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Generalized coherent state representation of Bose-Einstein condensates
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We show that the quantum many-body state of Bose-Einstein condensates consistent with the time-
dependent Hartree-Fock-Bogoliub6UVDHFB) equations is a generalized coherent state. At zero temperature,
the noncondensate density and the anomalous noncondensate correlation are not independent, allowing us to
eliminate one of the three variables in the TDHFB.
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I. INTRODUCTION It is straightforward to show that the GPE may be derived
by assuming that the quantum state of BEC at zero tempera-
The recent experimental realization of Bose-Einstein conture is a coherent state]. This is closely related to the
densate$BEC) in supercooled trapped atoms has stimulatecdescription of the laser by a coherent state in quantum optics
great interest in the theoretical description of the quantunt28,29. Indeed one of the earliest stated goals in BEC re-
state of BEJ 1—6]. The exact quantum state and many-bodysearCh has been_ the development of an “atom laser,” the
wave function of this system are not known, and simple apMatter-wave equivalent of las¢80-32. It has later been

proximations such as the Hartree approximation are comargued that, owing to the presence of the intrinsic interatomic

monly employed. Knowing the quantum state is crucial forcollisions, the zero-temperature BEC is more accurately rep-
describing the BEC dynamics; in particular, the many—bod)f

e e e Cauaton use for devin e HF equatons s e
. X Niscent of the Wick’s theorem for a system in thermal equi-
making an assumption on the quantum state of the systeyjj,,n [7,33-37. This implies that the thermal equilibrium
[7]. _ ) state described by a statistical density matrix is clearly a
Despite the lack of an exact representation of the quanturgssiple candidate for the quantum state of BEC. However,
state, it has been possible to make significant progress ks choice does not provide a satisfactory physical picture
using physically sound assumptions about how certain opergpr the TDHFB equations that describe dynamical conden-
tor products should be factorized in order to truncate theates away from equilibrium. In addition, collision-induced
many-body hierarchy. The Gross-Pitaevskii equaliGPE  squeezing5] has not been included in the current descrip-
has been used for describing the dynamics of zerotion of finite temperature BEC. The identification of a quan-
temperature trapped atomic BEC with great suc¢Bs<ll.  tum state that can describe the dynamics of finite temperature
The time-dependent Hartree-Fock-Bogoliubd?DHFB)  BEC, consistent with the TDHFB equations is thus an open
equationg[12—-15 provide the dynamics of the condensatejssye.
and noncondensate atoms required for the description of |n this paper, we propose a generalized coherent state
finite-temperature BEC in the collisionless regime. OtherGCS ansatz for the many-body density matrix describing
finite-temperature theories include the time-dependenthe dynamical quantum state of BEC. Such states were origi-
Bogoliubov—de Gennes equatioftb], the quantum kinetic npally used to describe anharmonic dynamical systems such
theory[17-22, and stochastic method23-27. However,  as many-body interacting fermiorsr bosons [38] while
none of these treatments directly addresses the precise quaiteserving some of the useful properties of the original
tum state of BEC that consists of the condensate as well aSlauber’s coherent states for the harmonic 05C|”E28ﬂ2q
the noncondensate atoms. We note that the condensate atomsey encompass the Glauber coherent state as well as the
are described at the mean-field level in various theoriessqueezed state as special cases. The GCS's are particularly
However, the GPE is derived under the assumption that attonvenient for formulating variational dynamics because of
correlations of annihilationd;) and creation (ﬂ) operators  certain algebraic structures originating from the underlying
for the noncondensate atoms in some basis statmnish, Lie group algebrd38,39. Using this ansatz, we derive the
e.g., TDHFB equationg[13] via the time-dependent variational
principle. The variational principle that allows the descrip-
Atata A N ata Aty tion of the many-body system in terms of a small number of
(€€ ) =(Ci G =(C; Cm) =0, @) parameters is intimately related to the classical Hamiltonian
. . . . . Poisson bracket mechanics that describes classical dynamics
while the HFB equations are derived using a different ansatg. ;. the minimum action principle.
o L N L The paper is organized as follows. In Sec. Il, we review
(clc]ciem =(cle(c/cm +(c/c(clcm +(c/c/)(ciem).  the key properties of GCS relevant to variational dynamics at
(2)  zero and finite temperatures. In Sec. Ill, we derive finite-

esented by a squeezed state rather than a coherent state
5,6].
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temperature variational equations of motion in both the real [T@ af=s,a (12)
. . . . mn:' % nj~m:-
space and the trap basis. Conclusions and discussion are

given in Sec. IV. At zero temperature, the unnormalized generalized coher-

ent states that belong to such extended Heisenberg-Weyl al-
Il. GENERALIZED COHERENT STATE gebra for interacting bosons have the following foi38]:
VARIATIONAL DYNAMICS

