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Time-dependent quasiparticle current-density-functional theory
of x-ray nonlinear response functions
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A real-space representation of the current response of many-electron systems with possible applications to
x-ray nonlinear spectroscopy and magnetic susceptibilities is developed. Closed expressions for the linear,
quadratic, and third-order response functions are derived by solving the adiabatic time dependent current
density functional~TDCDFT! equations for the single-electron density matrix in Liouville space.
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I. INTRODUCTION

Time-dependent current-density-functional theo
~TDCDFT! offers a computationally tractable framework f
computing currents and response functions of many-elec
systems in response to external electric and magn
perturbations.1 The time-dependent linear paramagnetic s
ceptibilities are calculated as the linear response of a no
teracting Kohn-Sham reference system to an effective vec
potential, which consists of the external field, together w
the Hartree and the exchange-correlation contributions.1 For
the sake of computing current-related properties, it is nat
to consider the effective potential to be a functional of bo
current and charge density rather than charge density al
as in standard time-dependent density-functional-the
~TDDFT!.2 Another reason for applying TDCDFT to crysta
is connected with the recent argument that there is a one
one correspondence between time-varying periodic po
tials and the current density but not with the charge dens3

TDCDFT was successfully used for calculating the polar
ability of conjugated polymers.4,5 Current density functiona
theory~CDFT! yields exact response functions6 to static ex-
ternal potentials and TDCDFT is thus expected to prov
reasonable approximations for time-dependent current p
erties.

The linear magnetic susceptibility~the response of the
current to an external vector-potential! of the Kohn-Sham
noninteracting system has been calculated using the l
current density exchange correlation kernel for the elect
gas.1 However, computing the response functions of the
teracting system~where the quasiparticle energies cannot
expressed as differences between Kohn-Sham energy lev!,
requires the solution of a chain of integral equations,1 whose
computational cost rapidly increases with the nonlinear or
of the response. In this paper we compute current respo
functions by recasting the TDCDDT equations in terms
the reduced single electron density matrix for anN electron
systemr(r ,r 1 ,t)5(n51

N cn(r ,t)cn* (r 1 ,t),7 wherecn(r ) are
the Kohn-Sham orbitals. Closed expressions are derived
the linear, quadratic, and third-order response functions2,8,9

~the response of the total polarization current to the exte
electric field! by solving an eigenvalue equation in Liouvill
space. The quasiparticle frequencies are not given simpl
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differences of Kohn-Sham orbital energies.6 Current re-
sponse functions should also be particularly suitable
computing the resonant nonlinear response to x-ray field10

Due to the short wavelength, the dipole approximation d
not generally hold, and x-ray susceptibilities may be e
pressed in terms of multitime correlation functions of cu
rents and charge densities.10,11 TDCDFT thus provides a
natural direct computational approach for nonlinear x-r
spectroscopy.

II. TIME-DEPENDENT KOHN-SHAM CURRENT-
DENSITY-FUNCTIONAL EQUATIONS FOR THE SINGLE-

ELECTRON DENSITY MATRIX

TDCDFT maps the original system of interacting ele
trons onto an effective system of noninteracting electro
subjected to an exchange-correlation scalar and ve
potentials,1 constructed to yield the same charge density a
current profiles as the interacting system. The Kohn-Sh
TDCDFT equations of motion for the time-dependent de
sity matrix are

i
]r~r ,r1 ,t !

]t
5@ĤKS

0 ~r ,t !2ĤKS
0* ~r1 ,t !#r~r ,r1 ,t !

2@ j ~r ,t !A~r ,t !2 j* ~r1 ,t !A* ~r1 ,t !#

1S e2

2mc
A2~r ,t !n~r ,t !

2
e2

2mc
A2* ~r1 ,t !n* ~r1 ,t ! D , ~1!

where e(m) is the electron charge~mass!, and we set\
51. The time-dependent charge density and paramagn
electronic current are given by

n~r ,t !5r~r ,r ,t !, j ~r ,t !52
ie

2m
@~¹r1

2¹r !dr~r ,r1 ,t !# r5r1
.

~2!

The observed~physical! current, which enters the continuit
equation, is given by
©2004 The American Physical Society04-1
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J~r ,t !5 j ~r ,t !2
e2

2mc
A~r ,t !n~r ,t !; ~3!

ĤKS
0 is the Kohn-Sham Hamiltonian ĤKS

0 (r ,t)

[ĤKS
0 @n(r ,t),j (r ,t)#. The remaining terms in Eq.~1! repre-

sent the coupling to an external vector potential

ĤKS
0 @n~r ,t !, j ~r ,t !#52

1

2m
¹ r

21UKS~r ,t !, ~4!

where the potentialUKS(r ,t)5UKS@n(r ,t), j (r ,t)# is

UKS~r ,t !52
e

c
¹rAxc~r ,t !2

e

c
Axc~r ,t !¹r

1UKS
0 ~r ,t !1U0~r !. ~5!

