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Generalized coherent state representation of Bose-Einstein condensates
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We show that the quantum many-body state of Bose-Einstein condensates consistent with the time-
dependent Hartree-Fock-Bogoliubov~TDHFB! equations is a generalized coherent state. At zero temperature,
the noncondensate density and the anomalous noncondensate correlation are not independent, allowing us to
eliminate one of the three variables in the TDHFB.
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I. INTRODUCTION

The recent experimental realization of Bose-Einstein c
densates~BEC! in supercooled trapped atoms has stimula
great interest in the theoretical description of the quant
state of BEC@1–6#. The exact quantum state and many-bo
wave function of this system are not known, and simple
proximations such as the Hartree approximation are c
monly employed. Knowing the quantum state is crucial
describing the BEC dynamics; in particular, the many-bo
hierarchy that leads to an infinite sequence of progressi
higher-order equations may be truncated consistently
making an assumption on the quantum state of the sys
@7#.

Despite the lack of an exact representation of the quan
state, it has been possible to make significant progress
using physically sound assumptions about how certain op
tor products should be factorized in order to truncate
many-body hierarchy. The Gross-Pitaevskii equation~GPE!
has been used for describing the dynamics of ze
temperature trapped atomic BEC with great success@8–11#.
The time-dependent Hartree-Fock-Bogoliubov~TDHFB!
equations@12–15# provide the dynamics of the condensa
and noncondensate atoms required for the description
finite-temperature BEC in the collisionless regime. Oth
finite-temperature theories include the time-depend
Bogoliubov–de Gennes equations@16#, the quantum kinetic
theory @17–22#, and stochastic methods@23–27#. However,
none of these treatments directly addresses the precise q
tum state of BEC that consists of the condensate as we
the noncondensate atoms. We note that the condensate a
are described at the mean-field level in various theor
However, the GPE is derived under the assumption tha
correlations of annihilation (ĉi) and creation (ĉi

†) operators
for the noncondensate atoms in some basis statei vanish,
e.g.,

^ĉi
†ĉ j

†ĉkĉm&5^ĉi
†ĉk&5^ĉ j

†ĉm&50, ~1!

while the HFB equations are derived using a different ans

^ ĉi
†ĉ j

†ĉkĉm&5^ ĉi
†ĉk&^ĉ j

†ĉm&1^ ĉ j
†ĉk&^ĉi

†ĉm&1^ ĉi
†ĉ j

†&^ĉkĉm&.
~2!
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It is straightforward to show that the GPE may be deriv
by assuming that the quantum state of BEC at zero temp
ture is a coherent state@2#. This is closely related to the
description of the laser by a coherent state in quantum op
@28,29#. Indeed one of the earliest stated goals in BEC
search has been the development of an ‘‘atom laser,’’
matter-wave equivalent of laser@30–32#. It has later been
argued that, owing to the presence of the intrinsic interato
collisions, the zero-temperature BEC is more accurately r
resented by a squeezed state rather than a coherent
@5,6#.

Equation~2! used for deriving the HFB equations is rem
niscent of the Wick’s theorem for a system in thermal eq
librium @7,33–37#. This implies that the thermal equilibrium
state described by a statistical density matrix is clearly
possible candidate for the quantum state of BEC. Howe
this choice does not provide a satisfactory physical pict
for the TDHFB equations that describe dynamical cond
sates away from equilibrium. In addition, collision-induce
squeezing@5# has not been included in the current descr
tion of finite temperature BEC. The identification of a qua
tum state that can describe the dynamics of finite tempera
BEC, consistent with the TDHFB equations is thus an op
issue.

In this paper, we propose a generalized coherent s
~GCS! ansatz for the many-body density matrix describi
the dynamical quantum state of BEC. Such states were o
nally used to describe anharmonic dynamical systems s
as many-body interacting fermions~or bosons! @38# while
preserving some of the useful properties of the origi
Glauber’s coherent states for the harmonic oscillator@28,29#.
They encompass the Glauber coherent state as well as
squeezed state as special cases. The GCS’s are particu
convenient for formulating variational dynamics because
certain algebraic structures originating from the underly
Lie group algebra@38,39#. Using this ansatz, we derive th
TDHFB equations@13# via the time-dependent variationa
principle. The variational principle that allows the descri
tion of the many-body system in terms of a small number
parameters is intimately related to the classical Hamilton
Poisson bracket mechanics that describes classical dyna
from the minimum action principle.

The paper is organized as follows. In Sec. II, we revie
the key properties of GCS relevant to variational dynamics
zero and finite temperatures. In Sec. III, we derive fini
©2003 The American Physical Society04-1
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temperature variational equations of motion in both the r
space and the trap basis. Conclusions and discussion
given in Sec. IV.

II. GENERALIZED COHERENT STATE
VARIATIONAL DYNAMICS

Mathematically, a set of GCS’s is determined by a L
groupG, its irreducible unitary vector representationT with
the spaceV, and a reference stateuV&PV. The GCS’s are
defined as states that have a formT(g)uV& with gPG. More
specifically, for a generic quadratic Hamiltonian in some o
eratorsT̂i ,

Ĥ5(
i

ci T̂i1(
i , j

ci j T̂i T̂ j , ~3!

the Lie groupG is characterized by the commutation rel
tions amongst the complete set of operatorsT̂i ,

@ T̂i ,T̂j #5(
k

Ci j
k T̂k , ~4!

where Ci j
k are known as the structure constants of the

$T̂i%.
For a harmonic oscillator,$T̂i%5$âi ,â j

† , Î %, whereâi , â j
†

are the boson annihilation and creation operators andÎ is the
identity operator, and Ci j

k [d i j , giving the ordinary
Heisenberg-Weyl group. On the other hand, the operator

$T̂i%5$âi
†â j ,âi

†â j
† ,âi â j , Î % may be used to construct the fo

lowing Hamiltonian that describes the system of many-bo
interacting bosons:

Ĥ5(
i j

Ĥ i j âi
†â j1(

i jkl
Vi jkl âi

†â j
†âkâl . ~5!

