) 80— w,+ ),
(C12

and

G (w)=2m 0w~ ) w—w,+wg). (CL3

The Keldysh Green functions for the electrodlecan be
obtained analogously by replacir@"(x,x) with D}(x,X).

The retarded Green function of an elect@R(w) in a metal
electrode in frequency domain is

Da(w)=(w—pup+id) ™, (C14

The retarded DFT Green function in real space is given byvhereu, is the Fermi energy level of electrons in electrode

Eq. (3.2 of Ref. 17(see Refs. 24,33,34,86

Pa(r)@(r)

—(w,—wg)+id’ €3

— do . —
r — io(t—t)
G'(x,Xx) jzwe Ea -

where5—0, w, is the energy olx Kohn-Sham orbital mo-
lecular orbital, andog is the Fermi energy of the molecule.

We define retarded DFT Green functi®®l (w) of the
Kohn-Sham orbitaky in the frequency domain

G'(x,x)= f g—ﬁe-iwﬂ-‘); ?o(N)@s(NG(w),
(C4)
where

Gl (0)=(0—w,+o+i6) . (Ch)

To connectG', G?, G~, G<, G, andG® (Refs. 24,32
we use Eqs(C1) and(C2) together with
GS(%,X) = — G (x,X), (C6)

G3(x,x)=G"* (x,X), (€7

A (B). The difference between the chemical potentials of the
electrodesA andB is given by the external voltagd = u,
—ug. In Eg. (C14 we assumed that the electrons in the
metal are at the Fermi level,

DS () =(w—patid) L0(w—up)+(0—pa—i5)

XO(pup— ), (C15
D&(w)=—(0—ua—i8) 0w pp)

~(0=pati®) O(pa-w),  (C16

Di()=(w—pa—i8) %, (€17

D (@)= —2mi (1 80— ua)), (€19

D (@)=2mi 80— p). (€19

Similar expressions apply to electro@e The final expres-
sion for the molecular current only depends on the sum of
the Green functions of electrodésand B (D°=Dx+Dg,

D°=DS+DS, D”=D;+D;, andD~=Dj;+Dj).
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APPENDIX D: THE VARIOUS CONTRIBUTIONS TO THE
MOLECULAR CURRENT

Only terms which contain the contractions
(T LX) ¥ (X)), (T (%) YR (X)),

(TR ¥ (X)), and (T (P (Xq) k(X)) (and similar
contractions for the electrodesan contribute td in Eq.
(19), because all other contractions vanish. Therefore, only
twenty one terms survive in the rhs of E49). These terms
contain the four types of Liouville-space Green functions of
the moleculeG, | , Ggrr, G r, andGg, introduced in Ap-
pendix B and of the electrodd3 | =D s+ Dy @), Drr
=Dgrra)TDrrB)s  Dir=Dira) T Dire), and Dgp
=Dria)t Dru) -

As an illustration we write the expression for one of the
terms contributing tc5,

I15= —1U(X1,X7)U(X2,X2) U (X3,X3) U(Xg,X3) Gri(X1,X2)
X GLr(X3,%4)GLL(X,X)Dr(X5,X}) DRy (Xs,X3). (D1)

Using the relations of Appendix B, we can recast this in the
form of Eq.(D16).

Below we present all twenty one terms which contribute
to the currenfEq. (22)], using the Kohn-Sham orbitals rep-
resentation in the frequency domain. The Greek indices run
over the occupied Kohn-Sham orbitalsg,y=1, ... N,

1= =12 UU2G; ()Gl (01)G(w2)
XD (— wy) D= (~ wy), (D2)

2= =12 UgU3G,(0)G(01)Gy(w2)
XD (—w;)D* (—wy), (D3)

3=~ UU.G; ()G (01)Gj ()
XD (— w,)D(~ wy), (D4)

l4=12 UGUZGH(02)GE(w) Gy (wa)
X D% (— 5)D=(—wy), (D5)

ls= =12 UsUiGj(01)G, ()G ()
XD (—w;)D* (—wy), (D6)

lo=—12 UFUZGH(01)G ()G (w2)

XD<(—w,)D%* (— wy), (D7)

155430-7

PHYSICAL REVIEW B 69, 155430(2004
l7= =13, UgU3G5(0)GS(w1)GE(w))
XD (— w,)D”(— wy), (D8)
lg=—12 USU,Gj;(0)G(w1)G(w,)
XD (—wy)D*(— wy), (D9)
lg=—i2 UgU3G5(0)G, (w1)G; (w),)
XD*(—wz)D>(—w1), (DlO)
l10=1 2 UU%GH(02)G(w)G (w,)
XDC*(—wZ)D>(—w1), (Dll)
|11=—i§ UpU3G5(w1)G,, (0)GS(wy)
XD7(—wy)D*(— wq), (D12

