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Equations of motion are derived for the normal and anomalous single-electron density matrices of a Fermi
liquid using a time-dependent finite-temperature generalized coherent-state variational ansatz for the many-
body density matrix. Self-consistent equations for the order parameadiow us to investigate the interplay
of the Coulomb repulsion and pairing attraction in homogeneous and inhomogeneous Fermi liquids with
spontaneously broken symmetry such as high-temperature superconductors. The temperature of the Kosterlitz-
Thouless transition to the two-dimensional superfluidity is calculated.
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I. INTRODUCTION The DFT equations for superconductors are usually for-
mulated for the Kohn-Sham orbitals in Hilbert space and
The BCS ansatz for the ground-state wave function ofconstitute a system of four self-consistent equations for Bo-
superconductors predicts a gap in the spectrariginating ~ goliubov _transformation coefficientg(r) andv(r), t_he nog.
from the pairing of two electrons with opposite momenta andnal densityn(r), and the anomalous density mateigrr’).”
spin projections. This pairing is induced by the effective at-An extension of these equations to include a magnetic field
traction induced by electron-phonon interaction. The stanWas proposed as weft. . o
dard BCS description of superconductivity, as well as Eliash- !N this article we present an alternative derivation of the
berg’s extension to incorporate Coulomb repulsion betweefP CK €quations for a Fermi liquid with spontaneously bro-
electroné? does not apply for strongly correlated electronsk€n Symmetry(FLSBS based on a generalized coherent-
such as in high-temperature supercondudt¥i8a,Cu,0; 5 state(GCS ansatz for the many-electron density matrix. Co-
(YBCO)] In two-dimensional(2D) superconductor$e;g herent states were first used to describe anharmonic
. 45 - 27 dynamical systems such as many-body interacting fermions
in cuprate™> the phase transition to the superfluid state ; : )
; and boson's while preserving some of the useful properties
takes place at temperatures below the mean-field phase tr

" . ¥ the original Glauber’s coherent states for the harmonic
sition temperature for the appearance of the agimilar to oscillator**!® They encompass the Glauber coherent states
the Kosterlitz-Thouless phase transition. The important rol

: _ &s well as the squeezed staté® The time-dependent
played by electron-electron correlations in the local OrderHartree-Fock-BogoIiubo‘(TDHFB) equations were derived
parameter above the phase transition temperature, while thg, poson systems using the GCS and&Z.GCS’s are par-
system is still in the normal phase, was discussed. ticularly suitable for variational dynamics by virtue the un-
Superconductivity in strongly correlated electron systemsjerlying Lie group algebr& '8 Using this ansatz, we derive
is often described using effective Hubbard Hamiltoni&ns. equations of motion for expectation values of the normal and
Taking electron-electron exchange and correlations into acanomalous density matrices. We use the time-dependent
count, the ground-state energies and collective excitationariational principle which allows description of the many-
spectrum of superconductors have been calculated byody system in terms of a small number of parameters and is
density-functional theoryDFT) or its time-dependent exten- formally closely related to classical Poisson bracket
sion (TDDFT).8* In the Oliveira-Gross-KohtOGK) DFT  mechanics—i.e., to the variational equations of motion de-
equation§* the normalp(r,r’) and anomalous<(r,r') den-  rived from the minimum-action principle. A GCS represen-
sity matrices satisfy the generalized Bogoliubov—de Gennegation for the BCS wave function has been used to analyze
equation&*? which include one external fieldy(r) coupled the coexistence of superconductivity and ferroelectriGify.
to the normal charge densityr)=p(r,r) and a second field We obtain self-consistent equations of motion for the normal
A(r,r') coupled too(r,r’). These fields contain exchange- and anomalous density matriétand derive the spectrum of
correlation potentials,(r) andA,.(r,r'), respectively, ob- collective excitations, the density of the superfluid compo-
tained by requiring the charge densjiyr) and anomalous nent at finite temperatures, and the temperature of the tran-
density matrixa(r,r’) of the interacting and noninteracting sition to the superfluid state for homogeneous and inhomo-
systems to be identical. TDDFT requires the same conditiongeneous superconductors.
to be satisfied for an externally driven system at all tihes.  Reduced descriptions of many-body systems are naturally
The zero-order approximation in the standard DFT obtainedecast using density matric&s?®and we found it useful to
by neglecting the exchange-correlation fields results in thedopt the Liouville space density matrix representatidh
Bogoliubov—de Gennes equatiri which take into ac- of TDDFT (Ref. 8,9, and 2bfor the normal and anomalous
count the BCS pairing and classical Coulomb correlations atlensity matrices. This requires solving only two equations of
the Hartree level. motion for the normal and anomalous density matrices

