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Generalized coherent-state derivation of time-dependent density-functional theory equations
for superconductors
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Equations of motion are derived for the normal and anomalous single-electron density matrices of a Fermi
liquid using a time-dependent finite-temperature generalized coherent-state variational ansatz for the many-
body density matrix. Self-consistent equations for the order parameterD allow us to investigate the interplay
of the Coulomb repulsion and pairing attraction in homogeneous and inhomogeneous Fermi liquids with
spontaneously broken symmetry such as high-temperature superconductors. The temperature of the Kosterlitz-
Thouless transition to the two-dimensional superfluidity is calculated.
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I. INTRODUCTION

The BCS ansatz for the ground-state wave function
superconductors predicts a gap in the spectrum1 originating
from the pairing of two electrons with opposite momenta a
spin projections. This pairing is induced by the effective
traction induced by electron-phonon interaction. The st
dard BCS description of superconductivity, as well as Elia
berg’s extension to incorporate Coulomb repulsion betw
electrons2,3 does not apply for strongly correlated electro
such as in high-temperature superconductors@YBa2Cu3O72d

~YBCO!#.4 In two-dimensional~2D! superconductors~e.g.,
in cuprates!,4,5 the phase transition to the superfluid sta
takes place at temperatures below the mean-field phase
sition temperature for the appearance of the gap,6,7 similar to
the Kosterlitz-Thouless phase transition. The important r
played by electron-electron correlations in the local or
parameter above the phase transition temperature, while
system is still in the normal phase, was discussed.5

Superconductivity in strongly correlated electron syste
is often described using effective Hubbard Hamiltonian4

Taking electron-electron exchange and correlations into
count, the ground-state energies and collective excita
spectrum of superconductors have been calculated
density-functional theory~DFT! or its time-dependent exten
sion ~TDDFT!.8–11 In the Oliveira-Gross-Kohn~OGK! DFT
equations8–11 the normalr~r ,r 8! and anomalouss~r ,r 8! den-
sity matrices satisfy the generalized Bogoliubov–de Gen
equations8,12 which include one external fieldvs(r ) coupled
to the normal charge densityn(r )5r(r ,r ) and a second field
D~r ,r 8! coupled tos~r ,r 8!. These fields contain exchang
correlation potentialsvxc(r ) andDxc(r ,r 8), respectively, ob-
tained by requiring the charge densityr~r ! and anomalous
density matrixs~r ,r 8! of the interacting and noninteractin
systems to be identical. TDDFT requires the same conditi
to be satisfied for an externally driven system at all time9

The zero-order approximation in the standard DFT obtai
by neglecting the exchange-correlation fields results in
Bogoliubov–de Gennes equations8,12 which take into ac-
count the BCS pairing and classical Coulomb correlation
the Hartree level.
0163-1829/2003/68~10!/104519~8!/$20.00 68 1045
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The DFT equations for superconductors are usually f
mulated for the Kohn-Sham orbitals in Hilbert space a
constitute a system of four self-consistent equations for
goliubov transformation coefficientsu(r ) andv(r ), the nor-
mal densityn(r ), and the anomalous density matrixs~r ,r 8!.8

An extension of these equations to include a magnetic fi
was proposed as well.11

In this article we present an alternative derivation of t
OGK equations for a Fermi liquid with spontaneously br
ken symmetry~FLSBS! based on a generalized coheren
state~GCS! ansatz for the many-electron density matrix. C
herent states were first used to describe anharm
dynamical systems such as many-body interacting fermi
and bosons13 while preserving some of the useful properti
of the original Glauber’s coherent states for the harmo
oscillator.14,15 They encompass the Glauber coherent sta
as well as the squeezed states.14,15 The time-dependen
Hartree-Fock-Bogoliubov~TDHFB! equations were derived
for boson systems using the GCS ansatz.16,17 GCS’s are par-
ticularly suitable for variational dynamics by virtue the u
derlying Lie group algebra.13,18 Using this ansatz, we derive
equations of motion for expectation values of the normal a
anomalous density matrices. We use the time-depen
variational principle which allows description of the man
body system in terms of a small number of parameters an
formally closely related to classical Poisson brack
mechanics—i.e., to the variational equations of motion
rived from the minimum-action principle. A GCS represe
tation for the BCS wave function has been used to anal
the coexistence of superconductivity and ferroelectricity.19,20

We obtain self-consistent equations of motion for the norm
and anomalous density matrices21 and derive the spectrum o
collective excitations, the density of the superfluid comp
nent at finite temperatures, and the temperature of the t
sition to the superfluid state for homogeneous and inhom
geneous superconductors.