An extended Heisenberg-Weyl algebra may be obtained
repeated application of the standard boson commuta

@ âi ,â j
†#5d i j . Writing T̂i j

(2)[âi â j , T̂i j
(1)[âi

†â j
† , T̂i j

(z)[âi
†â j

1 1
2 d i j Î , the nonvanishing commutation relations that defi

the extended Heisenberg-Weyl algebra are@39#

@ T̂mn
(2) ,T̂rs

(1)#5dnrT̂sm
(z)1dnsT̂rm

(z)1dmsT̂rn
(z)1dmrT̂sn

(z) , ~6!

@ T̂mn
(z) ,T̂rs

(2)#52dmrT̂ns
(2)2dmsT̂nr

(2) , ~7!

@ T̂mn
(z) ,T̂rs

(1)#5dnrT̂ms
(1)1dnsT̂ms

(1) , ~8!

while the mixed commutators between the linear and bilin
operators have the following form:

@ T̂mn
(1) ,â j #52dm jân

†2dn jâm
† , ~9!

@ T̂mn
(z) ,â j #52dm jân , ~10!

@ T̂mn
(2) ,â j

†#5dn jâm1dm jân , ~11!
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@ T̂mn
(z) ,â j

†#5dn jâm
† . ~12!

At zero temperature, the unnormalized generalized co
ent states that belong to such extended Heisenberg-Wey
gebra for interacting bosons have the following form@38#:

uc~t!&5expS (
i

a i~t!âi
†1(

i , j
b i j ~t!âi

†â j
†D uV0&.

~13!

The reference stateuV0&, which can be normalized to unity
^V0uV0&51, may be chosen arbitrarily. However, constru
tion of a useful set of coherent states for a given dynam
system depends crucially on the choice ofuV0& which also
determines the structure of the phase space of the dynam
system@38#. We shall take Eq.~13! to be our generalized
coherent state ansatz for BEC where the reference stateuV0&
is the particle vacuum state of the ordinary Heisenberg-W
group, i.e.,âi uV0&50. The goal of the variational approac
is to determine the time-dependent parametersa i(t) and
b i j (t) that represent the evolution of the stateuc(t)&. Equa-
tion ~13! indicates that the GCS has a form that combine
coherent state and a squeezed state. A coherent state is
by applying a displacement operatorD̂(a) on the vacuum
ua&5D̂(a)u0&, where D̂(a)[exp((iai* â_i2aiâi). Since

exp(2ai* âi)u0&5u0&, an unnormalized coherent state may

written asua&5exp((iaiâi
†)u0&. On the other hand, a unitar

squeezing operator is given byS(j)5exp(12(ijjij* âiâj

2jijai
†aj

†), where j i j 5r i j exp(iuij) is an arbitrary complex
number.

GCS zero-temperature variational dynamics is obtain
by implementing the dynamical variational principle, assu
ing that the space of trial wave functionsM is represented by
a set of GCS’s. One possible way of formulating the var
tional dynamics in Hilbert space is based on projecting
vectorHx for anyxPM (H being the Hamiltonian operator!
into the tangent subspace toM at x. This leads to a vector
field in M that determines the variational dynamics.

The variational equations at zero temperature are der
as follows: Given a HamiltonianĤ and time-dependent wav
functionsuV(t)&, we minimize the action

S@V~t!#5E dt@ i ^V~t!udV~t!/dt&2^V~t!uĤuV~t!&#.

~14!

By choosing a GCS form foruV(t)&, the resulting varia-
tional equations can be written in the Hamiltonian form f
any setV j of coordinates which parametrizeuV&

dV j

dt
5$H,V j%, ~15!

where$•••% denote Poisson brackets andH is the classical
Hamiltonian defined by

H~V!5^VuĤuV&. ~16!
4-2
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The use of Poisson brackets clearly establishes the link
tween the variational equations and the classical dynam
When the classical Hamiltonian is given by

H5 (
n51

k

(
i 1 ,...,i n

hi 1 ,...,i n
(n) ^T̂i 1

&•••^T̂i n
&, ~17!

the Poisson bracket assumes a very simple form provided
wave functionsuV& are parametrized by the expectation v
ues^VuT̂j uV& of the operatorsT̂j rather than by the param
etersV j . These expectation values then constitute a full
of parameters that uniquely specify the quantum stateuV&.
In particular, if the operatorsT̂j form a closed algebra of Eq
~4!, the Poisson brackets forT̂j are given by

$T̂m ,T̂n%5 i(
k

Cm,n
k T̂k , ~18!

and the variational equations of motion forT̂m take the
closed form

i
d^T̂m&

dt
5 (

n51

k

(
j 51

n

(
i 0 ,...,i n

Cmi0 ,...,i j

k hi 1 ,...,i n
(n) ^T̂i 1

&•••^T̂i n
&.

~19!

For the Hamiltonian~5!, it, therefore, suffices to calculate th
equations of motion for the expectation values^âi

†â j& and

^âi â j& to uniquely specify the dynamics. In the derivation
the equations of motion we use the differential property
the Poisson brackets

$ f ,gh%52$gh, f %5$ f ,g%h1g$ f ,h%. ~20!

When the expectation values are for generators of the se
GCS’s of some Lie groupG, their Poisson brackets are give
by the commutators of the underlying generators of
group. This simplifies the calculation greatly, as it gives
rect correspondence between the ordinary quant
mechanical commutators and the Poisson brackets.
variational procedure is then formally equivalent to t
Heisenberg equations of motion. It should be noted that
transformation between the expectation values and the
rameters may be tedious. However, the transformation
never used explicitly; suffice it to know that such transfo
mation exists and we can then proceed to derive closed e
tions of motion for the expectation values.