The exchange-correlation vector potentialAxc@n(r ,t), j (r ,t)#
and the Kohn-Sham scalar external poten
UKS

0 @n(r ,t), j (r ,t)# are functionals of both the charge dens
and the current.1 The scalar potential is given by

UKS
0 ~r ,t !5E dr1

n~r1 ,t !e2

ur2r1u
1Uxc~r ,t !; ~6!

U0(r ) is the field created by nuclei andUxc@n(r ,t),
j (r ,t)#(r ) is the exchange-correlation potential in the ad
batic approximation. The time-dependent external poten
is Uext(r ,t)5U0(r ) at time t<t0 and Uext(r ,t)5U0(r )
1U1(r ,t) for t.t0 . Axc adds a magnetic field induced b
the exchange-correlation interaction between electrons. N
that unlike the paramagnetic canonical current,J is gauge
invariant.1

The stationary solution of Eq.~1! gives the ground-state
single electron density matrixr̄(r ,r1) which carries no cur-
rent. We then writer(r ,r1 ,t)[r̄(r ,r1)1dr(r ,r1 ,t) where
dr represents the changes induced byU1(r ,t). Its diagonal
elementsdn„r …5dr(r ,r ,t) give the changes in charge de
sity, whereas the off-diagonal elements represent the cha
in electronic coherences between two points. The phys
current may be obtained by expandingdr in powers of the
external vector potentialA(r ,t): dr5dr11dr21••• and
solving Eqs.~1! and ~2! self-consistently fordr order by
order. To that end we first recastUKS@n(r ,t), j (r ,t)# as a
functional of the paramagnetic currentj (r ,t) alone. This is
done by substituting the total currentJ(r ,t) @Eq. ~3!# into the
continuity relation between the charge density and the t
current

dn~r ,t !52
1

eE0

t

¹rJ~r ,t!dt. ~7!

Solving Eq. ~7! self-consistently for the charge densi
n(r ,t) in terms of the paramagnetic currentj (r ,t), and sub-
stituting it in UKS@n(r ,t), j (r ,t)# eliminates the explicit de-
pendence on the charge density. ExpandingUKS aroundr̄ to
second order inj , we obtain
15510
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UKS@ j ~r ,t !#~r !5UKS
0 @ r̄#~r !1E dr1S e2

ur2r1u

1 f̃ xc@ r̄#~r ,r1! D j ~r1 ,t !1E dr1E dr2

3g̃xc@ r̄#~r ,r1 ,r2!j ~r1 ,t !j ~r2 ,t !, ~8!

where f̃ xc@ r̄#(r ,r1) and g̃xc@ r̄#(r ,r1 ,r2) are the first and the
second order adiabatic exchange-correlation kernels.
have made the commonly used adiabatic approxima
where we assume that the kernels are time independent

III. QUASIPARTICLE REPRESENTATION OF X-RAY
NONLINEAR RESPONSE FUNCTIONS

We next separatedr into an electron-hole, interband (j),
and intraband ~T! components dr(r ,r1 ,t)5j(r ,r1 ,t)
1T@j(r ,r1 ,t)#. It follows from the idempotent property o
r, thatT is uniquely determined byj.8 The matrix elements
of j, unlike those ofdr, constitute independent variable
that can be used to construct a quasiparticle representat

The quasiparticle spectrum is obtained by solving the
earized Kohn-Sham eigenvalue equation

Lja~r ,r1!5Vaja~r ,r1!, ~9!

where

Lja~r ,r1!52
~¹ r

22¹ r1

2 !ja~r ,r1!

2m
1 r̄~r ,r1!

3S E dr1E dr2f xc8 @ r̄#~r ,r1 ,r2!ja~r1 ,r2! D
2 r̄* ~r1 ,r !S E drE dr2

3 f xc8 * @ r̄#~r1 ,r ,r2!ja~r2 ,r ! D , ~10!

f xc8 @ r̄#~r ,r1 ,r2!5 f̃ xc8@ r̄#~r ,r1!d~r12r2!v̂~r1 ,r2!,
~11!

and v̂ is the velocity operator

v̂~r ,r1!52
i

2m
~¹r1

2¹r !. ~12!

The quasiparticle modesja come in pairs a561,
62, . . . , with V2a[Va . Their orthonormality and alge
braic properties make it possible to expand an arbitrary
terband matrix8 in the form

j~r ,r1 ,t !5(
a

ja~r ,r1!za~ t !, ~13!

where za(t)5^ja
† uj(t)& and the scalar product of any tw

interband matricesj andh is defined by9
4-2
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^juh&[E drE dr 8r̄@j†,h#~r ,r 8!d~r2r 8!. ~14!