0163-1829/2003/680)/1045198)/$20.00 68 104519-1 ©2003 The American Physical Society



OLEG BERMAN AND SHAUL MUKAMEL PHYSICAL REVIEW B 68, 104519(2003

p(r,r’) and o(r,r') coupled to two artificial external fields. .

These fields contain an exchange-correlation contribution Phrn= 2 ¢h(nal ),

and guarantee the charge density and anomalous density ma- '

trix to be exact at all time%® The ground state is the station-

ary solution of these equations of motion. This is in contrast - ~

to the four self-consistent equations for Bogoliubov coeffi- P (rt)= Z. Gi(r)& (1), 2
cientsu(r) andv(r) and the charge density(r)=p(r,r)
and anomalous density matrixr,r').*22 The density ma-
trix is a two-point function compared to two one-point func- . ) . g A
tionsu ando (Refs. 8 and § nevertheless, the computational With —the anticommutation relationg & ,a;], = §; and
cost can be reduced. The reason is that the density matric&i»&;]1+=[&;,8;]+ =0, #;,(r) are orthonormal atomic ba-
have nonvanishing elements only whierr’| is less than a SIS funct!ons, and runs over all bagls electronic orbitals.
coherence size, which is typically very short. This allows us Substituting Eq(2) into Eq. (1) gives

to neglect many density matrix elements, making its size

scaling linear rather then quadratic. The Liouville space rep- - ot At At A
resentation provides a clear picture of the underlying coher- H= 2 tija;,aj,+ 2 Vijki 8,8, iy 1

ence, since it is not possible to include the coherence size o 'ﬁ‘,'f,"

explicitly in the traditional Hilbert space computations. '

where éiTV and &;, are the corresponding Fermi operators

Using our GCS ansatz we further define expressions for Wooatal a3

) . e . . - ikl Qi &, Qe Ay - 3
first-order adiabati¢time-independentexchange-correlation i,%J 1kl v Sy St Sy ®
contributions to the order parameter, which include electron vv' #v

exchange in the spectrum. This provides corrections to the

charge density and the anomalous density matrix of Ref. 2éleret;; is the single-electron matrix element,
at each order in the perturbative series for the exchange-

correlation potential. The present approach is applicable for %2y 2
superconductors in general, but it is particularly relevant to ti= f dr¢i*(r)< - d
strongly correlated higf-. superconductors, where the BCS

and Eliashberg theories do not apply.

—M)¢j(r), 4

2mb

Vijki is the Coulomb electron-electron repulsion,

Il. COHERENT-STATE FREE ENERGY )

e
We start with the many-electron Hamiltoni&hwhere the Vijki = f drldr2¢i*(r1)¢f(r2)|rl_ ] Pilr) #i(r2),

electron-electron interaction consists of both Coulomb repul- (5)
sion V(r—r')=e?/|r—r’| and pairing attractionV(r—r")
between two electrons with opposite spins andW, is an attraction responsible for the creation of elec-

tron Cooper pair.