Mathematically, a set of GCS's is determined by a Lie  |( T)>=exp<2 ai(nal+ 2 Bij(nalal||Q).
groupG, its irreducible unitary vector representatidrwith ! t

the spaceV, and a reference stat€)) e V. The GCS'’s are (13
defined as states that have a fofifg)| Q) with ge G. More
specifically, for a generic quadratic Hamiltonian in some op

eratorsT;,

The reference staté),), which can be normalized to unity
(Q0|Qo)=1, may be chosen arbitrarily. However, construc-
tion of a useful set of coherent states for a given dynamic
system depends crucially on the choice|8f,) which also
A=> ¢T+>, Cij-‘ri-‘rj , (3)  determines the structure of the phase space of the dynamical
[ i system[38]. We shall take Eq(13) to be our generalized
] ] ] ) coherent state ansatz for BEC where the reference |$daje
the Lie groupG is characterized by the commutation rela- js the particle vacuum state of the ordinary Heisenberg-Weyl

tions amongst the complete set of operafbys group, i.e.,a;|Q0)=0. The goal of the variational approach
is to determine the time-dependent parametersr) and
[T, j-].]: 2 Cikj:rk, (4) Bij(7) that represent the evolution of the stagé 7)). Equa-
k tion (13) indicates that the GCS has a form that combines a
coherent state and a squeezed state. A coherent state is given

where C!‘j are known as the structure constants of the seby applying a displacement operatdi(a) on the vacuum
{Ti}. - _ e . ., la)=D(a)|0), where D(a)=expEiaai-aa). Since
For a harmonic oscillatof Ti} ={a; .aj I}, wherea;, aj gy, *3)/0)=|0), an unnormalized coherent state may be

are the boson annlhllatlonkand creation operatorslagdhe written as| ) =expEaa)|0). On the other hand, a unitary
identity operator, andCjj=¢;;, giving the ordinary ) ) . b B . ~
Heisenberg-Weyl group. On the other hand, the operator s&f"'®®% "9 operator is given byS(&)=exp(Z;;&jaa,
{Ti}={a'a; .ala ,a;a; 1} may be used to construct the fol- rTgri%al;ajr), where &;=rijexp(f;) is an arbitrary complex
lowing Hamiltonian that describes the system of many-body umber. o Lo .
. : ) GCS zero-temperature variational dynamics is obtained
interacting bosons: : . . S o
by implementing the dynamical variational principle, assum-
) o o ing that the space of trial wave functioNkis represented by
H_X Hyalai+ X Viwalalaa, . (5)  a set of GCS's. One possible way of formulating the varia-
1 1kl tional dynamics in Hilbert space is based on projecting the

An extended Heisenberg-Weyl algebra may be obtained by \éectoer foranyxe M (H being the Hamiltonian operator

o Into the tangent subspace kb at x. This leads to a vector
repeated application of the standard boson c:ommutatorﬁseld in M that determines the variational dynamics
S at— o A() A A A(H)_atat @ _ata N _ : .
[a,aj]=d;; . Writing Ti(j '=aa;, Ti(i =4 aj, Ti(jz)=ai g; The variational equations at zero temperature are derived
1 ~ . . . . . ~
+3 61, the nonvanishing commutation relations that defines follows: Given a Hamiltonial and time-dependent wave
the extended Heisenberg-Weyl algebra (@] functions|Q (7)), we minimize the action

[-’I\—Enin) ’?5;)] = 5nr-’|\—gzn)1+ 5”3-,[—I(’Zm)+ 5mS:|\—I(’f]) + 5mr:rgzn) ' (6)

SL0(n)1= [ addifa(mlda(nidn - (0(IAI)],

[T T1= = 0TS~ SmsTS, ) (14)
+(2) F(H)7= 5 F() 2(+) By choosing a GCS form fof€2(7)), the resulting varia-
[T Trs 1= OnrTns + OnsTims ® tional equations can be written in the Hamiltonian form for

while the mixed commutators between the linear and bilineaf"Y Set(}; of coordinates which parametrize)
operators have the following form:

ey (15)
A - - ~ Ay VbRtin
[Thn »aj1= = omjan— dnjam, (9) dr
N where{- - -} denote Poisson brackets afdis the classical
[T &j]=— Omjan, (10 Hamiltonian defined by
[ﬂ?n) vé-]T] = 5njé~m+ 5mjé-n ' (11) 'H(Q) = <Q| H |Q> (16)
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The use of Poisson brackets clearly establishes the link bexpproaches that is straightforward at zero temperdiwe
tween the variational equations and the classical dynamicshe state iVl| with the lowest energy must be the stationary
When the classical Hamiltonian is given by point of the dynamical equatigris not so obvious in the
" Liouville space. In Appendix A, we show that all of these
A A issues can be adequately resolved for GCS. In particular, we
H:nzl il;'in hi(f?---yin<Ti1>' ’ '<Tin>’ (17 show that the trial density matrices may be assumed to have
the form of finite-temperature equilibrium density matrices,
the Poisson bracket assumes a very simple form provided tH&d that the equilibrium and the dynamical approaches are
wave functionﬂQ> are parametrized by the expectation val- compatible so that the trial density matrix that minimizes the

ues(Q|fj|Q> of the operators'i'j rather than by the param- Helmhgltz free energy is, indeed, a st_ationary po_int of the
eters(); . These expectation values then constitute a full sernam'Cal equations. These results will be used in the fol-

of parameters that uniquely specify the quantum @t OWwing section.
In particular, if the operatorij form a closed algebra of Eq.

