Current profiles of molecular nanowires: Density-functional theory Green’s function representation

Oleg Berman* and Shaul Mukamel†

Department of Chemistry, University of California, Irvine, California 92697-2025, USA

(Received 20 August 2003; published 30 April 2004)

The Liouville-space Green function formalism is used to compute the current-density profile across a single molecule attached to electrodes. Time ordering is maintained in real, physical, time, avoiding the use of artificial time loops and backward propagations. Closed expressions for molecular currents, which only require density-functional theory calculations for the isolated molecule, are derived to fourth order in the molecule/electrode coupling.

DOI: 10.1103/PhysRevB.69.155430 PACS number(s): 85.65.+h, 73.63.Nm, 71.10.−w, 73.40.Cg

I. INTRODUCTION

There is a considerable interest in measuring1–14 and computing15–22 currents in single molecules attached to electrodes. The current-voltage (I−V) characteristics of such devices are strongly nonlinear, and should be recast in terms of high-order conductivities.12–14 Controlling molecular currents has important applications to nanodevices such as molecular wires and rectifiers.12–14

The first-principles computation of molecular currents poses a serious challenge that was addressed by many approaches.17,18 Standard quantum chemistry packages are not designed to compute current-carrying states. Nonequilibrium Green function techniques widely used for computing currents in macroscopic systems, e.g., semiconductors,23,24 were adopted for single-molecular currents.15–17 The underlying diagrammatic perturbative expansion requires the computation of extra information in the intermediate steps, which is not needed for computing the current. This includes the dependence of the Green function on two times, involving coherence between states with a different number of electrons.17 In a different approach the time-dependent charge distribution in a donor-acceptor junction was studied by calculating the tunneling currents at the Hartree-Fock level in terms of the donor and acceptor states.25

An ab initio algorithm for calculating molecular currents developed by Lang21,22 is based on the self-consistent solution of a system of four equations: (1) The Kohn-Sham integral equation for the wave function of the molecule + electrodes [Eq. (3.1) in Ref. 21], (2) Equation for the potential difference between the complete (molecule + electrodes) system and the bare electrodes [Eq. (3.2) in Ref. 21], (3) Equation for the Green function of the molecule in an effective potential given by the sum of the exchange correlation and the electrostatic potential [Eq. (3.13) in Ref. 21]. The latter is determined by (4) the Poisson equation with boundary conditions setting the potential to be equal to the chemical potentials difference of the electrodes [Eq. (6) in this paper]. These equations, together with the boundary conditions, yield the wave function of the entire (molecule + electrodes) system which can be used to compute the finite current. This algorithm was applied for calculating the current in a chain of three Al atoms with the substitution of one atom by sulfur, and for a chain of ten carbon atoms. The electrodes were modeled as a semi-infinite ideal metal (homogeneous electron gas or Jellium model). The same approach was subsequently applied to calculate the current in a benzene-1,4-dithiol molecule connected to ideal metal electrodes, and the effect of inserting a single gold atom between the molecule and a metallic surface was investigated.4

Mujica, Kemp, Roitberg, and Ratner20 proposed to solve self-consistently the Hartree-Fock equation for the Green function of the complete (molecule + electrodes) system and the Poisson equation for the electrostatic potential, with the same boundary conditions of Lang.21,22 The molecule was described by the Hubbard Hamiltonian, the electrodes were taken to be an ideal metal, and the current is computed from the Green function. This approach is easier to implement compared to density-functional theory (DFT),21,22 since it only requires the solution of two rather than four self-consistent equations. However, DFT21,22 takes into account exchange-correlation effects more rigorously.

Kosov applied a variational Kohn-Sham density-functional (DFT) equation for electrons in molecular wires (benzene-1,4-dithiolate molecule covalently bonded to two gold electrodes).18 By variational minimization of the total energy, where an arbitrary given current is imposed as a constraint,18 a ten atom gold cluster participates in the bonding with a molecule. The device contains 32 atoms. This results in a system of two self-consistent equations, similar to the Hartree-Fock approach, which is simpler than the equations of Refs. 21, 22, yet treats exchange-correlation effects as rigorously as DFT.21,22

All these approaches, which employ DFT for the molecule + electrodes, require the solution of a system of self-consistent equations, but do not give closed expressions for the current.

In this paper we compute the current profile in a molecule perturbatively in the ratio of the coupling of the molecular electrons with the electrodes and the separation between Kohn-Sham orbital energies. Our approach yields a closed expression for the current density (J(r)) in terms of Kohn-Sham orbitals of the molecule alone, which enter various Green functions in the frequency domain. The molecule/electrodes coupling potential of Lang’s approach21 is treated to the lowest order required to yield a finite current. We use...
a Liouville-space (superoperator) many-body Green function technique, which provides a convenient description of non-equilibrium effects.26,27 The Liouville-space TDDFT (time-dependent density-functional theory) formulation of nonlinear response based on the single electron density matrix was developed in Refs. 28, 29, and subsequently extended to superconductors.30 One advantage of working in the higher-dimensional Liouville space is that we need only consider time-ordered quantities in real (physical) time and Wick’s theorem therefore assumes a particularly compact form;27 in contrast to Hilbert-space Green function perturbation theory24,31,32 no special contours or analytic continuations are necessary.