R R 1 . E . . . . _ . _
_ + e guation(3) describes the interacting many-fermion sys
H= EV f dr %(r)( 2mVr ’“)%(r) tem with Coulomb repulsion and attraction between two
electrons with opposite projections of spin. In ordinary
1 A A (BCYS superconductors this attraction originates from an
- 1 ot T ’ p g
* 2% J dr f dr’ e, (r) i, (1) electron-phonon interactiénin YBCO superconductors the

short-range attraction results from the thermodynamically
XV =1 ), (r" )i, (r) equilibrated phase ordering producing charge stripe drder,
and it assumes in the following form:

- > drf dr' gt (r)

v #v
- - WijkI:Af drdrogf (ry) ¢ (rp)
XW(r=r") b, (r') i, (r). ()
Iry—rof| 7"
Here ¢/f(r) and J(r) are the Fermi creation and annihi- X( o ) d(r) di(ra), (6)

lation field operators with the anticommutation relations

[AlAﬂ(f),lA//T(r')L: s(r—r") and [¢(r),¢(r')].=[4'(r),  wheren>1 is a positive rational numbe# andr, are con-
#'(r")].=0, and the indices and v’ denote the spin pro- stants, determined by system geometry.

jections; m is the effective band mass of electrqu,is the Our derivation is based on the following ansatz for the
chemical potential(Fermi energy, and e is the electron time-dependent many-electron density matrix. At zero tem-
charge. perature the system is in a pure state, and the density matrix
We further expand the field operators in a single-electrons given by K(t)o«|y(t)){¢(t)|, where the(unnormalized
basis seip; ,(r): many-electron wave function is assumed to be of the form
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|¢(t)>:exp[ f dtf drf dr' X5 h(r,r g (g, ()

+ > A(f.r’,t)%(r)szr(r')}|Qo)

vv' #Fv

=exp[2 (2 hij(Hala;,

IJ VV,

+ 2 Aj(hala ,V) |1Q0), (7)

v #Ev

with |Q,) being an arbitrary single Slater determinaht.
Equation(7) is a generalization of the random phase approxi-

mation (RPA) and BCS wave functions: settingy;; =0 it

reduces to the Thouless representation of the single Slater
determinarft, for h;; ;=0 it reduces to the BCS ansatz for the

superconductdr
At finite temperaturel our ansatz reads

_oexd - Ho/(keT)]
C Trexg —Ho/(keT)]’

)

wherekg is a Boltzmann constant and

Hozfdtfdrfdr’

+h*(r,r P g, (r)

2 h(rr D g, N

+ > ALY

!
v, v Fv

+ > A*(rmﬁt)&y(rﬁ/w(r')} (9)

v #v
or using our basis set

HO_Z 2 h|] alvajv'+2 h (t)alv jv'

i] vy’

+ 2 Ay(bala ]V+ Y ANDaLA, .

v #Fv v #Ev

(10

PHYSICAL REVIEW B 68, 104519 (2003

HereH is the enthalpysS is the entropy, and the chemical
potential u controls the average number of electroNs
through the following constraift>®

Tr(KE ala,

=N. (12)

Instead of usindy andA as the variational parameters, we
shall switch to the following variables: the normal density
matrix

pivi,=Tr(Ka/ a;,) (13)

and the anomalous density matrices
;i Vj_VETr(Kai Véj—v)! (14)

of,,=Tr(Kalal_ ). (15)

The next step will be to express the free energy in terms
of p and o. We start with the enthalpy. Sind¢is the expo-
nent of a quadratic operator, we can use Wick’s thedtem
and express all averages of products of creation and annihi-
lation operators with respect ¥ (denoted with a subscript

0) as averages of pairs of operators, which are generators of
the closed algebra. In particular we have

(alaladn)o=—(a/ ak>0<a m>o+<a a)o(alamo

+(a/a Q; N o(Bk@mo- (16)

Using this factorization we obtain for the enthalfsee the
Appendix, where for brevity we omit spin indices:

+
J

H= TI’(HK 2 [hlj Pij— p]|)+A|]U|J+A|JU]|]
(17

Hereh is a matrix with elements

~ 1
hij=tij+ 55 2' (Vikj—

VV

Sy Vilkj) Piwi v - (18)

U is the volume and\ is the order parameter matrix with
elements

A EE Wijmno'mn- (19
mn

We next require the expectation of the effective Hamil-

Here “Tr" denotes the trace in the many-electron FocktonianHo [Eq. (10)] to be the same as the expectatiortof
space. A similar ansatz was recently used for BosdEq.(3)]:

condensation’ Equation(8) constitutes a GCERef. 28 and

29) [see Eq(Al)]. Equation(7) is a limiting case of Eq(8)

obtained by a specific choice of parametér&q. (8) thus

holds at finite temperatures as well asTat0.