(4), the Poisson brackets fé'r]- are given by I1. VARIATIONAL EQUATIONS
FOR INTERACTING BOSONS
{'T'm,:l'n}=i2 ck Tk, (18 A. GCS in real space
- ,

In this section, we apply our formalism to a system of
interacting bosons described by the following Hamiltonian

and the variational equations of motion fdr, take the . . - .
g m with a fixed chemical potentigk:

closed form
AT < < . ) A=Ro+RA(t) (21)
i =2 2 X Chy i h® (T (T
n=1j=11ig,....in ] n .
(19) with

For the Hamiltoniar(5), it, therefore, suffices to calculate the ) ) 1 R
equations of motion for the expectation valugga;) and H0=J d“ﬁT(f)[— oAt Virap(r) = | ¢(r)
(3;a;) to uniquely specify the dynamics. In the derivation of .

the equations of motion we use the differential property of _f BT TR P CUNT N T
the Poisson brackets * 2 drdr’gr (D¢ (r)VIr=r)gr)g(n),

{f,ghy=—{gh,f}={f,gth+g{f,h}. (20) (22

When the expectation values are for generators of the set of R R

GCS'’s of some Lie groufs, their Poisson brackets are given H¢(t)= f drggT(r)Ve(r)g(r), (23

by the commutators of the underlying generators of the

group. This simplifies the calculation greatly, as it gives di-

rect correspondence between the ordinary quantumwhereV,(r,t) is the magnetic potential that confines the
mechanical commutators and the Poisson brackets. Thatoms andV¢(r,t) denotes a general time- and position-
variational procedure is then formally equivalent to thedependent external driving potential. An infinite-dimensional
Heisenberg equations of motion. It should be noted that thextended Heisenberg-Weyl algebra is generated by the opera-
transformation between the expectation values and the paors ¢(r), &', Y(r,r')=g¢(r)d(r'), Yi(r,r'), N(rr’)
rameters may be tedious. However, the transformation is JT()(r'), andi. The space of the representation in

never used explicitly; suffice it to know that such transfor-, .1 the HamiltoniarfiEq. (22)] is defined can be described
mation exists and we can then proceed to derive closed equas the space of wave functionals{x(r)], where the one-

tions of motion _for the expectation valu_es. N particle boson operators are given by
The formulation of variational dynamics at finite tempera-

tures constitutes a more complicated task for the following

three reasondi) At finite temperatures, the system evolves .. i ~y i )

in the Liouville spaceand a set of trial density matricés, A —X(r)|, ¢ (r)=- 2 anx(r)
rather than wave functions needs to be identifi@d,an at- (24)
tempt to projectLp, with pe M| and L is the Liouville

operator into the tangent space to our ansatz, faces a diffi-

culty since the Liouville space does not have a natural scalaf(") is @ harmonic-oscillator coordinate associated with po-
product that can be used for this projectidhe scalar prod- sitionr and Eq.(24) can be used to represent the operators
uct inherited from Hilbert space, i.e., the overlap of two den-Y, Y, andN.

sity matrices does not have a direct physical significance At zero temperature, the set of coherent states represented
(iii ) the compatibility of the equilibrium and the dynamical by Gaussian wave functions
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B. Variational equations of motion in real space

\I’[x(r)]=Aexp{ - %j drdr’ o (r,r")[x(r)—Xo(r)]

The Heisenberg equation of motion fgfr) reads

A ’ d,\ r ~ ~ — ~ ~
X[X(r ) XO(r )]] (25) ih—lg(t):HSpl,//(r)"_fdr,lﬂT(r’)V(r,r’)l//(r,)l//(r),
are parametrized by complex-valued functiongr), and (28
o(r,r'). According to the formalism developed in Sec. Il
and Appendix A, the coherent finite-temperature density ma?here
tricesp[x;(r)] with j=L,R [left (ke), right (bra)] are rep- 1
resented by Gaussian wave packets: HSP(r)=— o A+ Va1, (29)

! V(r,r’)E%[V(r—r’H—V(r’—r)], (30)
x[xk(r>—x<k°’<r>][x,-(r')—x§°><r'>]].

p[Xj(r)]=Z_leXp|’ — ; ; f drdr’ oy(r,r')

and we have used the commutation relations for the boson
field operators

(26)
These trial density matrices are parametrized by the vector [(r), ¢ (") ]=8(r—r"),
and matrix functions”(r) anday;(r,r'). We note that the
Gaussian wavepackdEq. (26)] constitutes a coordinate [(r), d(rH =141 (), T (r")]=0. (32)

representation for a density matrix of the form

=Z"lexp(—K), whereK is given by a combination of linear Taking the expectation values of E68) and noting the

and bilinear terms in single-particle operators. definition of x(r,r’) andp(r,r') [Eq. (27)], we obtain the
The variational parameters of Eq®5) and (26) which  following equation of motion for the mean field:

denote the displacement and the width of the Gaussian wave

packet in phase space are related to the average number of dz(r) sp =, 2

particles and the quantum mechanical squeezing of thH! —gq; —H (r)z(r)+J drrv(r,rflz(r)|*z(r)

number-phase conjugate variables in BEC. These parameters

may be related to physical quantities such as the condensate +2(r" ) r(r,r ) +z(r")p(r,r')+z(r)p(r',r')}

fraction and the excitation energy, by transforming Ezp)

or Eq. (26) to the quasiparticle basis; the resulting relation- FVi(r.nz(r). (32)

ship between the variational parameters in different bases is

not simple. However, this transformation is never used ex-

plicitly since the GCS ansatz allows us to derive equations o

motion directly for the parameters of interest, the expectation

The equations of motion fok(r,r’) andp(r,r’) can be
erived similarly by computing the time derivatives using
gs.(27) and(28) in the product rule:

values of the relevant operators. dp(r,r') .