Reduced descriptions of many-body systems are natur
recast using density matrices,22,23 and we found it useful to
adopt the Liouville space density matrix representation22,24

of TDDFT ~Ref. 8,9, and 25! for the normal and anomalou
density matrices. This requires solving only two equations
motion for the normal and anomalous density matric
©2003 The American Physical Society19-1
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r~r ,r 8! and s~r ,r 8! coupled to two artificial external fields
These fields contain an exchange-correlation contribu
and guarantee the charge density and anomalous density
trix to be exact at all times.8,9 The ground state is the station
ary solution of these equations of motion. This is in contr
to the four self-consistent equations for Bogoliubov coe
cients u(r ) and v(r ) and the charge densityn(r )5r(r ,r )
and anomalous density matrixs~r ,r 8!.12,26 The density ma-
trix is a two-point function compared to two one-point fun
tionsu andv ~Refs. 8 and 9!; nevertheless, the computation
cost can be reduced. The reason is that the density mat
have nonvanishing elements only whenur2r 8u is less than a
coherence size, which is typically very short. This allows
to neglect many density matrix elements, making its s
scaling linear rather then quadratic. The Liouville space r
resentation provides a clear picture of the underlying coh
ence, since it is not possible to include the coherence
explicitly in the traditional Hilbert space computations.

Using our GCS ansatz we further define expressions
first-order adiabatic~time-independent! exchange-correlation
contributions to the order parameter, which include elect
exchange in the spectrum. This provides corrections to
charge density and the anomalous density matrix of Ref
at each order in the perturbative series for the exchan
correlation potential. The present approach is applicable
superconductors in general, but it is particularly relevan
strongly correlated high-Tc superconductors, where the BC
and Eliashberg theories do not apply.

II. COHERENT-STATE FREE ENERGY

We start with the many-electron HamiltonianĤ where the
electron-electron interaction consists of both Coulomb rep
sion V(r2r 8)5e2/ur2r 8u and pairing attractionW(r2r 8)
between two electrons with opposite spins8:

Ĥ5 (
n

E dr ĉn
†~r !S 2

1

2m
¹ r

22m D ĉn~r !

1
1

2 (
nn8

E dr E dr 8ĉn
†~r !ĉn8

†
~r 8!

3V~r2r 8!ĉn8~r 8!ĉn~r !

2 (
n,n8Þn

E dr E dr 8ĉn
†~r !ĉn8

†
~r 8!

3W~r2r 8!ĉn8~r 8!ĉn~r !. ~1!

Here ĉ†(r ) and ĉ(r ) are the Fermi creation and annih
lation field operators with the anticommutation relatio

@ĉ(r ),ĉ†(r 8)#15d(r2r 8) and @ĉ(r ),ĉ(r 8)#15@ĉ†(r ),
ĉ†(r 8)] 150, and the indicesn andn8 denote the spin pro
jections;m is the effective band mass of electron,m is the
chemical potential~Fermi energy!, and e is the electron
charge.

We further expand the field operators in a single-elect
basis setf in(r ):
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ĉn
†~r ,t !5 (

i
f in* ~r !âin

† ~ t !,

ĉn~r ,t !5 (
i

f in~r !âin~ t !, ~2!

where âin
† and âin are the corresponding Fermi operato

with the anticommutation relations@ âi ,â j #15d i j and
@ âi ,â j #15@ âi

† ,â j
†#150, f in(r ) are orthonormal atomic ba

sis functions, andi runs over all basis electronic orbitals.
Substituting Eq.~2! into Eq. ~1! gives

Ĥ5 (
i , j ,n

t i j âin
† â j n1 (

i , j ,k,l
n,n8

Vi jkl âin
† â j n8

† âkn8âln

2 (
i , j ,k,l

n,n8Þn

Wi jkl âin
† â j n8

† âkn8âln . ~3!

Here t i j is the single-electron matrix element,

t i j 5 E drf i* ~r !S 2
\2¹ r

2

2mb
2m Df j~r !, ~4!

Vi jkl is the Coulomb electron-electron repulsion,

Vi jkl 5 E dr1dr2f i* ~r1!f j* ~r2!
e2

ur12r2u
fk~r1!f l~r2!,

~5!

andWi jkl is an attraction responsible for the creation of ele
tron Cooper pair.