II. THE MODEL HAMILTONIAN

We shall partition the electronic Hamiltonian of a molecule with \(N \) electrons connected to two electrodes \(A \) and \(B \), in the form

\[
\hat{H} = \hat{H}_0 + \hat{V},
\]

where \(\hat{H}_0 \) represents the noninteracting molecule and electrodes and \(\hat{V} \) is the molecule/electrodes coupling,

\[
\hat{V} = \int dx \int dx' U(x,x') \left[\psi^\dagger(x) \left(\psi^\dagger(x') + \psi(x') \right) \right] + \left[\varphi^A(x') + \varphi^B(x') \right] \varphi(x).
\]

(2)

The spatial coordinates \(x \) and \(x' \) run over the molecule and the electrode regions, respectively [\(x=(r,t) \) is a coordinate of electrons within the molecule and \(x'=(r',t) \) is a coordinate of electrons in the electrodes region]. \(U(x,x') \) is the coupling potential between the molecule and electrodes, \(\psi(x) \) is the field operator of electrons in the molecule, whereas \(\psi^A(x') \) and \(\psi^B(x') \) are the field operators of electrons in the two electrodes. These operators satisfy Fermi anticommutation relations33,34

\[
\begin{align*}
\psi(r_1) \psi^\dagger(r_2) + \psi^\dagger(r_2) \psi(r_1) &= \delta(r_1 - r_2), \\
\psi(r_1) \psi(r_2) + \psi^A(r_2) \psi^\dagger(r_1) &= 0, \\
\psi^\dagger(r_1) \psi(r_2) + \psi^\dagger(r_2) \psi^\dagger(r_1) &= 0.
\end{align*}
\]

We assume that the electrodes interact with the molecule only at two points of contact \((r_0^A \text{ and } r_0^B) \). Kosov considered the coupling between the molecule and the electrodes represented by 10 gold atoms,18 participation of only a restricted domain of the electrodes in the molecule/electrode coupling was also assumed in the “extended model” model.17 We then have

\[
U(r,r') = \phi(r) \left[\delta(r' - r_0^A) + \delta(r' - r_0^B) \right],
\]

(4)

where \(\phi(r) \) is defined as the potential, induced by the difference between the charge density of the isolated molecule \(\varrho_0(r) \) and of the molecule coupled to the electrodes \(\varrho(r) \).17 \(\phi(r) \) is obtained by solving the Poisson equation in the molecule \((r_0^A < r < r_0^B)\) [Eq. (5.3) in Ref. 17],

\[

\nabla^2 \phi(r) = -e \left(\varrho(r) - \varrho_0(r) \right).
\]

(5)

with the boundary conditions \(\phi(r_0^A) = \mu_A \) and \(\phi(r_0^B) = \mu_B \). Here \(\mu_A \) and \(\mu_B \) are the chemical potentials of electrodes \(A \) and \(B \), respectively, \(W = \mu_A - \mu_B \) is the external voltage, and \(e \) is electron charge.

The Poisson equation for the total electrostatic potential in the molecule coupled to the electrodes \(U_{el}(r) \) is17,19

\[
\nabla^2 U_{el}(r) = -e \varrho(r),
\]

(6)

with the boundary conditions \(U_{el}(r_0^A) = \mu_A \) and \(U_{el}(r_0^B) = \mu_B \). The boundary conditions should reflect the change of the electrostatic potential in the interior of the left (right) electrodes when current is flowing, which is smaller than the chemical potential difference of electrodes [Eq. (5.4) in Ref. 17].35 This difference should be negligible for large electrode spacings, for which the current is small, but should be notable for small spacings. Our boundary conditions thus hold in the small current limit (large electrode spacings).

To lowest order in the molecule/electrodes coupling we use the unperturbed charge density of the isolated molecule in the right-hand-side (rhs) of the Poisson equation \(\varrho(r) = \varrho_0(r) \), and Eq. (6) gives

\[
\nabla^2 U_{el}(r) = -e \sum_\alpha \varphi_\alpha(r) \varphi_\alpha^\dagger(r),
\]

(7)

where the sum runs over all occupied molecular Kohn-Sham orbitals \(\varphi_\alpha(r) \). Using \(\varrho(r) = \varrho_0(r) \), we obtain from Eq. (5) [Eq. (5.6) in Ref. 17] \(\nabla^2 \phi(r) = 0 \), \(\phi(r_0^A) = \mu_A \), \(\phi(r_0^B) = \mu_B \). By solving this equation, we obtain that the coupling potential is linear in \(r \).

\[
\phi(r) = (r_0^A - r_0^B)^{-1} \left[\mu_B r_0^A - \mu_A r_0^B + (\mu_A - \mu_B) r \right].
\]

(8)