The formulation of variational dynamics at finite temper
tures constitutes a more complicated task for the follow
three reasons:~i! At finite temperatures, the system evolv
in the Liouville spaceand a set of trial density matricesML
rather than wave functions needs to be identified,~ii ! an at-
tempt to projectLr, with rPML and L is the Liouville
operator into the tangent space to our ansatz, faces a
culty since the Liouville space does not have a natural sc
product that can be used for this projection~the scalar prod-
uct inherited from Hilbert space, i.e., the overlap of two de
sity matrices does not have a direct physical significan!,
~iii ! the compatibility of the equilibrium and the dynamic
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approaches that is straightforward at zero temperature~i.e.,
the state inML with the lowest energy must be the stationa
point of the dynamical equation! is not so obvious in the
Liouville space. In Appendix A, we show that all of thes
issues can be adequately resolved for GCS. In particular
show that the trial density matrices may be assumed to h
the form of finite-temperature equilibrium density matrice
and that the equilibrium and the dynamical approaches
compatible so that the trial density matrix that minimizes t
Helmholtz free energy is, indeed, a stationary point of
dynamical equations. These results will be used in the
lowing section.

III. VARIATIONAL EQUATIONS
FOR INTERACTING BOSONS

A. GCS in real space

In this section, we apply our formalism to a system
interacting bosons described by the following Hamiltoni
with a fixed chemical potentialm:

Ĥ5Ĥ01Ĥ f~ t ! ~21!

with

Ĥ05E dr ĉ†~r !F2
1

2m
D1Vtrap~r !2mG ĉ~r !

1
1

2E drdr 8ĉ†~r !ĉ†~r 8!V~r2r 8!ĉ~r 8!ĉ~r !,

~22!

H f~ t !5E dr ĉ†~r !Vf~r !ĉ~r !, ~23!

whereVtrap(r ,t) is the magnetic potential that confines th
atoms andVf(r ,t) denotes a general time- and positio
dependent external driving potential. An infinite-dimension
extended Heisenberg-Weyl algebra is generated by the op
tors ĉ(r ), ĉ†, Ŷ(r ,r 8)[ĉ(r )ĉ(r 8), Ŷ†(r ,r 8), N̂(r ,r 8)
[ĉ†(r )ĉ(r 8), and Î . The space of the representation
which the Hamiltonian@Eq. ~22!# is defined can be describe
as the space of wave functionalsC@x(r )#, where the one-
particle boson operators are given by

ĉ~r !52
i

A2
F d

dx~r !
2x~r !G , ĉ†~r !52

i

A2
F d

dx~r !
1x~r !G .

~24!

x(r ) is a harmonic-oscillator coordinate associated with p
sition r and Eq.~24! can be used to represent the operat
Ŷ, Ŷ†, andN̂.

At zero temperature, the set of coherent states represe
by Gaussian wave functions
4-3
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C@x~r !#5A expH 2
1

2E drdr 8s~r ,r 8!@x~r !2x0~r !#

3@x~r 8!2x0~r 8!#J ~25!

are parametrized by complex-valued functionsx0(r ), and
s(r ,r 8). According to the formalism developed in Sec.
and Appendix A, the coherent finite-temperature density m
tricesr@xj (r )# with j 5L,R @left ~ket!, right ~bra!# are rep-
resented by Gaussian wave packets:

r@xj~r !#5Z21expH 2
1

2 (
k j

E drdr 8sk j~r ,r 8!

3@xk~r !2xk
(0)~r !#@xj~r 8!2xj

(0)~r 8!#J .

~26!

These trial density matrices are parametrized by the ve
and matrix functionsxk

(0)(r ) andsk j(r ,r 8). We note that the
Gaussian wavepacket@Eq. ~26!# constitutes a coordinat
representation for a density matrix of the formr
5Z21exp(2K), whereK is given by a combination of linea
and bilinear terms in single-particle operators.

The variational parameters of Eqs.~25! and ~26! which
denote the displacement and the width of the Gaussian w
packet in phase space are related to the average numb
particles and the quantum mechanical squeezing of
number-phase conjugate variables in BEC. These param
may be related to physical quantities such as the conden
fraction and the excitation energy, by transforming Eq.~25!
or Eq. ~26! to the quasiparticle basis; the resulting relatio
ship between the variational parameters in different base
not simple. However, this transformation is never used
plicitly since the GCS ansatz allows us to derive equation
motion directly for the parameters of interest, the expecta
values of the relevant operators.

The most convenient parametrization for trial wave fun
tions @Eq. ~25!# or density matrices@Eq. ~26!# is given by the
expectation values of linear and bilinear combinations of
son single-particle operators:

z~r ![^ĉ~r !&,k~r ,r 8![^Ŷ~r ,r 8!&2z~r !z~r 8!,

r~r ,r 8![^N̂~r ,r 8!&2z* ~r !z~r 8!, ~27!

where the expectation value is taken with respect to the w
functions given by Eq.~25! or density matrices by Eq.~26!.
Wick’s theorem@7,33–37# allows us to express the expect
tion value of any operator in terms of the parameters give
Eq. ~27! both at zero and finite temperatures. The dynam
equations for the system of interacting bosons may there
be derived in the same way for both zero and nonzero t
peratures by starting with the Heisenberg equations of
tions for linear and bilinear combinations of the sing
particle operators and then evaluating the right-hand s
using the Wick’s theorem. This results in closed equatio
for the parametersz(r ), k(r ,r 8), andr(r ,r 8), which will be
derived next.
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B. Variational equations of motion in real space

The Heisenberg equation of motion forĉ(r ) reads

i\
dĉ~r !

dt
5Hspĉ~r !1E dr 8ĉ†~r 8!V̄~r ,r 8!ĉ~r 8!ĉ~r !,

~28!

where

Hsp~r ![2
1

2m
D1Vtrap~r !, ~29!