Equation~3! describes the interacting many-fermion sy
tem with Coulomb repulsion and attraction between t
electrons with opposite projections of spin. In ordina
~BCS! superconductors this attraction originates from
electron-phonon interaction1; in YBCO superconductors the
short-range attraction results from the thermodynamica
equilibrated phase ordering producing charge stripe ord4

and it assumes in the following form:

Wi jkl 5A E dr1dr2f i* ~r1!f j* ~r2!

3S ur12r2u
r 0

D 2n

fk~r1!f l~r2!, ~6!

wheren.1 is a positive rational number;A andr 0 are con-
stants, determined by system geometry.

Our derivation is based on the following ansatz for t
time-dependent many-electron density matrix. At zero te
perature the system is in a pure state, and the density m
is given by K(t)}uc(t)&^c(t)u, where the~unnormalized!
many-electron wave function is assumed to be of the for
9-2
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uc~ t !&5expF E dt E dr E dr 8 (
nn8

h~r ,r 8,t !ĉn~r !ĉn8
†

~r 8!

1 (
n,n8Þn

D~r ,r 8,t !ĉn
†~r !ĉn8

†
~r 8!G uV0&

5expF (
i j S (

nn8
hi j ~ t !âin

† â j n8

1 (
n,n8Þn

D i j ~ t !âin
† â j n8

† D G uV0&, ~7!

with uV0& being an arbitrary single Slater determinant27

Equation~7! is a generalization of the random phase appro
mation ~RPA! and BCS wave functions: settingD i j 50 it
reduces to the Thouless representation of the single S
determinant27, for hi j 50 it reduces to the BCS ansatz for th
superconductor.1

At finite temperatureT our ansatz reads

K5
exp@2Ĥ0 /~kBT!#

Tr exp@2Ĥ0 /~kBT!#
, ~8!

wherekB is a Boltzmann constant and

Ĥ05 E dt E dr E dr 8F (
nn8

h~r ,r 8,t !ĉn~r !ĉn8
†

~r 8!

1h* ~r ,r 8,t !ĉn
†~r !ĉn8~r 8!

1 (
n,n8Þn

D~r ,r 8,t !ĉn
†~r !ĉn8

†
~r 8!

1 (
n,n8Þn

D* ~r ,r 8,t !ĉn~r !ĉn8~r 8!G ~9!

or using our basis set

Ĥ05 (
i j F (

nn8
hi j ~ t !âin

† â j n81 (
nn8

hi j* ~ t !âinâ j n8
†

1 (
n,n8Þn

D i j ~ t !âin
† â j n8

†
1 (

n,n8Þn

D i j* ~ t !âinâ j n8G .

~10!

Here ‘‘Tr’’ denotes the trace in the many-electron Fo
space. A similar ansatz was recently used for Bo
condensation.17 Equation~8! constitutes a GCS~Ref. 28 and
29! @see Eq.~A1!#. Equation~7! is a limiting case of Eq.~8!
obtained by a specific choice of parameters17; Eq. ~8! thus
holds at finite temperatures as well as atT50.

The parametershi j andD i j will be determined variation-
ally by minimizing the grand canonical free energy

F~m,T![Tr~ĤK !2kBTTr@K ln ~K !#[H2TS. ~11!
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Here H is the enthalpy,S is the entropy, and the chemica
potential m controls the average number of electronsN
through the following constraint17,30:

TrS K (
in

âin
† âinD 5N. ~12!

Instead of usingh andD as the variational parameters, w
shall switch to the following variables: the normal dens
matrix

r in j n[Tr~Kâin
† â j n! ~13!

and the anomalous density matrices

s in j 2n[Tr~Kâinâ j 2n!, ~14!

s in j 2n* [Tr~Kâin
† â j 2n

† !. ~15!

The next step will be to express the free energy in ter
of r ands. We start with the enthalpy. SinceK is the expo-
nent of a quadratic operator, we can use Wick’s theore21

and express all averages of products of creation and an
lation operators with respect toK ~denoted with a subscrip
0) as averages of pairs of operators, which are generato
the closed algebra. In particular we have

^âi
†â j

†âkâm&052^âi
†âk&0^â j

†âm&01^â j
†âk&0^âi

†âm&0

1^âi
†â j

†&0^âkâm&0 . ~16!

Using this factorization we obtain for the enthalpy~see the
Appendix!, where for brevity we omit spin indicesn:

H[Tr~ĤK !5
1

2 (
i , j

@ h̃i j ~r i j 2r j i* !1D̃ i j s i j* 1D̃ i j* s j i #.

~17!