The most convenient parametrization for trial wave func- ihTz HSp(r)p(r,r’)Jrf dr"V(r’,r")
tions[Eq. (25)] or density matricefEq. (26)] is given by the
expectation values of linear and bilinear combinations of bo- ><{~§(r”,r’)p(r,r”)+~§(r”,r”)p(r,r’)

son single-particle operators:
2(r)=(g(n)),w(r,r ) =(Y(r,r"))—z(nz(r’),
p(r,r)=(N(r,r")y—z*(r)z(r"), (27) —f dr"V(r,r"){&r,r")p(r",r")

where the expectation value is taken with respect to the wave
functions given by Eq(25) or density matrices by Eq26).

L) R (0 = H ) p(rr)

HE ) p(r,r )+ e(r )}

Wick’s theorem[7,33—37 allows us to express the expecta- +Vi(r,Op(r,r")=V(r',tH)p(r,r’), (33
tion value of any operator in terms of the parameters given in

Eq. (27) both at zero and finite temperatures. The dynamical dr(r,r’) _

equations for the system of interacting bosons may therefore  ih —— = HEP(r) e(r,r'")+ J dr"V(r’,r")

be derived in the same way for both zero and nonzero tem-

peratures by starting with the Heisenberg equations of mo- STEE 0 ) k(r 0"+ E(E ) ke (r )
tions for linear and bilinear combinations of the single-

particle operators and then evaluating the right-hand sides +~§(r’,r”)[p*(r,r”)+ s(r—r"1}

using the Wick’s theorem. This results in closed equations
for _the parameters(r), «(r,r"), andp(r,r"), which will be +H5p(r’);<(r,r’)+f dr”V(r,r")
derived next.
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X{E(r” O I+ E ) k() then diagonal. The indices may also be viewed as the mode
’ ' ’ ’ indices in a multimode quantum state. The symmetrized two-
+L(r,r")p(r" r )+ Ve(rt) k(r,r’) particle interaction matrix elements are
+Vi(r' O x(r,r’), (34) 1 .
. B . Vijk|:§[<|l [VIKD + (i [VIKI)], (40)
where we have introduced the auxiliary functions
Err) =z (N2 +p(rr’), (35 \Where
Lrr)=2(nz(r" ) +x(r,r'). @6 (i IVIkI>=f d*rd®’ ¢ (N F (rV(r—r")gi(r' ) ¢i(r),

For the commonly U_SEd special case of the contact inter- (4D
atomic interaction fov(r,r'), Egs.(32)—(34) are simplified  with V(r—r’) being a general interatomic potential. Also,
greatly; these are given in Appendix B.

An important consequence of the GCS ansatz is that at _ .
zero temperature, the functiopgr,r’) and «(r,r’) are, in Eij= | drei (nVe(r.t)¢;(r), (42)
fact, not independen0]. By deriving an explicit relation-
ship between them, it is possible to eliminate ih@,r’)  where V¢(r,t) denotes a general time- and position-
variables. This relation is derived in the trap basis in Appendependent external driving potential as defined previously.
dix C, and then converted into the real-space basis First, we proceed by establishing that our generalized coher-
ent statg13) at zero temperature is a Gaussian in coordinate

) \/1 , . , o space. With the choice of the particle vacuum state of ordi-
p(r,r)=|\/zo(rr )+J K (e w(r,rt)dr nary Heisenberg-Weyl algebra as our reference $@tg,
Eq. (13) the action of the operatom anda; on the wave
—Eé(r r’)} (37) function Q(qq, ...,qy) in the coordinate representation,
27 ' where N is the total number of bosons, is

It can be verified by direct substitution that once E¥) . i[9 ) i[9
holds initially, it remains true throughout the dynamical evo- aj=— —(— —qi) , aiT= - —(— +qi) , (43
lution. The reduced set of equations are then the coupled \/E G \/E G
equationg32) and(34) with p(r,r’) replaced by the expres- . ) ]
sion (37). The two independent variablegr) and «(r,r’) ~ and the conditions;Q(qy, ... .0y =0 fori=1,... Nim-
constitute a very convenient parametrization of squeezeBlY that the reference stafq(qy, ... .q,) is a Gaussian in
statesz(r) represents the average position, where@sr’) ~ coordinate space:
is responsible for squeezing. This can be easily understood

from the fact that the coherent state is an eigenstate of the 1 2 2
I - . . o(Q1, - - O = exg —=(qi+---+qy) |-
annihilation operatoi/(r), while a squeezed state is gener- ' ' / N 2 1
; ! . ; (2m)
ated using a squeezing operator that is a function of the qua- (44)
dratic operatoh?(r,r’) in the extended Heisenberg-Weyl al-
gebra. It should be noted that, consistent with our choice of basis in