There are two contributions to the charge density in the Poisson equation [Eq. (6)]: The charge density of the isolated molecule and the variation of the charge density due to the coupling with the electrodes induced by the external voltage.17,21 To lowest order in the coupling potential we neglect the latter, and the electrostatic potential in the molecule is calculated using the unperturbed charge density [Eq. (7)]. We thus neglect all screening effects and the potential profile across the junction is assumed to be linear [Eq. (8)]. This holds for low voltages. The electronic structure of the molecule enters in \(\hat{H}_0 \). The external voltage, which is the difference between the chemical potentials of the electrodes \(W = \mu_A - \mu_B \), enters in the Hamiltonian of the molecule/electrodes coupling \(\hat{V} \) in Eq. (1) through the coupling potential \(U \) [Eqs. (4) and (8)]. Our perturbative approach holds provided the coupling potential of the molecular electrons with the electrodes (the external voltage [Eq. (8)]) is smaller than the difference between Kohn-Sham orbital energies. It corresponds to lowest-order expansion in the molecule/electrodes coupling potential of Lang’s approach.21
III. PERTURBATIVE CALCULATION OF THE CURRENT

Our goal is to compute the expectation value of the current operator

$$\hat{J}(x) = -\frac{ie\hbar}{2m}(\nabla_x - \nabla_r)\psi(x)\psi^\dagger(x)|_{x=x_0},$$

(9)

where e and m are the electron charge and mass, respectively.

We start with the interaction picture expression for the expectation value of $\hat{J}(x)$, using the partitioning [Eq. (1)] of the Hamiltonian. We define the Liouville operators $L = L_0 + V_-$ corresponding to Eq. (1) where $L_0 = (H_0)_-$ i.e., $L_0 X = H_0 X - X H_0$. The zero-order time evolution operator is defined as

$$G_0(\tau_2, \tau_1) = \theta(\tau_2 - \tau_1) \exp\left[-\frac{i}{\hbar} L_0(\tau_2 - \tau_1)\right],$$

(10)

where $\theta(t)$ is the Heaviside step function. Throughout this paper we denote operators in the interaction picture by a tilde ($\tilde{\cdot}$), i.e.,

$$\tilde{A}_\nu(\tau) = G^\dagger_0(\tau,0) A \nu G_0(\tau,0) \nu = +, - \text{ or } \nu = L,R.$$

(11)

The current is given by

$$\langle \hat{J}(x) \rangle = \left\{ \tilde{T} \tilde{J}_+(x) \exp\left[-\frac{i}{\hbar} \int_{-\infty}^{t} d\tau \tilde{V}_-(\tau)\right] \right\},$$

(12)

where the Liouville-space superoperators with indices + and − are defined in Appendix A, and the time-ordering operator in Liouville-space \tilde{T} is defined in Eq. (B11). This natural time ordering follows chronologically the various interactions with the electrodes. The precise order in which superoperators appear next to a \tilde{T} operator is immaterial since at the end the order will be fixed by \tilde{T}. \tilde{T} before an exponent means that each term in the Taylor expansion of this exponent should be time ordered.

The current can be also expressed in terms of the molecular electron density matrix $\tilde{\rho}(\mathbf{r}, \mathbf{r}', t)$ in the interaction picture

$$\tilde{\rho}(\mathbf{r}, \mathbf{r}', t) = \text{Tr}[\tilde{\psi}(\mathbf{r}, t) \tilde{\psi}^\dagger(\mathbf{r}', t) \rho_0],$$

(13)

where ρ_0 is unperturbed many-electron density matrix of the isolated molecule uncoupled to the electrodes, and the current is

$$\langle \hat{J}(x) \rangle = -\frac{ie\hbar}{2m}(\nabla_x - \nabla_r)\tilde{\rho}(\mathbf{r}, \mathbf{r}', t)|_{x=x_0}.$$

(14)

A finite current requires at least two interactions with each electrode. We, therefore, computed the current to fourth order in \tilde{V},

$$\langle \hat{J}(x) \rangle = -\frac{ie\hbar}{2m}(\nabla_x - \nabla_r) S(x, x_0)|_{x=x_0},$$

(15)

where

$$S(x, x_0) = -\frac{1}{4^4} \left(\frac{i}{\hbar} \right)^4 \int_{-\infty}^{t} d\tau_1 \int_{-\infty}^{t} d\tau_2 \int_{-\infty}^{t} d\tau_3 \int_{-\infty}^{t} d\tau_4 \int dr_1 \int dr_2 \int dr_3 \int dr_4 \left(\tilde{T} \tilde{\rho}(x, \tau_1) \tilde{V}_-(r_1, \tau_2) \tilde{V}_-(r_2, \tau_3) \tilde{V}_-(r_3, \tau_4) \tilde{V}_-(r_4, \tau_5) \right),$$

(16)

where $\tilde{\rho}(x, \tau_1) = \tilde{\psi}(x) \tilde{\psi}^\dagger(x)$. We next expand $S(x, x_0)$ in Eq. (16) in “left” and “right” operators in Liouville space. To that end we introduce the field operator corresponding to both electrodes

$$\psi^M(x') = \psi^L(x') + \psi^R(x').$$

(17)

Substituting Eq. (2) into Eq. (17) we get

$$S(x, x_0) = \frac{1}{4!} \left(\frac{i}{\hbar} \right) \int_{-\infty}^{t} d\tau_1 \int_{-\infty}^{t} d\tau_2 \int_{-\infty}^{t} d\tau_3 \int_{-\infty}^{t} d\tau_4 \int dr_1 \int dr_2 \int dr_3 \int dr_4 \left(\tilde{T} \tilde{\rho}(x, \tau_1) \tilde{V}_-(r_1, \tau_2) \tilde{V}_-(r_2, \tau_3) \tilde{V}_-(r_3, \tau_4) \tilde{V}_-(r_4, \tau_5) \right) I(x_1, x_1', x_2, x_2', x_3, x_3', x_4, x_4', x_5, x_5'),$$