Here h̃ is a matrix with elements

h̃i j 5t i j 1
1

2U (
k,l

n,n8

~Vikl j 2dnn8Vilk j !rkn ln . ~18!

U is the volume andD̃ is the order parameter matrix wit
elements

D̃ i j [ (
mn

Wi jmnsmn . ~19!

We next require the expectation of the effective Ham
tonianĤ0 @Eq. ~10!# to be the same as the expectation ofĤ
@Eq. ~3!#:

Tr~KĤ !5Tr~KĤ0!. ~20!

It can be easily verified that the condition, Eq.~20!, is met
provided we set in Eq.~10! hi j 5h̃i j @Eq. ~18!# and D i j

5D̃ i j @Eq. ~19!#.28 We next turn to computing the enthalp
The effective quadratic HamiltonianĤ0 given by Eq.~10!
can be alternatively recast in the form
9-3
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Ĥ5tr~Q̂R̂!, ~21!

where the matrixQ̂ is defined as

Q̂[S ĥ D̂

2D̂* 2ĥ*
D . ~22!

R̂ is the generalized single-particle density matrix,

R̂[S r̂ ŝ

2ŝ* 2 r̂* 11D , ~23!

and the symbol ‘‘tr’’ in Eq.~21! stands for the trace in th
single-electron space.

Using the ansatz, Eq.~8!, the many-electron system de
scribed by the Hamiltonian, Eq.~3!, can be mapped onto th
ideal system of noninteracting fermions with the quadra
Hamiltonian Ĥ0, determined by the matrixQ̂,28 with the
parameters defined by Eqs.~18! and ~19!. The entropyS of
the system of fermions described by the quadratic Ham
tonian, Eq.~21!, is given by28

S~ r̂,ŝ,m,T!52kBtr@ f̂ ln f̂ 1~12 f̂ ! ln ~12 f̂ !#, ~24!

where the matrixf̂ is

f̂ [
1

exp@Q̂/~kBT!#11
. ~25!

We are looking for the normal and anomalous dens
matricesr̂ and ŝ that minimize the free energy@Eq. ~11!#
together with Eqs.~17! and ~24! assuming the GCS ansa
for the many-electron density matrix, Eq.~8!. This minimi-
zation yields the following equation28:

R̂5
1

exp@Q̂/~kBT!#11
, ~26!

which gives

r̂512 «̂@Ê#21 tanh@Ê/~2kBT!#, ~27!

ŝ5
1

2
D̂@Ê#21 tanh@Ê/~2kBT!#, ~28!

where the the order parameter matrixD̂ is defined by its
matrix elementsD i j @Eq. ~19!#.

Equations~27!, ~28!, and ~19! constitute self-consisten
equations for the equilibriumr̂, ŝ, andD̂. The Ê matrix is
defined as

Ê5AD̂21 «̂2, ~29!

where matrix elements of«̂ in the single-electron basis se
are

« i j [t i j 1 (
kl

@Ṽil jk 2~1/2!Ṽilk j #rkl ~30!

and
10451
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Ṽiklm[
1

2
@Viklm1Vkiml#. ~31!

Substituting Eqs.~27!, ~28!, and~19! into Eq. ~17! gives

H~ r̂,ŝ,m,T!5trF2Ên̂1 «̂2Ê1D̂ŝ2
1

2
M̂ r̂G , ~32!

where the matrix elements ofM̂ ,

Mi j 5 (
kl

F Ṽikl j 2
1

2
Ṽik j l Grkl , ~33!

and then̂ matrix is

n̂[@exp~Ê/2kBT!11#21. ~34!

At zero temperature Eq.~32! gives the ground-state
energy.

III. EQUATIONS OF MOTION FOR GENERALIZED
COHERENT STATES

We are interested in the dynamics of the system coup
to two external fields:vs(r ), which is coupled to the norma
densityr~r !5r~r ,r !, andDext(r ,r 8), which is coupled to the
anomalous density matrixs~r ,r 8!.10,9 These fields accoun
for exchange correlation and provide a starting point for
TDDFT framework.9 The total Hamiltonian then become
ĤT5Ĥ1Ĥext , whereĤ is given by Eq.~3! andĤext repre-
sents the interaction with the fields9,10:

Ĥext5 (
n

E drvext~r ,t !ĉn
†~r !ĉn~r !

2 (
nn8,nÞn8

E dr E dr 8Dext~r ,r 8,t !ĉn
†~r !ĉn8

†
~r 8!