Eq.(38), the index of the coordinate variable; in Egs.(43)

and (44) refers to the trap basis “mode” In addition, al-

) o though we are using the trap basis, the finite total number of
For completeness, we outline below the derivation of the,ticlesA’implies that the vector space used is effectively a

same variational equations in the trap basis. In this basis, thésite-dimensional space spanned by a truncated set of trap

C. Variational equations of motion in the trap basis

Hamiltonian is written as basis states. Acting on this wave function with the general-
ized displacement operatfiEq. (13)] preserves its Gaussian
H=2 Hjala+ % Vijuaalaa+ > Ejala;. form since the action by the operatarsanda; simply shifts
1 1) 1

(38  the origin, while the operatora;a; and aa; change the
variance. The resulting state is thus a Gaussian of the form
The matrix elements of the single-particle Hamiltonidp
are given by

1
Qay, - - - vQN):AeXF{_ 5 IE] aij(9i—7)(q; - 77j)}
oi(r), (39 (49

wherey;, i=1,... N are the complex numbers which de-
where the basis sta;(r) is arbitrary; a convenient basis termine the average position whitg; is an VX N symmet-
for trapped BEC is the eigenstates of the trap siHgeis  ric matrix that determines the covariances or the amount of

,}_LZ
Hy= | d3r¢>r<r>[—%A+vtraAr>
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squeezing. For an ordinary coherent statg=g;;, i.e., a Pines theorem, inconsistencies with the many-bbagatrix

Gaussian with unit covariance. calculations, and the ultraviolet divergences can be overcome
Similarly, at finite temperatures, the trial density matrix [43]. In this paper, we have presented our HFB equations
takes the formK,j=L,R) with the general interaction in both the real space and the

trap basis; pseudopotentials such as those discussed in Ref.
~ , _ 1 ~ [43] can thus be accommodated.
play, ... Ayl=Z 'exp - 5 % % oalai—ai®] Since the GCS is a squeezed state, the present work may
be considered an extension of a previous result that demon-
i) stratedstationaryBEC to be squeezdgd]| and a more recent
X[Om=am "1}- (46) result that has shown that dynamically evolving BEC under
the time-dependent GPE described using the Hartree ap-

The GCS ansatz may therefore be considered to be proximation(i.e., pure condensate, no noncondensate gtoms
ground state of some effective quadratic Hamiltonian in colS Squeezed6]. . .
ordinate and momentum operators. For such a Hamiltonian, The representation of the dynamical quantum state of
any correlation function can be represented in a path-integrd#EC as a GCS provides physical insight abouttital sys-
form where the action only has linear and bilinear tef#t. tem of condensates plus noncondensates in terms of particle
The resulting Wick’s theorem is then identical to that for a@nnihilation and creation operators, and how it evolves as a
thermal state. whole in the Schrdinger picture. The interdependencegof
The expectation values to be used in the parametrizatioAnd « at zero temperature enables us to eliminatepthveri-
of our state are the condensate mean fie|dhe nonconden-  ables from these equations, reducing the size of the problem,

sate density;; , and the noncondensate correlations: and simplifying the solution.
The multimode squeezing, and hence the entangled state

ZiE<ai>1PijE<éi aj>_<é?><éj>v’<ijE<éiaj>_<éi><éj>- nature of BEC is clear from the form of the quantum state,
47 Eg. (13). The _study of qu_antum_enfcanglement is currently
gaining great interest owing to its importance in quantum
Since these variables are the expectation values of thiformation theory44,45 as well as in the understanding of
generators of the set of generalized coherent states of tiiBe foundations of quantum mechanid$,47. Experimental
extended Heisenberg-Weyl algebra, their Poisson brackegources of generalized coherent states in matter-waves al-
are given by the commutators of the underlying generatorgeady exist in the form of atomic BEC. However, ways to
This results in TDHFB equations of motion fay, p;; and  access and manipulate this type of matter-wave entanglement
Kij - remains an open challenge.
At zero temperature, the relationship betwegnand «;;

[Eq. (37)]is ACKNOWLEDGMENT

1 1 The support of NSF Grant No. CHE-0132571 is gratefully
Pij = Z 5” + EP Ki*prj — E 5” . (48) aCknOWIedged.

This enables us to reduce the number of equations. More APPENDIX A: PROPERTIES OF FINITE
details of this relation are provided in Appendix C, while the TEMPERATURE GCS

TDHFB equations in the trap basis including the simplified  5g 1oted in the main text, the formulation of variational

zero temperature form are given in Appendix D. dynamics at finite temperatures requires us to address the
following issues: (i) At finite temperatures, the system
IV. DISCUSSION evolves in the Liouville space and a set of trial density ma-

Using the GCS ansatz, we have derived variationally themceswIL need to be identifiedji) an attempt to projedtp,

TDHFB equations of motion for BEC, which are known to With pe M andL is the Liouville .operator _mto the taf.‘ge"!t
L - . R space to our ansatz, faces a difficulty since the Liouville
be valid in the collisionless regime. This implies that the

. ) space does not have a natural scalar product that can be used
GCS ansatz should be applicable in the lower temperatur ; R - S
g : or this projection,(iii) the compatibility of the equilibrium

collisionless regime. It should be noted that the HFB theory, . . . . .
has several inconsistencies such as the violation of thgnd the dynamical approaches is not so obvious in the Liou-

. ... Ville space. In this appendix, we show how all these issues
Hugenholtz-Pines theored2] that states that the excitation . .