(18)

where I is given by Eq. (A4). In Appendix A we use superoperator algebra to bring it to the form of Eq. (A8). Factorizing that equation, using Wick’s theorem for fermion superoperators [Eq. (74) in Ref. 27], we obtain

$$I = \frac{1}{4!} \sum_{\nu_\eta = 0,1, \nu_{\alpha, \beta} = 0,1} (-1)^{\nu_\eta} \left[\tilde{T} \left(\tilde{\psi}_{\nu_\eta}^M(x_{\alpha}^k) \tilde{\psi}_{\nu_\eta}^M(x_{\alpha}^k) \right) \right] \left(1 - \delta_{\eta,0} \delta_{\nu_{\alpha, \beta},0} \delta_{\nu_{\alpha, \beta},0} \right),$$

(19)

where δ is the Kronecker symbol: for $\nu_\eta = 0$ $\psi_{\nu_\eta} = \psi_L$, and for $\nu_\eta = 1$ $\psi_{\nu_\eta} = \psi_R$, for $k = 1$ $\psi_{\nu_\eta}^M(x_{\alpha}^k) = \psi_{\nu_\eta}^M(x_{\alpha}^k)$ and for $k = 0$ $\psi_{\nu_\eta}^M(x_{\alpha}^k) = \psi_{\nu_\eta}^M(x_{\alpha}^k)$ for $i = 0$ $\psi_{\nu_\eta}^M = \psi^R i = 1$ $\psi_{\nu_\eta}^M = \psi^L$. $P = 1/2(n_L^{\text{off}} + n_R^{\text{off}})$ is a number of sum of permutations of ψ_L and ψ_R, where n_L^{off} is a number of contractions in the rhs of Eq. (19) $\tilde{T}(\psi_L(x_{\alpha}^0) \psi_L(x_{\alpha}^0))$, when $n \neq m$, and n_R^{off} is a number of contractions in the rhs of Eq. (19) $\tilde{T}(\psi_R(x_{\alpha}^0) \psi_R(x_{\alpha}^0))$, when $n \neq m$.

We assume that the molecule contacts each electrode at a single point $(\mathbf{r}_0^L$ and \mathbf{r}_0^R) with the coupling potential

$$U(\mathbf{r}, \mathbf{r}') = \sum_{\alpha \beta} U_{\alpha \beta} \varphi_{\alpha}(\mathbf{r}) \varphi_{\beta}(\mathbf{r}'),$$

(20)

where $U(\mathbf{r}, \mathbf{r}')$ is determined by Eq. (4), $\varphi_{\alpha}(\mathbf{r})$ is the αth Kohn-Sham orbital of the molecule, and
Hilbert space involves both forward and backward propagations. The choice is between following the ket only, moving forward and backward or following the joint dynamics of the ket and the bra and moving only forward. Artificial time variables (Keldysh loops) commonly used in many-body theory,24,31,32 which are necessary for the wave function picture, are avoided by the density matrix in Liouville space which uses the real laboratory time scale throughout the calculation.

ACKNOWLEDGMENTS

The support of the National Science Foundation NIRT Grant No. EEC 0303389 is gratefully acknowledged.

APPENDIX A: SUPEROPERATOR ALGEBRA FOR THE CURRENT

A Liouville-space operator A_α is labeled by a Greek subscript where $\alpha = L, R, +, -$. It is defined by its action on an ordinary (Hilbert-space) operator X,

$$ (A_\alpha X)_{ij} = \sum_{\kappa \ell} (A_\alpha)_{ij, \kappa \ell} X_{\kappa \ell} . $$

A_α is thus a *tetradic* operator with four indices. $A_L X = AX$ denotes action from the left and $A_R X = XD$ denotes action from the right. We then obtain using Eq. (A1),

$$ (A_L)_{ij, \kappa \ell} = A_{i k} \delta_{j \ell} , \tag{A2} $$

$$ (A_R)_{ij, \kappa \ell} = A_{j \ell} \delta_{i \kappa} . \tag{A3} $$

Note that the order of the $j \ell$ indices in Eq. (A3) has been reversed.