2 (
nn8,nÞn8

E dr E dr 8Dext* ~r ,r 8,t !ĉn~r !ĉn8~r 8!.

~35!

Our goal is to compute the dynamics of the system giv
by the total HamiltonianĤT with the time-dependent exter
nal fields using the GCS ansatz for the many-electron den
matrix, Eq. ~8!. This can be accomplished by applying th
closed equations of motion for the averages of GCS gen
tors @see Eq.~A9! in Appendix A#. These equations wer
obtained from the finite-temperature time-dependent va
tional principle.17,18,30 Since r in j n , s in j 2n* , and s in j 2n* are
averages of GCS generators, we can immediately de
closed variational equations of motion for these quantities
real space.17,18 Substituting the parameters of the energyH
@Eq. ~17!# and Ĥext @Eq. ~35!# in the closed equations o
motion for the averages of GCS generators, Eq.~A9!, we get
~\51!
9-4
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i
]r~r ,r 8,t !

]t
52

1

2mb
~¹ r

22¹ r8
2

!r~r ,r 8,t !1 E dr2@V~r2r2!2V~r 82r2!#@r~r ,r 8,t !r~r2 ,r2 ,t !2r~r ,r2 ,t !r~r2 ,r 8,t !#

2 E dr2@W~r2r2!2W~r 82r2!#@s* ~r ,r2 ,t !s~r2 ,r 8,t !2s~r ,r2 ,t !s* ~r2 ,r 8,t !#

1@vext~r ,t !2vext~r 8,t !#r~r ,r 8,t !, ~36!

i
]s* ~r ,r 8,t !

]t
52

1

2mb
~¹ r

22¹ r8
2

!s* ~r ,r 8,t !1 E dr2@V~r2r2!2V~r 82r2!#@s* ~r ,r 8,t !r~r2 ,r2 ,t !2s* ~r ,r2 ,t !r~r2 ,r 8,t !#

2 E dr2@W~r2r2!2W~r 82r2!#@s* ~r ,r2 ,t !r~r2 ,r 8,t !2r~r ,r2 ,t !s* ~r2 ,r 8,t !#

1@Dext~r ,r 8,t !2Dext~r ,r 8,t !#s* ~r ,r 8,t !. ~37!
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The order parameterD(r ,r 8,t), which characterizes the
excitation gap in the spectrum@Eq. ~29!#, is defined as

D~r ,r 8,t ![ E dr2W~r2r2!s~r2 ,r 8,t !. ~38!

It is interesting to note that the stationary solution of E
~36! and ~37! gives the normalr(r ,r 8) and anomalous
s(r ,r 8) density matrices, which minimize the equilibrium
free energy, Eq.~11!, in the ground state@Eqs. ~27! and
~28!#.17 The calculation of the free energy in Sec. II is th
not necessary for the present derivation. The formalism
the Appendix A! allows us to proceed directly from the an
satz, Eq.~8!, to Eqs.~36! and ~37!. The calculations of Sec
II provide a consistency check and connect our results w
more conventional derivations.

DFT is usually formulated in Hilbert space and involv
the solution of four self-consistent equations for the Bog
liubov transformation coefficientsu(r ) and v(r ), and the
charge densityn(r )5r(r ,r ), and the anomalous density m
trix s(r ,r 8) @Eqs.~4.121!, ~4.129!, and~4.130! in Ref. 8#. In
the presence of the external time-dependent field, the o
nary TDDFT framework involves also the solution of a sy
tem of four self-consistent equations for Bogoliubov tran
formation coefficients u(r ,t) and v(r ,t), the local
anomalous densitys(r ,t), and the current densityj (r ,t)
@Eqs. ~20!, ~21!, and ~22! in Ref. 9#. Here, in contrast, we
obtain the ground-state free energy and density matr
r(r ,r 8,t) and s(r ,r 8,t) by the stationary solution of two
equations, Eqs.~36! and~37!. The solution of these equation
gives the charge densityn(r ,t)[r(r ,r ,t) and the anomalous
density matrixs(r ,r 8,t).