) ; may be adequately addressed. We start by introducing the

spectrum should be gapless in the homogeneous [libdit

T ) ) -trial density matrices.
This issue has been addressed by various authors; for in- Let A be the real Lie algebra of the real Lie gro@

stance, the Popov approximation, in which the anomalous . s ,
correlation is neglected, was shown to give a gapless spe(!:r]VOIVEd |n_ the definition of a set of GCS's. For our c?sb,
trum [12]. Recently, it has been shown that by replacing theS the basic(rea) algebra generated by the generatas
contact interaction potential with a more sophisticateda,-*, and T,,,; the elementsa belonging to the algebra,
pseudopotential, many of the inconsistency problems of thae A, are then linear combinations of these generators. In

HFB equations including the violation of the Hugenholtz- addition, let.A(®) andG(© be the complexification oft and
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G, i.e.,G( is the complex Lie group that corresponds to theand it follows then thage G, because if4 is the Lie
complex Lie algebrad ). Complexification of an algebra ajgebra of the groug, then A(© is the Lie algebra that
(group gives an algebragroup generated by the original corresponds t6(©.

generators for which the coefficients are allowed to be com- \ye conclude this section by demonstrating that this way
plex, rather than real numbers. More specifically, it meansy cjosing the dynamical equatidiEq. (A1)] guarantees the
constructing a complex analytical algetigaoup, for which  compatibility of the equilibrium and dynamical variational
the “real” version is the original one. For example, given a gpproaches. Using the variational approach, the equilibrium
real structure that is a map:G—G, the real part of the gensjty matrix can be obtained by finding the minimum of

group consists of pointg so thatp(g)=g. If one defines the Helmholtz free energy
p(g)=g", one hasG,.,=SU(2), while if one defines

p(g)=g*, one hasG,.;=SL(2R). SL(2C) is then a F(p)=Tr(Hp)— B T pIn(p)] (A3)
three-dimensional complex analytical gro(gis its complex
dimension that serves as a complexification for both(@ among the normalized trial density matrices M. The
and SL(2R). requirementsF =0 yields
The representatiom of a groupG associates with ang
e G a linear operatoff(g) (acting in some complex vector
space referred to as the space of the representamihat
T(9291)=T(g2)T(g4). T can be naturally extended to a rep-
resentation ofG(®) in the same vector spadé A represen-
tation of a group has the corresponding representation of afr{T(a)L(pg)}=Tr{T(a)[H,po]}
algebra and vice versa, and in the corresponding algebra rep-
resentation, we havé(a) being operators in the same space =Tr{H[T(a),po]} =B 'Tr{In po[ T(a),pol}
for ae A with T(a;+a,)=T(a;)+T(ay) andT([a;,a,]) P _
=T(a;)T(a,)—T(a,)T(a;). The representation afl can =B TiT(@)In po.pol} =0, (AS)
also be easily extended to representaﬂqnﬁlé@. _ _ which implies thatv(py)=0. Stated differently, the trial
We define the manifoldM, of normalized trial density gensity matrix that minimizes the free energy is a stationary

matrices represented yg)=2"1(g)T(g) for all elements point of the dynamical equations.
g belonging to the complexification d&, ge G(®, so that

T(g) is Hermitian whereZ(g)=Tr[T(g)]. The normaliza-
tion condition Tfp(g)]=1 is obviously satisfied. In the
GCS case, the projection that closes the dynamical equation
can be formulated as follows. We define a tangent vector For contact interatomic interactiony/(r,r')=Uq4(r

8F(p)=Tr(H&p)— B~ Tr(5pp) (A4)

for any tangentdp. It follows from Eqg. (Al) that &p
=[a,p] is a tangent for anpe A(©. This yields

APPENDIX B: VARIATIONAL EQUATIONS IN REAL
SPACE FOR THE CONTACT POTENTIAL

v(p) that satisfies the following property: —r'). HereU,=4m#%a/m, wherea is thes-wave scattering
length andm is the mass of a single atom. This implies that
T T(a)v(p)]=Tr[T(a)Lp] (A1) theintegrations in Eq¥32)—(34) are removed,
. dz(r) 5

for all ac A(® andp e M, . For most practical applications, 1% —g—=H1)2(r)+Uof[2(r)[*z(r) +2p(r,1)z(r)
there is one and only one tangent vectofor any p that
satisfies Eq(Al). In this case, a well-defined vector field +r(r,r)z* (r)}+Vi(r,t)z(r), (B1)
v(p) describes the variational dynamics in the manifivlg
of trial density matrices. The physical meaning of EA[l) is __dp(r,r") ~ ,
clear: If we refer to the operatof(a) with ac .4(® as the i —qr— =[H*r)+2Ue&(r",r")1p(r,r")
fundamental operators, the variational dynamics is obtained
by the requirement that the dynamical equations hold for the +UoZ(r' ")y k* (r,r’ ) —[HSP(r")
expectation values of the fundamental operators. This im- _ ~
plies that, similar to the zero temperature case, the varia- +2Uoé(r,r)]p(r,r")—Uol* (r,r)x(r,r’)

tional equation of motion at finite temperature is derived
using the Heisenberg equations of motion.
We assume that the trial density matrices are represented