L= —i2, U%UiG?;(a)l)G;(w)GZ(wz)

XD (= wy)D* (— wy), (D13)
lle,——uE UgU,U2G5(0)GE(w1)GS(w))
X D% (— wy)D%* (—wy), (D14)

=13 U0 U260, (01)G(w;)

XDC*(—wl)DC*(—wZ), (D15)
115——|2 UpU,U2GH( )G (w1)G (wp)
XD=(—wy)D”(— wy), (D16)

lle——|2 U U, U2G(0) G (1) G (w)
XD (— w)D”(~ wy), (D17)
|17=ia27 U U, UG5 (01)G%(0)G (,)
XDS(—wy)D7(—wy), (D18)
lls—uz U U, U2G(01)GS ()G )

XDC*(—wZ)DC*(—wl), (D19
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(1) x(72) To<Ty

l1g=—i>, UgU U%G5 ()G (wy)GE
10= 7125 UpU,U.85(0)8 (071G wa) X(72)¢(7) "<,

_ o Tel(T)x(72)= 1
XD @)D (=), (020 LX)+ x(r)E(r)] 7=

: z (E6)
0= =12 Upl,UiG5(w01)Gy (02)G5 (w)
“ Tg is an antitime-ordering operator in Hilbert space for
><D<(—w2)DE*(—w1), (D21)  bosons, which reorders any product of Bose field operators
in descending times from right to left, i.e.,

1= =12 UgU, UG} (0)G(w2) Gy (@) X(72){(71) <71
7 = ) dm)x(72) <72
XD (= w,)D<(— ). (D22 Tel(T)x(72)=

z[g(Tl)X(Tl)+X(Tl)§(Tl)] Ty=Ty.
APPENDIX E: RELATION BETWEEN BOSON GREEN (E7)
FUNCTIONS IN LIOUVILLE AND HILBERT SPACE
: o . In analogy with Appendix B, we can show that for bosons
The relations between Liouville-space Green fun<:t|onsG (X1 1%9) = GE(Xq %) Grn(X1 X )=GE(X %)
and Keldysh Hilbert-space Green functions for fermions alsgZtt} 71720 — = M1»72/ RRVML 22 12720
apply to boson fields. We consider a system of identical atCRUX1:X2) =G (X1, Xp), GLR(X1 X)) =G~ (X, Xp).
oms in an external potential.The definitions for the Liou- by3'|;he retarded boson Green function in real space is given

ville space Green functiors, | , G g, Gg., andGgrg[EQs.

(B7)—(B10)] are the same for bosons as for fermions with q (F)0* (1)

the only difference that a time-ordering operator in Liouville- Gr(Xl.X2)=f2—wei‘"(t2_t1)2 Pallt)Pall2
aa

spacel is defined a& e 0= (w,—p)+id’
(E8)

Tel (T Xu(T2) where 5—0, o, is the energy ofa eigenvalue,u is the
chemical potentialgp,(r4) is the wave function correspond-
) Xu(T2) 25T ing to a eigenvalue of the external potential.

Xu(72)E,(71) TI<T2 We define retarded boson Green functiéf)(w) in the

1 frequency domain,
L)X u(T) + X (1) E(T)] T2= 71,

do
(ED Gr(xl,x2)=f£e"‘”“ft2)§ ¢ar)@s(r2)Gy(w),

where{,(7) is a Liouville-space Bose superoperator, and (E9)
and u can be either-, —, orL or R. where
The four types of Hilbert-space Green functions for
bosons are defined ¥s G (0)=(0—w,+p+id) L. (E10
G(X1,%2)=—i(Tath(x1) ' (Xz)) = =i 6(t; 1) The Keldysh Green functions for bosons %re
X(P(x0) T (X)) =1 6t = t1) (¥ (x2) (%)), Gé(w)=(0+u—w,+i8) 1=27in, w—w,+un),
(E2) (E1D)
G2(x, )=~ i(Tayx) (X)) = =1 6(ts— ts) (W(x) (X)) GE(w)=— (0t p—w,—18) 1= 27N, 8w w,+ ),
_ (E12
—i0(ts— te) (%' (x) (), (E3)
G w)=(w—w,+u)—id) 1 (E13
G™ (X1, %)= —I{#h(X) ¥ (X2)), (E4)

G (w)=—2mi(14+n,) 8 (w— w,+ ), (E19
G (Xg,%2)=—i(¢"(Xp) th(x0)). (E9)
) ) ) o G (w)=—27n,w—w,+un), (E1H
In Eq.(E2) Ty is a time-ordering operator in Hilbert space
for bosons, which takes any product of Bose field operatorsvhere n,=(exf(w,—w)/(ksT)]-1)"1 is the occupation
£, x and reorders them in ascending times from right to left,number of thea harmonic oscillator T is temperature and
ie., kg is Boltzmann constajt
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