The parameterk;; andA;; will be determined variation-

ally by minimizing the grand canonical free energy

F(u,T)=Tr(HK)—kgTTI[K In(K)]=H~-TS. (11

Tr(KH)=Tr(KHy). (20)

It can be easily verified that the condition, Eg0), is met
provided we set in Eq(10) h;;=h;; [Eq. (18)] and A;;
=1, [Eq. (1922 We next turn to computing the enthalpy.

The effective quadratic HamiltoniaH, given by Eq.(10)
can be alternatively recast in the form
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H=tr(QR), 21 . 1

A (QR) @) Vik|mE§[Vik|m+Vkim|]- (31

where the matridxQ is defined as

Substituting Eqs(27), (28), and(19) into Eq.(17) gives

C " A (22)

R TR B T
R H(p,o,u,T)=tr 2En+8—E+AO'—§Mp . (32
R is the generalized single-particle density matrix,

i F & where the matrix elements &1,

R= 2

(_&* i) (23 1
and the symbol “tr” in Eq.(21) stands for the trace in the Mij = % Vikij _§Vikil}Pkl- (33
single-electron space.
Using the ansatz, E(8), the many-electron system de- znd thefi matrix is

scribed by the Hamiltonian, E@3), can be mapped onto the
ideal system of noninteracting fermions with the quadratic ﬁs[exp(fE/ZkBT)Hl]‘l. (34)

Hamiltonian H,, determined by the matrix),?® with the
parameters defined by Eg4.8) and(19). The entropysS of : )
the system of fermions described by the quadratic Hamil—en:rtgyZero temperature Eq(32) gives the ground-state
tonian, Eq.(21), is given by® '

S(p,o T =—ket[FINF+(1-HIn(1=-D], (24 lil. EQUATIONS OF MOTION FOR GENERALIZED
COHERENT STATES

where the matriX is _ . .
We are interested in the dynamics of the system coupled

. 1 to two external fieldsv¢(r), which is coupled to the normal
f= - : (25 densityp(r)=p(r,r), andAq,(r,r'), which is coupled to the
exp Q/(kgT)]+1 anomalous density matrix(r,r’).1%° These fields account

We are looking for the normal and anomalous densityfor exchange correlation and provide a starting point for the
matricesp and & that minimize the free energheq. (11)] TDDFT framework® The total Hamiltonian then becomes

together with Eqs(17) and (24) assuming the GCS ansatz HT:F'+F|'ext: whgreﬂ is given by Eq.(3) andHe,, repre-
for the many-electron density matrix, EG). This minimi-  Sents the interaction with the fiefts.
zation yields the following equatiéf

) 1 Hexi= 2 f drvexd 1O PN P,(1)
R= = : (26) "
exd Q/(kgT)]+1
which gives - ,E;t , drf dr’Aext(f-f’,t)lﬁI(f)lﬂIr(r')
p=1—3[E] ‘tanh[E/(2kgT)], 2 A
P ElE TanE ke )] 0 - 3 drf dr A5 (1,1 D (1) P (7).
1’\ . . v v#E v’
&ZEA[E]*ltanh[E/(ZkBT)], (29 (35)
where the the order parameter matdxis defined by its Our goal is to compute the dynamics of the system given
matrix elementsy; [Eq. (19)]. by the total HamiltoniarH; with the time-dependent exter-