V̄~r ,r 8![
1

2
@V~r2r 8!1V~r 82r !#, ~30!

and we have used the commutation relations for the bo
field operators

@ĉ~r !,ĉ†~r 8!#5d~r2r 8!,

@ĉ~r !,ĉ~r 8!#5@ĉ†~r !,ĉ†~r 8!#50. ~31!

Taking the expectation values of Eq.~28! and noting the
definition of k(r ,r 8) and r(r ,r 8) @Eq. ~27!#, we obtain the
following equation of motion for the mean field:

i\
dz~r !

dt
5Hsp~r !z~r !1E dr 8V̄~r ,r 8!$uz~r 8!u2z~r !

1z* ~r 8!k~r ,r 8!1z~r 8!r~r ,r 8!1z~r !r~r 8,r 8!%

1Vf~r ,t !z~r !. ~32!

The equations of motion fork(r ,r 8) andr(r ,r 8) can be
derived similarly by computing the time derivatives usin
Eqs.~27! and ~28! in the product rule:

i\
dr~r ,r 8!

dt
5Hsp~r !r~r ,r 8!1E dr 9V̄~r 8,r 9!

3$j̃~r 9,r 8!r~r ,r 9!1 j̃~r 9,r 9!r~r ,r 8!

1 z̃~r 8,r 9!k* ~r 9,r !%2Hsp~r 8!r~r ,r 8!

2E dr 9V̄~r ,r 9!$j̃~r ,r 9!r~r 9,r 8!

1 j̃~r 9,r 9!r~r ,r 8!1 z̃* ~r ,r 9!k~r 9,r 8!%

1Vf~r ,t !r~r ,r 8!2Vf~r 8,t !r~r ,r 8!, ~33!

i\
dk~r ,r 8!

dt
5Hsp~r !k~r ,r 8!1E dr 9V̄~r 8,r 9!

3$j̃~r 9,r 8!k~r ,r 9!1 j̃~r 9,r 9!k~r ,r 8!

1 z̃~r 8,r 9!@r* ~r ,r 9!1d~r2r 9!#%

1Hsp~r 8!k~r ,r 8!1E dr 9V̄~r ,r 9!
4-4
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3$j̃~r 9,r !k~r 8,r 9!1 j̃~r 9,r 9!k~r ,r 8!

1z~r ,r 9!r~r 9,r 8!%1Vf~r ,t !k~r ,r 8!

1Vf~r 8,t !k~r ,r 8!, ~34!

where we have introduced the auxiliary functions

j̃~r ,r 8!5z* ~r !z~r 8!1r~r ,r 8!, ~35!

z̃~r ,r 8!5z~r !z~r 8!1k~r ,r 8!. ~36!

For the commonly used special case of the contact in
atomic interaction forV̄(r ,r 8), Eqs.~32!–~34! are simplified
greatly; these are given in Appendix B.

An important consequence of the GCS ansatz is tha
zero temperature, the functionsr(r ,r 8) and k(r ,r 8) are, in
fact, not independent@40#. By deriving an explicit relation-
ship between them, it is possible to eliminate ther(r ,r 8)
variables. This relation is derived in the trap basis in App
dix C, and then converted into the real-space basis

r~r ,r 8!5FA1

4
d~r ,r 8!1E k* ~r ,r 9!k~r 9,r 8!dr 9

2
1

2
d~r ,r 8!G . ~37!

It can be verified by direct substitution that once Eq.~37!
holds initially, it remains true throughout the dynamical ev
lution. The reduced set of equations are then the coup
equations~32! and~34! with r(r ,r 8) replaced by the expres
sion ~37!. The two independent variablesz(r ) and k(r ,r 8)
constitute a very convenient parametrization of squee
states.z(r ) represents the average position, whereask(r ,r 8)
is responsible for squeezing. This can be easily unders
from the fact that the coherent state is an eigenstate of
annihilation operatorĉ(r ), while a squeezed state is gene
ated using a squeezing operator that is a function of the q
dratic operatorŶ(r ,r 8) in the extended Heisenberg-Weyl a
gebra.

C. Variational equations of motion in the trap basis

For completeness, we outline below the derivation of
same variational equations in the trap basis. In this basis
Hamiltonian is written as

H5(
i j

Hi j âi
†â j1(

i jkl
Vi jkl âi

†â j
†âkâl1(

i j
Ei j ai

†â j .

~38!

The matrix elements of the single-particle HamiltonianHi j
are given by

Hi j 5E d3rf i* ~r !F2
\2

2m
D1Vtrap~r !Gf j~r !, ~39!

where the basis statef i(r ) is arbitrary; a convenient basi
for trapped BEC is the eigenstates of the trap sinceHi j is
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then diagonal. The indices may also be viewed as the m
indices in a multimode quantum state. The symmetrized tw
particle interaction matrix elements are

Vi jkl 5
1

2
@^ i j uVukl&1^ j i uVukl&#, ~40!

where

^ i j uVukl&5E d3rd3r 8f i* ~r !f j* ~r 8!V~r2r 8!fk~r 8!f l~r !,

~41!

with V(r2r 8) being a general interatomic potential. Also,

Ei j [E drf i* ~r !Vf~r ,t !f j~r !, ~42!

where Vf(r ,t) denotes a general time- and positio
dependent external driving potential as defined previou
First, we proceed by establishing that our generalized co
ent state~13! at zero temperature is a Gaussian in coordin
space. With the choice of the particle vacuum state of o
nary Heisenberg-Weyl algebra as our reference stateuV0&,
Eq. ~13! the action of the operatorsâi and âi

† on the wave
function V(q1 , . . . ,qN) in the coordinate representation
whereN is the total number of bosons, is

âi52
i

A2
S ]

]qi
2qi D , âi

†52
i

A2
S ]

]qi
1qi D , ~43!

and the conditionsâiV(q1 , . . . ,qN)50 for i 51, . . . ,N im-
ply that the reference stateV0(q1 , . . . ,qN) is a Gaussian in
coordinate space:

V0~q1 , . . . ,qN!5
1

A~2p!N
expF2

1

2
~q1

21•••1qN
2 !G .