We further define the symmetric and the antisymmetric combinations $A_+ = \frac{1}{2}(A_L + A_R)$ and $A_- = A_L - A_R$. We then have the tetradic matrix elements $(A_-)_{ij, \kappa \ell} = A_{i k} \delta_{j \ell} - A_{j \ell} \delta_{i \kappa}$, $(A_+)_{ij, \kappa \ell} = \frac{1}{2}(A_{i k} \delta_{j \ell} + A_{j \ell} \delta_{i \kappa})$. Note that $[A_L, B_R] = 0$. This commutativity of left and right operators is made possible by the larger dimensionality of Liouville space, simplifies algebraic manipulations and results in many useful relations.27,28

Using the above definitions of the Liouville-space algebra, we can represent I in Eq. (18) in the form

$$ I = \frac{1}{4} \sum_{\alpha \beta = 0,1} \langle \hat{T} \psi(x) \psi^\dagger(x) \psi^M(x_1) \psi^{MB}(x'_1) \rangle - \langle \psi^\dagger(x_2) \psi^M(x'_2) \rangle \langle \psi^\dagger(x_3) \psi^{MB}(x'_3) \rangle - \langle \psi^\dagger(x_4) \psi^{MB}(x'_4) \rangle . \tag{A4} $$

Here, for $\alpha = 1$ $\psi^\dagger(x_1) = \psi^\dagger(x_1)$, and, for $\alpha = 0$ $\psi^\dagger(x_1) = \psi(x_1)$. In the rhs of Eq. (A4) there are sixteen terms.
We can now expand Eq. (A4) in "left" and "right" Liouville-space operators.27 We note that the superoperator corresponding to any function \(f \) of an operator \(Q_j \) can be expressed in terms of \(Q_{j+} \) and \(Q_{j-} \), i.e.,
\[
[f(Q_j)]_\pm = f(Q_{jL}) - f(Q_{jR}) = f(Q_{j+} + \frac{1}{2} Q_{j-})
\]
\[- f(Q_{j+} - \frac{1}{2} Q_{j-}),
\]
and
\[
2 [f(Q_j)]_\pm = f(Q_{jL}) + f(Q_{jR}) = f(Q_{j+} + \frac{1}{2} Q_{j-})
\]
\[+ f(Q_{j+} - \frac{1}{2} Q_{j-}).
\]

Using these relations, we have
\[
(\psi^\alpha(x_1) \psi^\beta(x_1'))_-
= (\psi^\alpha(x_1) \psi^\beta(x_1'))_L - (\psi^\alpha(x_1') \psi^\beta(x_1))_R
= \psi^\alpha_L(x_1) \psi^\beta_R(x_1) - \psi^\beta_R(x_1') \psi^\alpha_L(x_1'),
\]
substituting Eq. (A7) in Eq. (A4), we obtain
\[
I = \frac{1}{4!} \sum \s
where ρ_0 is unperturbed many-electron density matrix of the isolated molecule uncoupled to the electrodes.

We next turn to G_{RR} and G_{LL}. For $x > \bar{x}$, we have

$$G_{RR}(x, \bar{x}) = -iTr[\hat{T}_x \psi_0(x) \bar{\psi}_0(\bar{x}) \rho_0] = -iTr[\psi_0^\dagger(\bar{x}) \bar{\psi}_0(x) \rho_0],$$

$$G_{LL}(x, \bar{x}) = -iTr[\hat{T}_x \bar{\psi}_0(x) \psi_0(\bar{x}) \rho_0] = -iTr[\bar{\psi}_0^\dagger(\bar{x}) \psi_0(x) \rho_0].$$ \hspace{1cm} (B14)

For $x < \bar{x}$ we analogously obtain

$$G_{RR}(x, \bar{x}) = -iTr[\psi_0^\dagger(\bar{x}) \bar{\psi}_0(x) \rho_0],$$

$$G_{LL}(x, \bar{x}) = -iTr[\bar{\psi}_0^\dagger(\bar{x}) \psi_0(x) \rho_0].$$ \hspace{1cm} (B15)

Comparing Eqs. (B14), (B16) with Eq. (B2), we see that $G_{RR}(x, \bar{x}) = G^r(x, \bar{x})$. Combining Eqs. (B15), (B17) with Eq. (B1), we get $G_{LL}(x, \bar{x}) = G^c(x, \bar{x})$. Equations (B12) and (B13) provide the other relation $G_{RL}(x, \bar{x}) = G^\gamma(x, \bar{x})$ and $G_{LR}(x, \bar{x}) = G^\gamma(x, \bar{x})$.

APPENDIX C: DFT KELDYSH GREEN FUNCTIONS IN HILBERT SPACE

The four Hilbert-space Green functions [Eqs. (B1)–(B4)] are not independent. To obtain the relations between them we introduce the retarded G^r and the advanced G^a Green functions24

$$G^r(x, \bar{x}) = \theta(t - \bar{t})[G^>(x, \bar{x}) - G^<(x, \bar{x})],$$

$$G^a(x, \bar{x}) = \theta(\bar{t} - t)[G^<(x, \bar{x}) - G^>(x, \bar{x})].$$ \hspace{1cm} (C1)

The retarded DFT Green function in real space is given by Eq. (3.2) of Ref. 17 (see Refs. 24, 33, 34, 36)

$$G^r(x, \bar{x}) = \int \frac{d\omega}{2\pi} e^{i\omega(t-\bar{t})} \sum_{\alpha} \frac{\varphi_{\alpha}(r) \varphi_{\alpha}^\dagger(\bar{r})}{\omega - (\omega_a - \omega_F) + i\delta},$$ \hspace{1cm} (C3)

where $\delta \to 0$, ω_a is the energy of α Kohn-Sham orbital molecular orbital, and ω_F is the Fermi energy of the molecule.