Equations(27), (28), and (19) constitute self-consistent na fields using the GCS ansatz for the many-electron density
equations for the equilibriurp, &, andA. TheE matrix is  matrix, Eq.(8). This can be accomplished by applying the

defined as closed equations of motion for the averages of GCS genera-
tors [see EQ.(A9) in Appendix A]. These equations were
E=VA%2+82 (290  obtained from the finite-temperature time-dependent varia-
tional principler’*** Since p;;,, o, and o}, _, are

where matrix elements & in the single-electron basis set averages of GCS generators, we can immediately derive

are closed variational equations of motion for these quantities in
B B real spacé”*® Substituting the parameters of the enefdgy
&ij =t + % [Viijk = (12) Vil (30 [Eq. (17)] and Ay, [Eq. (35)] in the closed equations of
motion for the averages of GCS generators, B§), we get
and (hi=1)
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p(r,r',t) 1 > w2 , , , ,
I ——Zmb(Vr—V,r)p(r,r O+ ) dr[V(r—ry) =V(r' =ry) ][ p(r,r',t)p(ra,ro,t) —p(r,ry,t)p(ray,r',t)]
— j dro[W(r—ro)—=W(r'—ry)[a* (r,ry,)o(ry,r' ) —o(r,ry,t)o*(ry,r’,t)]
+[Uext(rvt)_vext(r’rt)]P(rar,yt)r (36)
da*(r,r',t) 1 2 2\ % ' ' * ’ * '
| ot =_2mb(vr_vr/)0- (rvr vt)+ f er[V(r_rZ)_V(r _r2)][0- (r1r vt)P(errZat)_U (rerIt)p(r21r !t)]
- f dro[W(r—ry) =W(r' —ry)J[a* (r,r,t) p(ro,r',t) —p(r,ry,t)a* (ry,r',t)]
F[A (10 = Ay, D0 (1,1,). (37

The order parameteh(r,r’,t), which characterizes the gives Eliashberg’s equatioAswhich incorporate the Cou-
excitation gap in the spectrufieq. (29)], is defined as lomb repulsion between electrons at the mean-field level.
Since our ansatz for the many-electron density matrix, Eq.
(8), and the ansatz for the wave function, E@), have the
A(r,r t)= J dr,W(r—ry)a(ry,r' t). (39) same number of variational parametérand A, they yield
the same equations of motion for the averages of the GCS
generatorgi.e., normal and anomalous single-electron den-
It is interesting to note that the stationary solution of EqsSity matrices. The only dependence on temperature and
(36) and (37) gives the normalp(r,r’) and anomalous chemical potential is through the initial conditiofsgs.(27)
o(r,r') density matrices, which minimize the equilibrium and(28)]. Equations(36) and(37) conserve the temperature
free energy, Eq(11), in the ground stat¢Egs. (27) and  and chemical potential at all times.
(28)].17 The calculation of the free energy in Sec. Il is thus  In analogy with the RPA analysf$,we can look for a
not necessary for the present derivation. The formalism ofolution for the density matrices in the form of the following
the Appendix A allows us to proceed directly from the an- equations for matrices:
satz, Eq.(8), to Egs.(36) and(37). The calculations of Sec.

Il provide a consistency check and connect our results with p=aXexp —iwt)+a* Y expio*t),
more conventional derivations. R R
DFT is usually formulated in Hilbert space and involves o= a?(exp(—ia)t)+a*"\‘(* expliw*t). (39

the solution of four self-consistent equations for the Bogo- o . )
liubov transformation coefficients(r) and v(r), and the Substituting Eq(39) into Egs.(36) and (37), we obtain the