~44!

It should be noted that, consistent with our choice of basis
Eq. ~38!, the indexi of the coordinate variableqi in Eqs.~43!
and ~44! refers to the trap basis ‘‘mode’’i. In addition, al-
though we are using the trap basis, the finite total numbe
particlesN implies that the vector space used is effectively
finite-dimensional space spanned by a truncated set of
basis states. Acting on this wave function with the gene
ized displacement operator@Eq. ~13!# preserves its Gaussia
form since the action by the operatorsâi andâi

† simply shifts

the origin, while the operatorsâi â j and âi
†â j

† change the
variance. The resulting state is thus a Gaussian of the fo

V~q1 , . . . ,qN!5A expF2
1

2 (
i , j

s i j ~qi2h i !~qj2h j !G ,
~45!

whereh i , i 51, . . . ,N are the complex numbers which de
termine the average position whiles i j is anN3N symmet-
ric matrix that determines the covariances or the amoun
4-5
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squeezing. For an ordinary coherent state,s i j 5d i j , i.e., a
Gaussian with unit covariance.

Similarly, at finite temperatures, the trial density mat
takes the form (k, j 5L,R)

r@q1
j , . . . ,qN

j #5Z21expH 2
1

2 (
k j

(
lm

s lm
k j @ql

k2ql
k(0)#

3@qm
j 2qm

j (0)#J . ~46!

The GCS ansatz may therefore be considered to b
ground state of some effective quadratic Hamiltonian in
ordinate and momentum operators. For such a Hamilton
any correlation function can be represented in a path-inte
form where the action only has linear and bilinear terms@41#.
The resulting Wick’s theorem is then identical to that for
thermal state.

The expectation values to be used in the parametriza
of our state are the condensate mean fieldzi , the nonconden-
sate densityr i j , and the noncondensate correlationsk i j :

zi[^âi&,r i j [^âi
†â j&2^âi

†&^â j&,k i j [^âi â j&2^âi&^â j&.
~47!

Since these variables are the expectation values of
generators of the set of generalized coherent states o
extended Heisenberg-Weyl algebra, their Poisson brac
are given by the commutators of the underlying generat
This results in TDHFB equations of motion forzi , r i j and
k i j .

At zero temperature, the relationship betweenr i j andk i j
@Eq. ~37!# is

r i j 5A1

4
d i j 1(

p
k ip* kp j2

1

2
d i j . ~48!

This enables us to reduce the number of equations. M
details of this relation are provided in Appendix C, while t
TDHFB equations in the trap basis including the simplifi
zero temperature form are given in Appendix D.

IV. DISCUSSION

Using the GCS ansatz, we have derived variationally
TDHFB equations of motion for BEC, which are known
be valid in the collisionless regime. This implies that t
GCS ansatz should be applicable in the lower temperat
collisionless regime. It should be noted that the HFB the
has several inconsistencies such as the violation of
Hugenholtz-Pines theorem@42# that states that the excitatio
spectrum should be gapless in the homogeneous limit@12#.
This issue has been addressed by various authors; fo
stance, the Popov approximation, in which the anomal
correlation is neglected, was shown to give a gapless s
trum @12#. Recently, it has been shown that by replacing
contact interaction potential with a more sophistica
pseudopotential, many of the inconsistency problems of
HFB equations including the violation of the Hugenholt
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Pines theorem, inconsistencies with the many-bodyT-matrix
calculations, and the ultraviolet divergences can be overco
@43#. In this paper, we have presented our HFB equati
with the general interaction in both the real space and
trap basis; pseudopotentials such as those discussed in
@43# can thus be accommodated.

Since the GCS is a squeezed state, the present work
be considered an extension of a previous result that dem
stratedstationaryBEC to be squeezed@5# and a more recen
result that has shown that dynamically evolving BEC und
the time-dependent GPE described using the Hartree
proximation~i.e., pure condensate, no noncondensate ato!
is squeezed@6#.

The representation of the dynamical quantum state
BEC as a GCS provides physical insight about thetotal sys-
tem of condensates plus noncondensates in terms of pa
annihilation and creation operators, and how it evolves a
whole in the Schro¨dinger picture. The interdependence ofr
andk at zero temperature enables us to eliminate ther vari-
ables from these equations, reducing the size of the prob
and simplifying the solution.

The multimode squeezing, and hence the entangled s
nature of BEC is clear from the form of the quantum sta
Eq. ~13!. The study of quantum entanglement is curren
gaining great interest owing to its importance in quantu
information theory@44,45# as well as in the understanding o
the foundations of quantum mechanics@46,47#. Experimental
sources of generalized coherent states in matter-waves
ready exist in the form of atomic BEC. However, ways
access and manipulate this type of matter-wave entanglem
remains an open challenge.
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APPENDIX A: PROPERTIES OF FINITE
TEMPERATURE GCS

As noted in the main text, the formulation of variation
dynamics at finite temperatures requires us to address
following issues: ~i! At finite temperatures, the system
evolves in the Liouville space and a set of trial density m
tricesML need to be identified,~ii ! an attempt to projectLr,
with rPML andL is the Liouville operator into the tangen
space to our ansatz, faces a difficulty since the Liouv
space does not have a natural scalar product that can be
for this projection,~iii ! the compatibility of the equilibrium
and the dynamical approaches is not so obvious in the L
ville space. In this appendix, we show how all these iss
may be adequately addressed. We start by introducing
trial density matrices.