Equations~36! and ~37! unify several widely used equa
tions: if we neglect the pairing attractionW50 and set
s(r ,r 8,t)5s* (r ,r 8,t)5D(r ,r 8,t)50, the last integral on
the right-hand side~RHS! of Eq. ~36! vanishes, and Eq.~36!
reduces to the standard RPA equation.27 By neglecting the
Coulomb repulsionV50, we obtain the BCS equations1

@where on the RHS of Eqs.~36! and ~37! the first integrals
vanish#. Neglecting the second term on the RHS of Eq.~37!
10451
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gives Eliashberg’s equations,2 which incorporate the Cou
lomb repulsion between electrons at the mean-field level

Since our ansatz for the many-electron density matrix,
~8!, and the ansatz for the wave function, Eq.~7!, have the
same number of variational parametersh andD, they yield
the same equations of motion for the averages of the G
generators~i.e., normal and anomalous single-electron de
sity matrices!. The only dependence on temperature a
chemical potential is through the initial conditions@Eqs.~27!
and~28!#. Equations~36! and~37! conserve the temperatur
and chemical potential at all times.

In analogy with the RPA analysis,27 we can look for a
solution for the density matrices in the form of the followin
equations for matrices:

r̂5aX̂exp~2 i v̂t !1a* Ŷ* exp~ i v̂* t !,

ŝ5a X̂̃exp~2 i v̂t !1a* Ŷ̃* exp~ i v̂* t !. ~39!

Substituting Eq.~39! into Eqs.~36! and ~37!, we obtain the
spectrum of the collective excitations:

v̂5AD̂21 «̂2, ~40!

where«k j andDk j are given by Eqs.~30! and ~28!, respec-
tively.

IV. APPLICATION TO THE KOSTERLITZ-THOULESS
PHASE TRANSITION

Recent studies of high-temperature superconductors4,31,32

show a competition between two types of interaction b
tween electrons: a pairing attraction, which makes the sp
trum satisfy the Landau criterium of superfluidity by creati
a gap in the excitation spectrum,1 and Coulomb repulsion
which tends to eliminate the gap, thereby destroying
superconductivity. This competition leads to ‘‘stripe
high-temperature superconductivity~HTS! in cuprates
@e.g., Yba2Cu3O72d ~YBCO!# above the low-oxygen-
concentration threshold (d;0.20).

When D(r ,r 8,t)Þ0 the excitation spectrum satisfie
the Landau criterium of superfluidity, and a 3D syste
9-5
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becomes superconducting. However, cuprates~YBCO!
are 2D structures.4,5 The Kosterlitz-Thouless
transition temperature6,7 to the superfluid state in a two
dimensional superconductive system is given
Tc5@p\2ns(Tc)#/(4kBmb),6,7 where ns(Tc) is the
temperature-dependent superfluid density of the super
ductive system andkB is the Boltzmann constant. For tem
peratures close to the phase transition in the mean-field
proximation @D00(Tc

0)50#, which satisfy T2Tc
0!Tc

0 , the
superfluid density isns(T)5@2(Tc

02T)n2D#/(Tc
0),33 where

n2D5pF
2/(2p\2) is the total 2D density of electrons (pF is a

Fermi radius!. To find Tc
0 from the conditionD00(Tc

0)50
one needs to solve the self-consistent equations~28! and~29!
to obtain the temperature dependence of the order param
D(T). The temperature of the phase transition can be e
mated in the mean-field approximation.33 For the gap spec
trum of collective excitations, Eq.~40!, the mean-field
transition temperatureTc

0 is D0051.76kBTc
0 ,33 where D00

is the order parameter at zero temperature. Combin
these expressions, we obtain for the temperature of
Kosterlitz-Thouless transition, below which the superco
ductivity exists,

Tc5S 2kBmb

p\2n2D

1
1.76kB

D00
D 21

. ~41!

Tc can be calculated using the order parameter obtained
solving Eq.~28!.

Since bothTc @Eq. ~41!# and the order parameterD @Eq.
~28!# decrease with Coulomb electron-electron repulsionV
@Eq. ~5!# and increase with electron-electron attractionW,
Eq. ~6!, Eqs.~41! and~28! allow us to study the interplay o
Coulomb repulsion and pairing attraction between electr
in FLSBS.4 Cuprates have 2D structure,4,5 where the
electron-electron Coulomb correlations may not
neglected.34,35 The screened 2D long-range Coulom
potential36 in momentum space isV2D(p)5(2pe2)/(p
1k2D), where the 2D Thomas-Fermi screening radius
density independent,k2D5\2/(2mbe2). While the 3D short-
range Coulomb potential in momentum space,V3D(p)
5(4pe2)/(p21k3D

2 ), where the 3D Thomas-Fermi scree
ing radius37 increases with densityk3D;n3D

1/3 and almost
eliminates the Coulomb potential at large distancesr
.k3D

21). Therefore, the Coulomb electron-electron corre
tions in Eq.~28! are much more important in the 2D ord
parameter compared to 3D. The present theory thus desc
the contribution of these correlations to the spectrum of c
lective excitations, the order parameter, superfluid den
the temperature of the Kosterlitz-Thouless transition, and
DFT exchange-correlation potential.