+Vf(r:t)P(rir,)_Vf(r,:t)P(rar,): (BZ)

by finite-temperature equilibrium density matrices with ihM:[HSp(r)+2U0~§(r’,r’)]x(r,r’)
Hamiltonians given by the fundamental operators: dt
_ _ +UOZ(r,!r,)p*(rirl)+UOZ(rl!r,)
p=Z""exd—BT(a)]=Z"'T(g) (A2) 5
+H[HEP(r") +2U08* (r,r) ] (r,r’)
for someae A©. This impliesg=exp(Ba), i.e., elements UG p(r )+ V() K(rE)
ge G of the Lie groupG can be represented as the exponen- 0530 ' n ’
tials of the corresponding complex Lie algebra elements +Vi(r' t)x(r,r'), (B3)
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whereZ(r,r) andZ(r,r) are as given in Eq$35)—(36). The it satisfies the conditiofi{')f=0. OperatorT{}) then rep-
equations of motion fop(r,r’,t) andx(r,r’,t) may be writ- ~ resents derivatives in the antiholomorphic direction.

ten in the compact form In particular, the functions!,;) constitute a set of holo-
morphic coordinates in the vicinity d2y where(},, repre-
dg N sent states with Gaussian wave functions. It can be shown
i g =296, (B4 thatS(H(Qg)=0, while S2(Qg)= 5,y SO that
where we have defined>22 matrices Fmn(Qo) = mn- (C4
Ry R A direct calculation yieldsT{")G,,=0 that implies that
E(r,r’)=< B ’ _ ' ) , G is holomorphic and can therefore be written as a series
—A*(r,r)  —h*(r,r’) in S in the vicinity of the pointS|;”'=0 (i.e., Q). Since

SE(Q) = 6na, it follows from Eq. (C3) that the expansion

p(r,r’) K(r,r') of G,,, starts with the second-order terms:
G )= s , (B5) "
k*(r,r’)  p*(ryr’)+1 oc
— (i)

and G JZZ G (C5)
h(r,r")y=HSP(r)+Vq(r,t) + 2U&(r" ,r"), (B6) We next define the degree of a functibiy Df=dedf
~ ~ =313, T¥f. Itis clear that de§”)=+1, deg”=0, and
A(r,r)=Uol(r,r). (B7)  deqfg)=deg+deg. It follows from Eg. (C3) that

EquationgB1) and(B4) constitute the TDHFB equations for ﬂe\gsmnzl' On the other hand, Eq(CS implies that

the contact interatomic potential approximation, in real spacéedun=j and therefore contains the degrees of 2 and

[12]. higher. This implies tha6,,,=0 for all mandn.
It can be verified thal{\)F . is a linear combination of
APPENDIX C: ZERO-TEMPERATURE RELATIONSHIP G, and hencel()F,,=0. Similarly, by conjugating the
BETWEEN p AND « relationT()F =0, TLJF =0, implying thatF ,,,(Q) is

In order to derive the relation betwegn and;; at zero & constant This, together with Eq€2) and (C4) imply
temperature using the GCS ansatz, we find that it suffices to
consider GCS stat)) such tha{Q|a]|Q)=0, i.e., Gauss- Frr( Q) =2, [S)S4) — S SD1= 6. (CH)
ian wave functions centered gt=0. These states form an “
orbit M of the groupG which corresponds to the algebra Sinces(-)
mn

generated byT(? and T("). We shall introduce a set of
functionsS{?,, St) on M,

= kmn and S.= prnt £ 6mn, Eq. (C6) gives

1_\? . 1
pij+ E(S” _Ep Kiprjzzai] . (C?)
ST =(QITRQ),  sEH)=(QITGI) €D
Solving for p;; finally yields

1 . 1
pij= Z5ij+% KipKpj~ 5 0] (CY

or in matrix form

G.(Q)= s g(+) _g@g(H). Cc3 1 1
mn({2) Za[ e San’ — ShaSam J (C3 p= ZI+KTK_§I' (C9Y

Our aim is to show thaf,,(Q2) is a constant, i.e., itS \ynerel is the unit operator.

and define two sets of auxiliary functions

Fn(Q) =2 [S)s(,)—s2,s27, (C2)

derivatives are zero. In particular, showing tha,((2) Equation(C9) may also be expanded in a Taylor series as
= 8mn and identifying the expectation valuss;) andS{?, in
terms ofp;; and«; , for our example, complete the required p=rtk— (k") 2+ 4kt k)3 - . . (C10

proof. It is found that the derivatives &f,,,({1) are linear

combinations ofG,,,(Q), and therefore it suffices to prove It is possible to gain further insight into the nature of GCS

that the auxiliary functiorG,,,(Q) is zero for allmandn. ~ from the fact that Eq(C9) holds if the quantum state of the
We note that sincéﬂf’ ’-]-(k;)]zo’ the operators'i’ﬁ” §ystem is a quaS|p§1rt|cIe vacuum stdﬁz)qp such that

which are considered as vector fieldsMrdetermine a com-  Bi(t)|0)qp=0, wherepi(t) is the quasiparticle annihilation

plex structure oM. A functionf is said to be holomorphic if operator of the Bogoliubov transformation,a;(t)
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=3.0U;B(t)+ V3 Bl(t). For a quasiparticle vacuum stagg,

and «;; may be written in terms of matriced and V as
follows:

2 VEV, and k= Z UpVE,  (C11)

which implies

p’+p=«k'k and pk=«kp*, (C12

PHYSICAL REVIEW &V, 053604 (2003

trap basis, EqsD1)—(D3) in a straightforward manner, us-
ing the following relations between the real-space basis and
the trap basis variables:

z(r>=2 z4i(r), p<r,r’>:; pij dF (1) (1),

K<r,r')=; Kij (1) (1), (D4)

using the orthogonality and symmetry conditions betweerlong with the definition of the tetradic matrik;y, ,

the matricesU andV, UUT—VvV'=1 andUuV'-VvU'=0.
These relations can be shown to be identical to (E§) by
solving the quadratic equation ip. The quasiparticle

vacuum state may therefore be considered a squeezed statﬁ

of condensate and noncondensate atoms.

APPENDIX D: VARIATIONAL EQUATIONS
IN THE TRAP BASIS
1. TDHFB Equations

The TDHFB equations in trap basis is given as follows:

dz
|ﬁ_ ; H|JZ]+2 V|Jk|[2 ZkZ|+2p]kZ|]

dt
+§‘, Vijui kiiZf +2 Eiiz, (D1)

iﬁ%zz Hir+2% Vikr(Zk 2+ pi) + Eir | prj

—Z :Hrj+2% Viiki(Zk zi+ pi) + Erj | pir

+> % Vi (221 + k1) | K7

_Er: B Vi (Zk ZF + &) | Kir s (D2)
mdd%—z Hi,+2% Vikir(ZE 2+ pi) + Eir | &y

+2r :H,,-+2% Vi (ziZt + pi) + Eoj | &ir

+2r > Vi (zz+ ki) | pr

+§r: 4 Vi (Zz+ ki) | pir

+ 20 Vi (zig+ ki) - (D3)

Kl

1
VijkI:§[<ij|V|k|>+<ji|vlk|>]i (D5)
ere

GHIVIK) = [ dPrePe’ 6 (1) 6F (V=1 ) 1),
06

with V(r—r') being a general interatomic potential. Under
the contact interaction approximatio;;, takes a simpler
form

4rhla . .
VijkI:TJ' droi (r)¢j (r)éw(r)éy(r). (D7)

2. TDHFB at zero temperature

The TDHFB equations, Eq¢D1)—(D3), hold for all tem-
peratures. However, we have noted that the varighl@sd «
are not independent variables for the generalized coherent-
state ansatz af=0. p;; can therefore be eliminated using
the following relation:

—\/1|+‘r L
PINg T 2

where the functiondp=0 for T=0, the TDHFB equations
take the following form:

+ 8p, (D8)

dz
if at =H,z+H, z* +EzZ (D9)
ﬁd h h* \/1| T 1I5A
[ a—( K+ kh*)+ 2 +k K= 5 +dp
1 1
+A Z|+,<T,<—§|+5p +A, (D10)
T PR AU TP A%~ Ax*
| a9t 1™ Va2 + K K > +op|—(k K*)

1 dxt TdK

—Iﬁ\/T—K_rK(WK‘FK a), (D11

The TDHFB equations in real space derived in Sec. lll,
Egs. (32—(34), may be transformed to the correspondingwhere

053604-9



CHERNYAK, CHOI, AND MUKAMEL PHYSICAL REVIEW A 67, 053604 (2003

1 dp 1 drt dk
H,lii=Hij+ 2 Vi z*z+2\/—5 + o i — =i -
[ Z]IJ ij Ek; iklj| 4k 4l 24 Ok %‘4 KimKmk if dt if P K( dt K+t kK dt)’ (D17)

— O+ 26pik

, (D12 while Eq. (D2) implies

- d 1 1
[Hz*]ij_% Vikij Ki (D13) iﬁd_lt):{h,“lzl—’—KTK_El

1
hiszij+2% Vik|j|:Z:Z|+ \/Zﬁlk—’_% Krmek

—(kA* —Ak*).
(D18

Since Eqs(D17) and(D18) are equivalent, both the left- and
the right-hand sides of E4D11) are zero aff=0 and p
(D14) =0, i.e., the only independent equations to be solved are
Egs.(D9) and (D10).
For comparison, we note that the GPE, which is a zero-
o - temperature theory for a coherent-state ansatz, is simply ob-
A %: Vipalze + il (b1 tained from Eq(D9) by settingp;; = «;; =0,

1
- —5”("!‘ 5p|k +E

2 A

(D16)

= = =/% T 1 i i . . dgz
At_T—O, 6p=0 andp=+/z1+«'k—3I|. By direct differen |h—z'=2 Hij+2 VikIjZ:ZI+Eij z;. (D19
tiation of p, we get dt K
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