Let A be the real Lie algebra of the real Lie groupG
involved in the definition of a set of GCS’s. For our case,A
is the basic~real! algebra generated by the generatorsâ j ,
â j

† , and T̂mn ; the elementsa belonging to the algebraA,
aPA, are then linear combinations of these generators
addition, letA (c) andG(c) be the complexification ofA and
4-6
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G, i.e.,G(c) is the complex Lie group that corresponds to t
complex Lie algebraA (c). Complexification of an algebra
~group! gives an algebra~group! generated by the origina
generators for which the coefficients are allowed to be co
plex, rather than real numbers. More specifically, it mea
constructing a complex analytical algebra~group!, for which
the ‘‘real’’ version is the original one. For example, given
real structure that is a mapp:G→G, the real part of the
group consists of pointsg so thatp(g)5g. If one defines
p(g)5g†, one hasGreal5SU(2), while if one defines
p(g)5g* , one hasGreal5SL(2,R). SL(2,C) is then a
three-dimensional complex analytical group~3 is its complex
dimension! that serves as a complexification for both SU~2!
and SL(2,R).

The representationT of a groupG associates with anyg
PG a linear operatorT(g) ~acting in some complex vecto
space referred to as the space of the representation! so that
T(g2g1)5T(g2)T(g1). T can be naturally extended to a re
resentation ofG(c) in the same vector spaceV. A represen-
tation of a group has the corresponding representation o
algebra and vice versa, and in the corresponding algebra
resentation, we haveT(a) being operators in the same spa
for aPA with T(a11a2)5T(a1)1T(a2) and T(@a1 ,a2#)
5T(a1)T(a2)2T(a2)T(a1). The representation ofA can
also be easily extended to representation ofA (c).

We define the manifoldML of normalized trial density
matrices represented byr(g)5Z21(g)T(g) for all elements
g belonging to the complexification ofG, gPG(c), so that
T(g) is Hermitian whereZ(g)5Tr@T(g)#. The normaliza-
tion condition Tr@r(g)#51 is obviously satisfied. In the
GCS case, the projection that closes the dynamical equa
can be formulated as follows. We define a tangent vec
v(r) that satisfies the following property:

Tr@T~a!v~r!#5Tr@T~a!Lr# ~A1!

for all aPA (c) andrPML . For most practical applications
there is one and only one tangent vectorv for any r that
satisfies Eq.~A1!. In this case, a well-defined vector fie
v(r) describes the variational dynamics in the manifoldML
of trial density matrices. The physical meaning of Eq.~A1! is
clear: If we refer to the operatorsT(a) with aPA (c) as the
fundamental operators, the variational dynamics is obtai
by the requirement that the dynamical equations hold for
expectation values of the fundamental operators. This
plies that, similar to the zero temperature case, the va
tional equation of motion at finite temperature is deriv
using the Heisenberg equations of motion.

We assume that the trial density matrices are represe
by finite-temperature equilibrium density matrices w
Hamiltonians given by the fundamental operators:

r5Z21exp@2bT~a!#5Z21T~g! ~A2!

for someaPA (c). This impliesg5exp(ba), i.e., elements
gPG of the Lie groupG can be represented as the expon
tials of the corresponding complex Lie algebra elementa
05360
-
s

an
p-

on
r

d
e
-

a-

ed

-

and it follows then thatgPG(c), because ifA is the Lie
algebra of the groupG, then A (c) is the Lie algebra that
corresponds toG(c).

We conclude this section by demonstrating that this w
of closing the dynamical equation@Eq. ~A1!# guarantees the
compatibility of the equilibrium and dynamical variation
approaches. Using the variational approach, the equilibr
density matrix can be obtained by finding the minimum
the Helmholtz free energy

F~r!5Tr~Hr!2b21Tr@r ln~r!# ~A3!

among the normalized trial density matricesrPML . The
requirementdF50 yields

dF~r!5Tr~Hdr!2b21Tr~drr! ~A4!

for any tangentdr. It follows from Eq. ~A1! that dr
5@a,r# is a tangent for anyaPA (c). This yields

Tr$T~a!L~r0!%5Tr$T~a!@H,r0#%

5Tr$H@T~a!,r0#%5b21Tr$ ln r0@T~a!,r0#%

5b21Tr$T~a!@ ln r0 ,r0#%50, ~A5!

which implies thatv(r0)50. Stated differently, the tria
density matrix that minimizes the free energy is a station
point of the dynamical equations.

APPENDIX B: VARIATIONAL EQUATIONS IN REAL
SPACE FOR THE CONTACT POTENTIAL

For contact interatomic interaction,V̄(r ,r 8)[U0d(r
2r 8). HereU054p\2a/m, wherea is thes-wave scattering
length andm is the mass of a single atom. This implies th
the integrations in Eqs.~32!–~34! are removed,

i\
dz~r !

dt
5Hsp~r !z~r !1U0$uz~r !u2z~r !12r~r ,r !z~r !

1k~r ,r !z* ~r !%1Vf~r ,t !z~r !, ~B1!

i\
dr~r ,r 8!

dt
5@Hsp~r !12U0j̃~r 8,r 8!#r~r ,r 8!

1U0z̃~r 8,r 8!k* ~r ,r 8!2@Hsp~r 8!

12U0j̃~r ,r !#r~r ,r 8!2U0z̃* ~r ,r !k~r ,r 8!