V. DISCUSSION

Using the GCS ansatz@Eq. ~8!# for the many-electron
density matrix we have calculated the ground-state free
ergy, the equations of motion for the normal and anomal
density matrices, and the quasiparticle spectrum of super
ductors. This results in a quadratic expression for the ene
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Eq. ~32!, in the operatorsâi and âi
† , without using the Bo-

goliubov algebra ofu2v transformations.1

The advantage of the Liouville space representation
TDDFT for the normal and anomalous density matrices
that it only requires one to solve two equations of motio
for the normal and anomalous density matrices, Eqs.~36!
and~37!, coupled to two artificial external fieldsvext(r ) and
Dext(r ,r 8), which contain exchange correlation,8 instead of
the four self-consistent equations for Bogoliubov coefficie
u andv and density matricesr ands. The normalr(r ,r 8)
and anomalouss(r ,r 8) density matrices, which minimize
the equilibrium free energy Eq.~11! ~Ref. 17! in the ground
state, are simply given by the stationary solution of the E
~36! and~37!. And in order to get this ground state we act
ally do not need to derive the parameters of the effect
quadratic Hamiltonian, Eq.~9!, for the many-electron density
matrix, as we did in Sec. II.

Our equations for the total energy, the spectrum of coll
tive excitations, and the gap are written in a general ba
set and therefore apply to both homogeneous and n
homogeneous systems. In a homogeneous system
can use the plane-wave basis; i.e., for the two-dimensio
system the eigenfunctions of a momentump, fp(r )
5U21/2exp(2ip•r ), whereU is the volume. Since we used
general basis set~not necessarily plane waves!, our results,
which contain nonuniform normalr(r ,r 8) and anomalous
s(r ,r 8) density matrices, should be able to describe
short-coherence-length superconductors: for example,
YBCO, where the 1-nm coherence length is comparable
the lattice constant.4

Finally, we comment on the connection of our results
the ground- state energies and the collective spectrum of
citations in superconductors calculated using dens
functional theory and time-dependent density functio
theory.8–11 Let us consider the following exchange
correlation potentials that depend on the density ma
~rather than merely on the charge density!:

vxc@r#~r !52
1

2

d

dn~r !

3 F E dr E dr 8
r~r ,r 8!r~r 8,r !

ur2r 8u
GU

n(r8)5 r̄(r8,r8)

.

~42!

Substituting Eq.~42! into the DFT equations for the charg
density and the anomalous density matrix8,10 gives Eqs.~27!
and~28! for the normal and anomalous density matrices. T
GCS ansatz@Eq. ~7!# is thus equivalent to TDDFT provided
we use the approximate exchange-correlation potential,
~42!. To improve this functional, the adiabatic~time-
independent! exchange-correlation potentials can be obtain
using the functional derivatives8

vxc~@r,s#;r !5
dFxc@r,s#

dr~r !
,

Dxc~@r,s#;r ,r 8!52
dFxc@r,s#

ds* ~r ,r 8!
, ~43!
9-6
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where the exchange-correlation free energyFxc can be ob-
tained using Feynmann diagrammatic perturbation theory
the self-energy of the Green function.21,26 The zero-order
normal and anomalous density matrices derived using
present ansatz@Eq. ~7!# are given by Eqs.~36! and ~37!,
respectively. The spectrum of the corresponding Green fu
tion is Ei j given by Eq.~29! together with Eq.~30!.

The first-order exchange-correlation contribution to t
order parameter is identical to that of Ref. 26 for homog
neous superconductors provided we set« i j 5t i j . The second
term appearing in our expression for the energy« i j , Eq.
~30!,

(
kl

F Ṽil jk 2
1

2
Ṽilk j Grkl ,

comes from the first terma i j (t)âin
† â j n8 in the exponential in

our ansatz, Eq.~7!, which represents electron-electron e
change. It corrects each order in the perturbative serie
Ref. 26 for the exchange-correlation potential. This term
absent in the OKG equations which use as a reference
Bogoliubov–de Gennes approximation, which takes into
count the BCS pairing and Coulomb correlations at the H
tree level12 and neglects exchange-correlation potentials.9,10
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APPENDIX: GENERALIZED COHERENT-STATE
REPRESENTATION OF A HAMILTONIAN WITH