charge density(r) = p(r,r), and the anomalous density ma- SPECtrum of the collective excitations:
trix o(r,r’) [Egs.(4.12)), (4.129, and(4.130 in Ref. g]. In ~ ———
the presence of the external time-dependent field, the ordi- @=\A%+8?, (40)
nary TDDFT framework involves also the solution of a SYS-wheree,; andA; are given by Eqs(30) and (28), respec-
tem of four self-consistent equations for Bogoliubov trans-jyely,
formation coefficients u(r,t) and wv(r,t), the local
anomalous densityr(r,t), and the current density(r,t)
[Egs. (20), (21), and (22) in Ref. 9. Here, in contrast, we
obtain the ground-state free energy and density matrices
p(r,r',t) and o(r,r’,t) by the stationary solution of two  Recent studies of high-temperature superconduttbré
equations, Eqg36) and(37). The solution of these equations show a competition between two types of interaction be-
gives the charge density(r,t)=p(r,r,t) and the anomalous tween electrons: a pairing attraction, which makes the spec-
density matrixo(r,r’,t). trum satisfy the Landau criterium of superfluidity by creating
Equations(36) and (37) unify several widely used equa- a gap in the excitation spectruhmand Coulomb repulsion,
tions: if we neglect the pairing attractiow=0 and set which tends to eliminate the gap, thereby destroying the
o(r,r',t)y=c*(r,r',t)=A(r,r',t)=0, the last integral on superconductivity. This competition leads to “stripe”
the right-hand sidéRHS) of Eq. (36) vanishes, and Ed36) high-temperature superconductivitfyHTS) in cuprates
reduces to the standard RPA equatibBy neglecting the [e.g., YbaCwO,_; (YBCO)] above the low-oxygen-
Coulomb repulsionvV=0, we obtain the BCS equatichs concentration thresholdS¢-0.20).
[where on the RHS of Eq$36) and (37) the first integrals When A(r,r’,t)#0 the excitation spectrum satisfies
vanisH. Neglecting the second term on the RHS of B¥)  the Landau criterium of superfluidity, and a 3D system

IV. APPLICATION TO THE KOSTERLITZ-THOULESS
PHASE TRANSITION
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becomes superconducting. However, cupraB8CO)  Eq.(32), in the operator$; anda’, without using the Bo-
are 2D  structure$® The  Kosterlitz-Thouless goliubov algebra ofi—v transformations.
transition temperatufé to the superfluid state in a two- The advantage of the Liouville space representation of
dimensional superconductive system is given byTDDFT for the normal and anomalous density matrices is
Te=[7h?ng(T)1/(4kgmy),®” where ng(T.) is the that it only requires one to solve two equations of motions
temperature-dependent superfluid density of the supercoffier the normal and anomalous density matrices, Eg6)
ductive system anég is the Boltzmann constant. For tem- and(37), coupled to two artificial external fields,,(r) and
peratures close to the phase transition in the mean-field agtex{r.'), Which contain exchange correlatibrinstead of
proximation[Aoo(Tg):O] which satisfyT—T2<Tg the the four self-consistent equations for Bogoliubov coefficients
superfluid density isnS(T)=[2(T8—T)n2D]/(Tg),33 where U andv and density ,matrlceg and o. The nor_malp(_r,_r )
o P . . and anomalousr(r,r') density matrices, which minimize
N,p=Ppg/ (271 7) is the total 2D density of electrongf is a e ;
Fermi radius. To find TO f th ditionA(T% =0 the equilibrium free energy Eq11) (Ref. 17 in the ground
ermi ra(lj Iu3. (I) mh c lfrom e condl 'Onaao‘)( ij)gg state, are simply given by the stationary solution of the Egs.
onet?eg shto solve the se d—consgtent eqfua;]tﬂ )ng (29) tgﬁ) and(37). And in order to get this ground state we actu-
to obtain the temperature dependence of the order parame rIy do not need to derive the parameters of the effective

A(T). The temperature of the phase transition can be estly 5qratic Hamiltonian, Eq9), for the many-electron density
mated in the mean-field approximatidhFor the gap spec- matrix, as we did in Sec. II,

trum of collective excitations, Eq(40), Otﬁg mean-field Our equations for the total energy, the spectrum of collec-
transition temperaturd; is Ag=1.7&gTc,™ Where Aoy tiye excitations, and the gap are written in a general basis
is the order parameter at zero temperature. Combininget and therefore apply to both homogeneous and non-
these expressions, we obtain for the temperature of thomogeneous systems. In a homogeneous system we
Kosterlitz-Thouless transition, below which the supercon-can yse the plane-wave basis; i.e., for the two-dimensional
ductivity exists, system the eigenfunctions of a momentup ¢y(r)
=U"Y2exp(—ip-r), whereU is the volume. Since we used a
general basis sénhot necessarily plane wave®ur results,
which contain nonuniform normab(r,r') and anomalous
o(r,r') density matrices, should be able to describe the
T, can be calculated using the order parameter obtained kghort-conerence-length superconductors: for example, in