1Vf~r ,t !r~r ,r 8!2Vf~r 8,t !r~r ,r 8!, ~B2!

i\
dk~r ,r 8!

dt
5@Hsp~r !12U0j̃~r 8,r 8!#k~r ,r 8!

1U0z̃~r 8,r 8!r* ~r ,r 8!1U0z̃~r 8,r 8!

1@Hsp~r 8!12U0j̃* ~r ,r !#k~r ,r 8!

1U0z̃~r ,r !r~r ,r 8!1Vf~r ,t !k~r ,r 8!

1Vf~r 8,t !k~r ,r 8!, ~B3!
4-7
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wherej̃(r ,r ) and z̃(r ,r ) are as given in Eqs.~35!–~36!. The
equations of motion forr̃(r ,r 8,t) andk̃(r ,r 8,t) may be writ-
ten in the compact form

i\
dG
dt

5SG2GS†, ~B4!

where we have defined 232 matrices

S~r ,r 8!5S h̃~r ,r 8! D̃~r 8,r 8!

2D̃* ~r ,r ! 2h̃* ~r ,r 8!
D ,

G~r ,r 8!5S r~r ,r 8! k~r ,r 8!

k* ~r ,r 8! r* ~r ,r 8!11D , ~B5!

and

h̃~r ,r 8![Hsp~r !1Vf~r ,t !12U0j̃~r 8,r 8!, ~B6!

D̃~r ,r ![U0z̃~r ,r !. ~B7!

Equations~B1! and~B4! constitute the TDHFB equations fo
the contact interatomic potential approximation, in real sp
@12#.

APPENDIX C: ZERO-TEMPERATURE RELATIONSHIP
BETWEEN r AND k

In order to derive the relation betweenr i j andk i j at zero
temperature using the GCS ansatz, we find that it suffice
consider GCS stateuV& such that̂ Vuâi uV&50, i.e., Gauss-
ian wave functions centered atq50. These states form a
orbit M of the groupG which corresponds to the algeb
generated byT̂mn

(z) and T̂mn
(6) . We shall introduce a set o

functionsSmn
(z) , Smn

(6) on M,

Smn
(z) ~V![^VuT̂mn

(z) uV&, Smn
(6)~V![^VuT̂mn

(6)uV& ~C1!

and define two sets of auxiliary functions

Fmn~V!5(
a

@Sma
(1)San

(2)2Sma
(z) San

(z)#, ~C2!

Gmn~V!5(
a

@Sma
(z) San

(1)2Sna
(z)Sam

(1)#. ~C3!

Our aim is to show thatFmn(V) is a constant, i.e., its
derivatives are zero. In particular, showing thatFmn(V)
5dmn and identifying the expectation valuesSmn

(6) andSmn
(z) in

terms ofr i j andk i j , for our example, complete the require
proof. It is found that the derivatives ofFmn(V) are linear
combinations ofGmn(V), and therefore it suffices to prov
that the auxiliary functionGmn(V) is zero for allm andn.

We note that since@ T̂i j
(1) ,T̂ke

(1)#50, the operatorsT̂i j
(1)

which are considered as vector fields onM determine a com-
plex structure onM. A function f is said to be holomorphic if
05360
e

to

it satisfies the conditionT̂mn
(1) f 50. OperatorT̂mn

(1) then rep-
resents derivatives in the antiholomorphic direction.

In particular, the functionsSmn
(1) constitute a set of holo-

morphic coordinates in the vicinity ofV0 whereV0, repre-
sent states with Gaussian wave functions. It can be sh
that Smn

(1)(V0)50, while Smn
(z) (V0)5dmn so that

Fmn~V0!5dmn . ~C4!

A direct calculation yieldsT̂i j
(1)Gmn50 that implies that

Gmn is holomorphic and can therefore be written as a se
in Si j

(1) in the vicinity of the pointSi j
(1)50 ~i.e., V0). Since

Sma
(z) (V)5dma , it follows from Eq. ~C3! that the expansion

of Gmn starts with the second-order terms:

Gmn5(
j 52

`

Gmn
( j ) . ~C5!

We next define the degree of a functionf by D̂ f 5deĝf
[ 1

2 ( j T̂ j j
(z) f . It is clear that degˆSi j

(6)561, deĝSi j
(z)50, and

deĝ( f g)5deĝf 1deĝg. It follows from Eq. ~C3! that
deĝGmn51. On the other hand, Eq.~C5! implies that
deĝGmn

( j ) 5 j and therefore contains the degrees of 2 a
higher. This implies thatGmn[0 for all m andn.

It can be verified thatT̂mn
(1)Fmn is a linear combination of

Gab and henceT̂mn
(1)Fmn50. Similarly, by conjugating the

relationT̂mn
(1)Fmn50, T̂mn

(2)Fmn50, implying thatFmn(V) is
a constant. This, together with Eqs.~C2! and ~C4! imply

Fmn~V!5(
a

@Sma
(1)San

(2)2Sma
(z) San

(z)#5dmn . ~C6!

SinceSmn
(2)5kmn andSmn

(z) 5rmn1
1
2 dmn , Eq. ~C6! gives

S r i j 1
1

2
d i j D 2

2(
p

k ip* kp j5
1

4
d i j . ~C7!

Solving for r i j finally yields

r i j 5A1

4
d i j 1(

p
k ip* kp j2

1

2
d i j ~C8!

or in matrix form

r5A1

4
I 1k†k2

1

2
I , ~C9!

whereI is the unit operator.
Equation~C9! may also be expanded in a Taylor series

r5k†k2~k†k!214~k†k!32••• . ~C10!