We define retarded DFT Green function $G^r_{\alpha}(\omega)$ of the Kohn-Sham orbital α in the frequency domain

$$G^r(x, \bar{x}) = \int \frac{d\omega}{2\pi} e^{-i\omega(t-\bar{t})} \sum_{\alpha} \varphi_{\alpha}(r) \varphi_{\alpha}^\dagger(\bar{r}) G_{\alpha}^r(\omega),$$ \hspace{1cm} (C4)

where

$$G_{\alpha}^r(\omega) = (\omega - \omega_a + \omega_F + i\delta)^{-1}. $$ \hspace{1cm} (C5)

To connect G^r, G^a, $G^>$, $G^<$, G^c, and G^γ (Refs. 24,32) we use Eqs. (C1) and (C2) together with

$$G^c(x, \bar{x}) = -G^c_{\bar{x}}(\bar{x}, x),$$

$$G^a(x, \bar{x}) = G^{\gamma}_{\bar{x}}(\bar{x}, x),$$

Since $G^c(x, \bar{x})$ is given by Eq. (C3), we can use the system of five equations (C1), (C2), (C6)–(C8) to obtain all Keldysh DFT Green functions for the molecule alone G^a, G^c, G^γ, G^r, and G^γ. Solving these equations, and switching to the Kohn-Sham orbital representation in the frequency domain [see Eqs. (C3)–(C5)] we obtain all Keldysh DFT Green functions for the molecule,

$$G_{\alpha}^c(\omega) = (\omega + \omega_F - \omega_a + i\delta)^{-1} \theta(\omega - \omega_a)$$

$$+ (\omega + \omega_F - \omega_a - i\delta)^{-1} \theta(\omega_a - \omega_F),$$ \hspace{1cm} (C9)

$$G_{\alpha}^c(\omega) = - (\omega + \omega_F - \omega_a - i\delta)^{-1} \theta(\omega - \omega_a)$$

$$- (\omega + \omega_F - \omega_a + i\delta)^{-1} \theta(\omega_a - \omega_F),$$ \hspace{1cm} (C10)

$$G_{\alpha}^r(\omega) = (\omega - \omega_a + \omega_F - i\delta)^{-1},$$

$$G_{\alpha}^a(\omega) = -2\pi\delta(1 - \theta(\omega - \omega_F)) \delta(\omega_a - \omega_a - \omega_F),$$ \hspace{1cm} (C12)

and

$$G_{\alpha}^c(\omega) = 2\pi i \delta(\omega_a - \omega_F) \delta(\omega_a + \omega_F).$$ \hspace{1cm} (C13)

The Keldysh Green functions for the electrode A can be obtained analogously by replacing $G^c(x, \bar{x})$ with $D^c_A(\omega)$. The retarded Green function of an electron $D^r_A(\omega)$ in a metal electrode in frequency domain is

$$D^r_A(\omega) = (\omega - \mu_A + i\delta)^{-1},$$

where μ_A is the Fermi energy level of electrons in electrode $A (B)$. The difference between the chemical potentials of the electrodes A and B is given by the external voltage $U = \mu_A - \mu_B$. In Eq. (C14) we assumed that the electrons in the metal are at the Fermi level,

$$D^r_A(\omega) = (\omega - \mu_A + i\delta)^{-1} \theta(\omega - \mu_A) + (\omega - \mu_A - i\delta)^{-1} \times \theta(\omega_a - \omega_a),$$

$$D^c_A(\omega) = - (\omega - \mu_A - i\delta)^{-1} \theta(\omega - \mu_A)$$

$$- (\omega - \mu_A + i\delta)^{-1} \theta(\mu_a - \omega),$$ \hspace{1cm} (C16)

$$D^r_A(\omega) = (\omega - \mu_A - i\delta)^{-1},$$

$$D^c_A(\omega) = -2\pi i (1 - \delta(\omega - \mu_A)),$$ \hspace{1cm} (C18)

$$D^c_A(\omega) = 2\pi i \delta(\omega - \mu_A).$$ \hspace{1cm} (C19)

Similar expressions apply to electrode B. The final expression for the molecular current only depends on the sum of the Green functions of electrodes A and B ($D^c = D^c_A + D^c_B$, $D^\gamma = D^\gamma_A + D^\gamma_B$, $D^\gamma = D^\gamma_A + D^\gamma_B$, and $D^c = D^c_A + D^c_B$).
APPENDIX D: THE VARIOUS CONTRIBUTIONS TO THE MOLECULAR CURRENT

Only terms which contain the contractions \(\langle \hat{T}(\psi_L(x_m)\psi_R(x_m)) \rangle \), \(\langle \hat{T}(\psi_R(x_m)\psi_L(x_m)) \rangle \), \(\langle \hat{T}(\psi_L(x_m)\psi_R^*(x_m)) \rangle \), and \(\langle \hat{T}(\psi_R(x_m)\psi_L^*(x_m)) \rangle \) (and similar contractions for the electrodes) can contribute to \(I \) in Eq. (19), because all other contractions vanish. Therefore, only twenty one terms survive in the rhs of Eq. (19). These terms contain the four types of Liouville-space Green functions of the molecule \(G_{LL}, G_{RR}, G_{LR}, \) and \(G_{RL} \) introduced in Appendix B and of the electrodes \(D_{LL}=D_{L(A)}+D_{LL(B)}, D_{RR}=D_{R(A)}+D_{RR(B)}, \) and \(D_{RL}=D_{RL(A)}+D_{RL(B)} \).