(41)

c

-1
2kgm 1.7&k
_( L B) '

mh%n,y  Aoo

solving Eq.(28). YBCO, where the 1-nm coherence length is comparable to
Since bothT, [Eq. (41)] and the order parametér [Eq.  the lattice constarit. _
(28)] decrease with Coulomb electron-electron repulsion Finally, we comment on the connection of our results to

[Eq. (5)] and increase with electron-electron attractddh  the ground- state energies and the collective spectrum of ex-
Eq. (6), Egs.(41) and(28) allow us to study the interplay of Citations in superconductors calculated using density-
Coulomb repulsion and pairing attraction between electrongunctional theory and time-dependent density functional
in FLSBS* Cuprates have 2D structut® where the theory®™™ Let us consider the following exchange-
electron-electron Coulomb correlations may not becorrelation potentials that depend on the density matrix
neglected**® The screened 2D long-range Coulomb (rather than merely on the charge denksity

potentiaf® in momentum space iV,p(p)=(2me?)/(p 5
+k2p), Where the 2D Thomas-Fermi screening radius isy, [p](r)=— - ——
density independenk,p =7%2/(2m,e?). While the 3D short- 2 6n(r)
range Coulomb potential in momentum spadé;p(p)

= (4me?)/(p?+ «k3p), where the 3D Thomas-Fermi screen- x J' dr f dr/Ml
ing radius’ increases with densityzp~n3g and almost Ir=r’| N )= p(r )
eliminates the Coulomb potential at large distances ( 42)
>k35). Therefore, the Coulomb electron-electron correla- o . ]

tions in Eq.(28) are much more important in the 2D order Subs_tltutlng Eq(42) into the DFT. equaﬂong for the charge
parameter compared to 3D. The present theory thus describ@§NSsity and the anomalous density métffkgives Eqs(27)

the contribution of these correlations to the spectrum of col&nd(28) for the normal and anomalous density matrices. The
lective excitations, the order parameter, superfluid density>CS ansatfEq. (7)] is thus equivalent to TDDFT provided

the temperature of the Kosterlitz-Thouless transition, and th¥e use the approximate exchange-correlation potential, Eq.
DFT exchange-correlation potential. (42). To improve this functional, the adiabatittime-

independentexchange-correlation potentials can be obtained
using the functional derivatives

V. DISCUSSION

Using the GCS ansatfEq. (8)] for the many-electron UXC([p,U];r)ZM,
density matrix we have calculated the ground-state free en- op(r)
ergy, the equations of motion for the normal and anomalous
density matrices, and the quasiparticle spectrum of supercon- A([p,olirr)=— SFxdp,o] (43)
ductors. This results in a quadratic expression for the energy, xerm T So*(r,r')’
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where the exchange-correlation free enefgy can be ob- tation rules, we have the closed algebra of generdtdrs

tained using Feynmann diagrammati.c perturbation theory fofith respect to the following commutation rules:
the self-energy of the Green functiéh®® The zero-order

normal and anomalous density matrices derived using the [T, 70=(TH) 70=[T@ 7@ 1=0,
present ansatfEq. (7)] are given by Eqgs(36) and (37), e v v
respectively. The spectrum of the corresponding Green func-
tion is E;; given by Eq.(29) together with Eq(30).