ELECTRON-ELECTRON PAIRING

Mathematically, a set of GCS’s is determined by a L
groupG, its irreducible unitary vector representationT with
the spaceV, and a reference stateuV&PV. The GCS’s are
then states that have a formT(g)uV& with gPG, whereg is
a set of parameters.16–18

Our ansatz for the many-electron density matrix@Eq. ~8!#
can be expressed as

K~ t !5
1

Z
expS (

i
l i T̂i D , ~A1!

where the set of numbersl i parametrizes the density matrix
The operator set$T̂i%5$âi 6n

† â j 6n ,âin
† â j 2n

† ,âinâ j 2n , Î % ( Î is
the identity operator! which forms the Lie groupG is char-
acterized by the commutation relations among the comp
set of operatorsT̂i necessary for describing the quantum d
namics of the system:

@ T̂i ,T̂j #5 (
k

Ci j
k T̂k , ~A2!

where Ci j
k are known as the structure constants of the

$T̂i%. Writing T̂i j
(2)[âinâ j 2n , T̂i j

(1)[âin
† â j 2n

† , T̂i j
(z)

[âi 6n
† â j 6n1 1

2 d i j Î , and, sinceâi satisfy Fermi anticommu-
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tation rules, we have the closed algebra of generators$T̂i%
with respect to the following commutation rules:

@ T̂i j
(2) ,T̂i 8 j 8

(2)
#5@ T̂i j

(1) ,T̂i 8 j 8
(1)

#5†T̂i j
(z) ,T̂i 8 j 8

(z)
‡50,

@ T̂i j
(2) ,T̂i 8 j 8

(1)
#5d i 2 j i 82 j 8„12~ T̂ii

(z)1T̂2 i 2 i
(z) !…,

@ T̂i j
(z) ,T̂i 8 j 8

(2)
#52d i i 8d j 2 j 8T̂j 2 j 8

(2)
2d i j 8d j 2 i 8T̂j i 8

(2) ,

@ T̂i j
(z) ,T̂i 8 j 8

(1)
#5d j i 8d i 2 j 8T̂i j 8

(1)
1d j j 8d i 2 i 8T̂ii 8

(1) . ~A3!

Equations~8!, ~A1!, ~A2!, and~A3! show that our ansatz
for the many-electron density matrix is generated by the
erator set$T̂i%, which forms the closed algebra of generato
with respect to their binary commutation. The states
scribed by our ansatz, Eqs.~8!, thus constitute generalize
coherent states.

The set of generators$T̂i% corresponds to the Hamil
tonian, Eq.~1!. The variational equations at zero temperatu
are derived as follows: given a HamiltonianĤ and time-
dependent wave functionsuV~t!&, we minimize the action:

S@V~t!#5 E dt@ i ^V~t!udV~t!/dt&2^V~t!uĤuV~t!&#.

~A4!

By choosinguV~t!& to be a GCS, the resulting variationa
equations can be written in the Hamiltonian form for any
of coordinatesV j which parametrizeuV&:

dV j

dt
5$H,V j%, ~A5!

where $•••% denote Poisson brackets andH is the classical
Hamiltonian defined by

H~V!5^VuĤuV&. ~A6!

The Poisson brackets clearly establish the link between
variational equations and classical dynamics.

When the classical Hamiltonian is given by

H5 (
n51

k

(
i 1••• i n

hi 1••• i n
(n) ^T̂i 1

&•••^T̂i n
&, ~A7!

the Poisson brackets assume a very simple form provided
wave functionsuV& are parametrized by the expectation va
ues^VuT̂j uV& of the operatorsT̂j rather than by the param
etersV j . These expectation values then constitute a full
of parameters that uniquely specify the quantum stateuV&. In
particular, if T̂j form a closed algebra, Eq.~A2!, the Poisson
brackets for̂ T̂j& are given by

$^T̂m&,^T̂n&%5 i (
k

Cm,n
k ^T̂k&, ~A8!

and the variational equations of motion for^T̂m& take the
closed form
9-7
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i
d^T̂m&

dt
5 (

n51

k

(
j 51

n

(
i 0••• i n

Cmi0 ,•••,i j

k hi 1••• i n
(n) ^T̂i 1

&•••^T̂i n
&.

~A9!

Using Eq.~7!, it therefore suffices to derive the equations
motion for the expectation valueŝâi

†â j& and ^âi â j& to
uniquely specify the dynamics of electrons. This may
done using the differential property of the Poisson brack
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