As an illustration we write the expression for one of the terms contributing to \(S \),

\[
I_{15} = -i U(x_1, x_1') U(x_2, x_2') U(x_3, x_3') U(x_4, x_4') G_{RL}(x_1, x_2) \\
\times G_{LR}(x_3, x_4) \tilde{D}_{RL}(x_2', x_1') \tilde{D}_{RL}(x_4', x_3').
\]

(D1)

Using the relations of Appendix B, we can recast this in the form of Eq. (D16).

Below we present all twenty one terms which contribute to the current [Eq. (22)], using the Kohn-Sham orbitals representation in the frequency domain. The Greek indices run over the occupied Kohn-Sham orbitals \(\alpha, \beta, \gamma = 1, \ldots, N \),

\[
I_1 = -i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\alpha}^*(\omega_2) D_{\alpha}^*(\omega_1),
\]

(D2)

\[
I_2 = -i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\alpha}^*(\omega_2) D_{\alpha}^*(\omega_1),
\]

(D3)

\[
I_3 = -i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\alpha}^*(\omega_2) D_{\alpha}^*(\omega_1),
\]

(D4)

\[
I_4 = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_2) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_1) \\
\times D_{\omega_2}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D5)

\[
I_5 = -i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_2) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D6)

\[
I_6 = -i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_2) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D7)

\[
I_7 = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D8)

\[
I_8 = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D9)

\[
I_9 = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D10)

\[
I_{10} = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D11)

\[
I_{11} = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D12)

\[
I_{12} = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D13)

\[
I_{13} = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D14)

\[
I_{14} = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D15)

\[
I_{15} = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D16)

\[
I_{16} = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_2) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_2}^*(\omega_2) D_{\omega_1}^*(\omega_1),
\]

(D17)

\[
I_{17} = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_1}^*(\omega_2) D_{\omega_2}^*(\omega_1),
\]

(D18)

\[
I_{18} = i \sum_\alpha U_\beta U_\alpha^3 G_{\beta}(\omega_1) G_{\alpha}^*(\omega_2) G_{\alpha}^*(\omega_1) G_{\alpha}^*(\omega_2) \\
\times D_{\omega_2}^*(\omega_2) D_{\omega_1}^*(\omega_1),
\]

(D19)
\[
I_{19} = -i \sum_{\alpha \gamma} U_{\beta \alpha} U_{\gamma \alpha} G_{\beta \gamma}^< (\omega) G_{\alpha}^+ (\omega_2) G_{\gamma}^+ (\omega_1) \\
 \times D^< (-\omega_2) D^\rho (-\omega_1),
\]
(D20)
\[
I_{20} = -i \sum_{\alpha \gamma} U_{\beta \alpha} U_{\gamma \alpha} G_{\beta \gamma}^+ (\omega) G_{\alpha}^+ (\omega_2) G_{\gamma}^+ (\omega) \\
 \times D^< (-\omega_2) D^\rho (-\omega_1),
\]
(D21)
\[
I_{21} = -i \sum_{\alpha \gamma} U_{\beta \alpha} U_{\gamma \alpha} G_{\beta \gamma}^+ (\omega) G_{\alpha}^+ (\omega_2) G_{\gamma}^+ (\omega_1) \\
 \times D^\rho (-\omega_2) D^< (-\omega_1),
\]
(D22)

APPENDIX E: RELATION BETWEEN BOSON GREEN FUNCTIONS IN LIOUVILLE AND HILBERT SPACE

The relations between Liouville-space Green functions and Keldysh Hilbert-space Green functions for fermions also apply to boson fields. We consider a system of identical atoms in an external potential.\(^{37}\) The definitions for the Liouville-space Green functions \(G_{IL}, \ G_{LR}, \ G_{RL}, \) and \(G_{RR}\) [Eqs. (B7)–(B10)] are the same for bosons as for fermions with the only difference that a time-ordering operator in Liouville-space \(\hat{T}_B\) is defined as\(^{32}\)

\[
\hat{T}_B \xi_{\nu} \omega (\tau_1) \chi_{\mu} (\tau_2) = \begin{cases}
\xi_{\nu} (\tau_1) \chi_{\mu} (\tau_2) & \tau_2 < \tau_1 \\
\chi_{\mu} (\tau_2) \xi_{\nu} (\tau_1) & \tau_1 < \tau_2 \\
\frac{1}{2} \left[\xi_{\nu} (\tau_1) \chi_{\mu} (\tau_1) + \chi_{\mu} (\tau_1) \xi_{\nu} (\tau_1) \right] & \tau_2 = \tau_1,
\end{cases}
\]
(E1)

where \(\xi_{\nu} (\tau)\) is a Liouville-space Bose superoperator, and \(\nu\) and \(\mu\) can be either \(+\), \(-\), or \(L\) or \(R\).