The first-order exchange-correlation contribution to the g o o
order parameter is identical to that of Ref. 26 for homoge- [T ,Tf/j3]= - §ii’6j—j/TJ(7?f_ 5ij’6j—i’TJ(if)v
neous superconductors provided we set=t;; . The second
term appearing in our expression for the enetgy, Eq. ['Tsz),'T'i(,ﬁ),]:&ji/&i,j,'i’i(jfhr 86T, (A3)
(30),

(T 700=6_5i - = (TR +T9_)),

Equations(8), (Al), (A2), and(A3) show that our ansatz
for the many-electron density matrix is generated by the op-

erator selﬁi}, which forms the closed algebra of generators
, Ata .. with respect to their binary commutation. The states de-
comes from the first termy;; (1)@, 8;, in the exponential in - gorined by our ansatz, EqE), thus constitute generalized
our ansatz, Eq(7), which represents electron-electron ex- coherent states.

change. It corrects each order in the perturbative series of The set of eneratorﬁ-} corresponds to the Hamil-
Ref. 26 for the exchange-correlation potential. This term is_ . g AL 5P
absent in the OKG equations which use as a reference thtgnlan, Eq/(1). The variational equations at Z€ero temperature
Bogoliubov—de Gennes approximation, which takes into acare derived as follows: given a Hamiltoniah and time-
count the BCS pairing and Coulomb correlations at the Hardependent wave function€(r)), we minimize the action:

tree level? and neglects exchange-correlation potenttafs.

- 1.
> Viijk = 5 Vitkj | Pt

Kl

ST0(n1= | defi(0(n)|a0(rdn) - (IRl
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APPENDIX: GENERALIZED COHERENT-STATE j
REPRESENTATION OF A HAMILTONIAN WITH F:{H-Qj}- (A5)

ELECTRON-ELECTRON PAIRING
) ) ) ~ where{---} denote Poisson brackets ahtlis the classical
Mathematically, a set of GCS's is determined by a Lie jamiltonian defined by

groupG, its irreducible unitary vector representatidrwith

the spaceV, and a reference sta€)) e V. The GCS’s are H(Q)=<Q|I:||Q>. (A6)
then states that have a forfifg)| Q) with ge G, whereg is
a set of parameter§ 18 The Poisson brackets clearly establish the link between the

Our ansatz for the many-electron density maffx. (8)]  variational equations and classical dynamics.
can be expressed as When the classical Hamiltonian is given by

1 . k
K(t>=zexp( E AiTi), (A1) H= 21 2 hD (T (T, (A7)
n=1 iy --ip n n

where the set of numbels parametrizes the density matrix. the Poisson brackets assume a very simple form provided the
The operator sefT;}=1{a. 4;.,.4/a] ,.a,8_,.1} (iis wave functiongQ) are parametrized by the expectation val-
the identity operatgrwhich forms the Lie grougs is char- ues<Q|'T'j|Q> of the operatorsi'j rather than by the param-
acterized by the commutation relations among the completeters(); . These expectation values then constitute a full set
set of operatord; necessary for describing the quantum dy-of parameters that uniquely specify the quantum gfajeln
namics of the system: particular, if T; form a closed algebra, E¢A2), the Poisson
brackets for('i'j> are given by

[Ti.Tj1= 2 CiTw, (A2)
{<-’|\—m>1<:|\—n>}=i E Ckm,n<:|\—k>v (A8)
where C!‘j are known as the structure constants of the set K

o - S()—a. 3 S()—at at 2 - . . -
{Ti}T- writing  Ti)=2,8,, T{”=ala’_,, T  and the variational equations of motion fof ) take the
=3

iivéjiﬁ%&iji, and, sinced; satisfy Fermi anticommu- closed form
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d<Tm> - " . {f.ght=—{ghfi={f.gth+g{f,h}.  (A10)
nEl JE ,02 Cm'o 0 i <T'1> '<T‘n>' When the expectation values are for generators of the set of
(A9) GCS'’s of some Lie groufs, their Poisson brackets are given
by the commutators of the underlying generators of the
group. This direct correspondence between ordinary quan-
Using Eq.(7), it therefore suffices to derive the equations oftum mechanical commutators and the Poisson brackets
motion for the expectation value(saféj> and (&4;) to  greatly simplifies the calculation, since the variational proce-
uniquely specify the dynamics of electrons. This may bedure is then equivalent to the Heisenberg equations of mo-
done using the differential property of the Poisson bracketstion. Equations(36) and(37) were obtained using EGA9).
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