It is possible to gain further insight into the nature of GC
from the fact that Eq.~C9! holds if the quantum state of th
system is a quasiparticle vacuum stateu0&qp such that
b̂ i(t)u0&qp50, whereb̂ i(t) is the quasiparticle annihilation
operator of the Bogoliubov transformation,âi(t)
4-8
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5(jÞ0Ujib̂j(t)1Vji* b̂j
†(t). For a quasiparticle vacuum state,r i j

and k i j may be written in terms of matricesU and V as
follows:

r i j 5 (
pÞ0

Vpi* Vp j and k i j 5 (
pÞ0

Up jVpi* , ~C11!

which implies

r21r5k†k and rk5kr* , ~C12!

using the orthogonality and symmetry conditions betwe
the matricesU and V, UU†2VV†51 andUVT2VUT50.
These relations can be shown to be identical to Eq.~C9! by
solving the quadratic equation inr. The quasiparticle
vacuum state may therefore be considered a squeezed
of condensate and noncondensate atoms.

APPENDIX D: VARIATIONAL EQUATIONS
IN THE TRAP BASIS

1. TDHFB Equations

The TDHFB equations in trap basis is given as follow

i\
dzi

dt
5(

j
Hi j zj1(

jkl
Vi jkl @zj* zkzl12r jkzl #

1(
kl

Vi jkl kklzj* 1(
j

Ei j zj , ~D1!

i\
dr i j

dt
5(

r
FHir 12(

kl
Viklr ~zk* zl1r lk!1Eir Gr r j

2(
r

FHr j 12(
kl

Vr jkl ~zk* zl1r lk!1Er j Gr ir

1(
r

F(
kl

Virkl ~zkzl1kkl!Gk r j*

2(
r

F(
kl

Vr jkl ~zk* zl* 1kkl* !Gk ir , ~D2!

i\
dk i j

dt
5(

r
FHir 12(

kl
Viklr ~zk* zl1r lk!1Eir Gk r j

1(
r

FHr j 12(
kl

Vr jkl ~zkzl* 1r lk* !1Er j Gk ir

1(
r

F(
kl

Virkl ~zkzl1kkl!Gr r j*

1(
r

F(
kl

Vr jkl ~zkzl1kkl!Gr ir

1(
kl

Vi jkl ~zkzl1kkl!. ~D3!

The TDHFB equations in real space derived in Sec.
Eqs. ~32!–~34!, may be transformed to the correspondi
05360
n

tate

,

trap basis, Eqs.~D1!–~D3! in a straightforward manner, us
ing the following relations between the real-space basis
the trap basis variables:

z~r !5(
i

zif i~r !, r~r ,r 8!5(
i j

r i j f i* ~r !f j~r 8!,

k~r ,r 8!5(
i j

k i j f i~r !f j~r 8!, ~D4!

along with the definition of the tetradic matrixVi jkl ,

Vi jkl 5
1

2
@^ i j uVukl&1^ j i uVukl&#, ~D5!

where

^ i j uVukl&5E d3rd3r 8f i* ~r !f j* ~r 8!V~r2r 8!fk~r 8!f l~r !,

~D6!

with V(r2r 8) being a general interatomic potential. Und
the contact interaction approximation,Vi jkl takes a simpler
form

Vi jkl 5
4p\2a

m E drf i* ~r !f j* ~r !fk~r !f l~r !. ~D7!

2. TDHFB at zero temperature

The TDHFB equations, Eqs.~D1!–~D3!, hold for all tem-
peratures. However, we have noted that the variablesr andk
are not independent variables for the generalized coher
state ansatz atT50. r i j can therefore be eliminated usin
the following relation:

r5FA1

4
I 1k†k2

1

2
I G1dr, ~D8!

where the functiondr50 for T50, the TDHFB equations
take the following form:

i\
dz

dt
5Hzz1Hz* z* 1Ez, ~D9!

i\
dk

dt
5~hk1kh* !1FA1

4
I 1k†k2

1

2
I 1drGD

1DFA1

4
I 1k†k2

1

2
I 1drG1D, ~D10!

i\
ddr

dt
5Fh,A1

4
I 1k†k2

1

2
I 1drG2~kD* 2Dk* !

2 i\
1

AI 14k†k
S dk†

dt
k1k†

dk

dt D , ~D11!

where
4-9
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@Hz# i j 5Hi j 1(
kl

Vikl j Fzk* zl12A1

4
d lk1(

m
k lm* kmk

2d lk12dr lkG , ~D12!

@Hz* # i j 5(
kl

Vikl j kkl , ~D13!

hi j 5Hi j 12(
kl

Vikl j Fzk* zl1A1

4
d lk1(

m
k lm* kmk

2
1

2
d lk1dr lkG1Ei j , ~D14!

D i j 5(
kl

Vi jkl @zkzl1kkl#. ~D15!

~D16!

At T50, dr50 andr5A 1
4 I 1k†k2 1

2 I . By direct differen-
tiation of r, we get
v.
n
i-

s

A

ys

K

.A

n,
et

ch

v.

.A

05360
i\
dr

dt
5 i\

1

AI 14k†k
S dk†

dt
k1k†

dk

dt D , ~D17!

while Eq. ~D2! implies

i\
dr

dt
5Fh,A1

4
I 1k†k2

1

2
I G2~kD* 2Dk* !.

~D18!

Since Eqs.~D17! and~D18! are equivalent, both the left- an
the right-hand sides of Eq.~D11! are zero atT50 anddr
50, i.e., the only independent equations to be solved
Eqs.~D9! and ~D10!.

For comparison, we note that the GPE, which is a ze
temperature theory for a coherent-state ansatz, is simply
tained from Eq.~D9! by settingr i j 5k i j 50,

i\
dzi

dt
5(

j
FHi j 1(

kl
Vikl j zk* zl1Ei j Gzj . ~D19!
s
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