The four types of Hilbert-space Green functions for bosons are defined as\(^{32}\)

\[
G^c (x_1, x_2) = -i \langle T_B \psi (x_1) \psi^+ (x_2) \rangle = -i \theta (t_1 - t_2) \\
\times \langle \psi (x_1) \psi^+ (x) \rangle - i \theta (t_2 - t_1) \langle \psi^+ (x_2) \psi (x_1) \rangle,
\]
(E2)
\[
G^c (x, x) = -i \langle \hat{T}_B \psi (x) \psi^+ (x) \rangle = -i \theta (t_0 - t_2) \langle \psi (x) \psi^+ (x) \rangle \\
- i \theta (t_2 - t_0) \langle \psi^+ (x) \psi (x) \rangle,
\]
(E3)
\[
G^c (x_1, x_2) = -i \langle \psi (x_1) \psi^+ (x_2) \rangle,
\]
(E4)
\[
G^c (x_1, x_2) = -i \langle \psi^+ (x_2) \psi (x_1) \rangle.
\]
(E5)

In Eq. (E2) \(T_B\) is a time-ordering operator in Hilbert space for bosons, which takes any product of Bose field operators \(\xi, \chi\) and reorders them in ascending times from right to left, i.e.,

\[
T_B \xi (\tau_1) \chi (\tau_2) \equiv \begin{cases}
\xi (\tau_1) \chi (\tau_2) & \tau_2 < \tau_1 \\
\chi (\tau_2) \xi (\tau_1) & \tau_1 < \tau_2 \\
\frac{1}{2} \left[\xi (\tau_1) \chi (\tau_1) + \chi (\tau_1) \xi (\tau_1) \right] & \tau_2 = \tau_1.
\end{cases}
\]
(E6)

\(T_B\) is an antitime-ordering operator in Hilbert space for bosons, which reorders any product of Bose field operators in descending times from right to left, i.e.,

\[
\tilde{T}_B \xi (\tau_1) \chi (\tau_2) \equiv \begin{cases}
\chi (\tau_2) \xi (\tau_1) & \tau_2 < \tau_1 \\
\xi (\tau_1) \chi (\tau_2) & \tau_1 < \tau_2 \\
\frac{1}{2} \left[\xi (\tau_1) \chi (\tau_1) + \chi (\tau_1) \xi (\tau_1) \right] & \tau_2 = \tau_1.
\end{cases}
\]
(E7)

In analogy with Appendix B, we can show that for bosons \(G^c_{IL}(x_1, x_2) = G^c(x_1, x_2)\), \(G^c_{RR}(x_1, x_2) = G^c(x_1, x_2)\), \(G^c_{RL}(x_1, x_2) = G^c(x_1, x_2)\), \(G^c_{LR}(x_1, x_2) = G^c(x_1, x_2)\).

The retarded boson Green function in real space is given by\(^{32}\)

\[
G^r (x_1, x_2) = \int \frac{d \omega}{2 \pi} e^{i \omega (t_2 - t_1)} \sum_{\alpha} \frac{\varphi^*_\alpha (r_1) \varphi^*_\alpha (r_2) G^r_\alpha (\omega)}{\omega - (\omega_\alpha + \mu) + i \delta},
\]
(E8)

where \(\delta \rightarrow 0\), \(\omega_\alpha\) is the energy of \(\alpha\) eigenvalue, \(\mu\) is the chemical potential, \(\varphi^*_\alpha (r_1)\) is the wave function corresponding to \(\alpha\) eigenvalue of the external potential.

We define retarded boson Green function \(G^r_\alpha (\omega)\) in the frequency domain,

\[
G^r_\alpha (\omega) = \int \frac{d \omega}{2 \pi} e^{-i \omega (t_2 - t_1)} \sum_{\alpha} \frac{\varphi^*_\alpha (r_1) \varphi^*_\alpha (r_2) G^r_\alpha (\omega)}{\omega - (\omega_\alpha + \mu) + i \delta},
\]
(E9)

where

\[
G^r_\alpha (\omega) = (\omega - \omega_\alpha + \mu + i \delta)^{-1}.
\]
(E10)

The Keldysh Green functions for bosons are\(^{32}\)

\[
G^c_\alpha (\omega) = (\omega + \mu - \omega_\alpha - i \delta)^{-1} - 2 \pi n_\alpha \delta (\omega - \omega_\alpha + \mu),
\]
(E11)
\[
G^<_\alpha (\omega) = - (\omega + \mu - \omega_\alpha - i \delta)^{-1} - 2 \pi n_\alpha \delta (\omega - \omega_\alpha + \mu),
\]
(E12)
\[
G^>_\alpha (\omega) = (\omega - \omega_\alpha + \mu + i \delta)^{-1},
\]
(E13)
\[
G^\alpha_\alpha (\omega) = - 2 \pi i (1 + n_\alpha) \delta (\omega - \omega_\alpha + \mu),
\]
(E14)
\[
G^<_\alpha (\omega) = - 2 \pi n_\alpha \delta (\omega - \omega_\alpha + \mu),
\]
(E15)

where \(n_\alpha = \exp[(\omega_\alpha - \mu)/(k_B T)]^{-1}\) is the occupation number of the \(\alpha\) harmonic oscillator (\(T\) is temperature and \(k_B\) is Boltzmann constant).
*Present address: Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.

Email address: smukamel@uci.edu