The bra~ket! notation underscores the similarity with Dirac
Hilbert space notation.z2a(t)5za* (t) constitute complex os
cillator amplitudes. We shall denote their perturbative exp
sion in the external vector-potentialA(r ,t) by
za

(1) ,za
(2) , . . . .

The paramagnetic current is calculated by taking the
pectation value of the velocityv̂(r ,r1) with respect to the
time-dependent density matrix

j ~r ,t !5(
a

ja~r !za~ t !1
1

2 (
ab

jab~r !za~ t !zb~ t !

1
1

3 (
abg

ja,bg~r ,r 8!za~ t !zb~ t !zg~ t !, ~15!

where (a,b,g561,62, . . . ) and weonly retained terms
that contribute to the third order response. Here

ja~r !52
ie

2mE dr1@d~r2r1!~¹r1
2¹r !ja~r ,r1!#, ~16!

jab~r !52
ie

2mE dr1S d~r2r1!~¹r1
2¹r !E dr2

3 H @d~r22r !22n̄~r ,r2!#E dr3@ja~r2 ,r3!

3jb~r3 ,r1!1jb~r2 ,r3!ja~r3 ,r1!#J D , ~17!

jabg~r !5
ie

2mE dr1S d~r2r1!~¹r1
2¹r !E dr2

3 H ja~r ,r2!E dr3@ja~r2 ,r3!jb~r3 ,r1!

1jb~r2 ,r3!ja~r3 ,r1!#J D . ~18!

The collective electronic oscillator~CEO! expansion for the
charge densityn(r ,t) is given by9

dn~r ,t !5(
a

na~r !za~ t !1
1

2 (
ab

nab~r !za~ t !zb~ t !

1
1

3 (
abg

na,bg~r !za~ t !zb~ t !zg~ t !,

a,b,g561,62, . . . . ~19!

The coefficients of this expansion are given by Eqs.~29!–
~31! in Ref. 9.

The equations of motion forj can be obtained from Eq
~1! by expressing the density matrix in terms ofj andT(j).9

Equations of motions forz(1)(t) are derived in terms o
15510
-

-

A(r ,t) andj (r ) by substituting the mode expansion ofj into
these equations. Substituting the solutionz(1)(t) into Eq.
~15!, gives

j ls

(1)~r ,t !5E
2`

t

dtE dr1 (
m5x,y,z

x̃l1ls

(1) ~ t,t,r ,r1!Al1
~r1 ,t!,

~20!

wherex̃ (1) is the linear paramagnetic susceptibility, andls ,
l1 are Cartesian tensor components.

We further introduce the observed susceptibil
xlm

(1)(t,t,r ,r1) defined by replacing the paramagnetic curre
j (r ,t) with the physical currentJ(r ,t) in Eq. ~20!. Substitut-
ing j (1)(r ,t) from Eq. ~3! into Eq. ~20!, we obtain

xlm
(1)~ t,t,r ,r1!5x̃lm

(1)~ t,t,r ,r1!2
1

mc
n̄~r1!

3d~r12r !d~t2t !dlm . ~21!

We next derive equations of motions forz(1)(t) in terms of
A(r ,t) and ja(r ), by substituting the CEO expansion ofj
from Eq. ~13! into the equation of motion forj, which can
be obtained from Eq.~1! by expansion of the density matri
on j andT(j).9 Solving these equations we substitutez(1)(t)
into Eq. ~15!.

x̃lm
(1)~v,r ,r1!5 (

a51,2, . . . ,

2Va j al~r ! j am~r1!

Va
22v2

. ~22!

Optical and x-ray signals are most conveniently expres
using response functions which connect the polarization w
the electric field. For example, the linear response funct
sl1ls

(1) (t,t,r ,r1) to first order in the external fieldE(r ,t) is

defined as

Pls

(1)~r ,t !5E
2`

t

dtE dr 1 (
m5x,y,z

sl1ls

(1) ~ t,t,r ,r1!El1
~r1 ,t!,

~23!

whereP(r ,t) is the total polarization.11 s (1)(t,t,r ,r1) can be
obtained from Eq.~20! by noting thatj is connected toJ
through Eq. ~3!; J is connected toP through11 P(r ,t)
5*2`

t dtJ(r ,t) and A(r ,v)52 icE(r ,v)/v. Using these
relations we obtain11

s (n)~v,r ,rn , . . . ,r1 ,vn , . . . ,v1!

5
i 12n

v1v2 . . . vnv
x (n)~v,r ,rn , . . . ,r1 ,vn , . . . ,v1!,

~24!

which gives for the linear response
4-3
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sl1ls

(1) ~v,r ,r1!5
1

v2
xl1ls

(1) ~v5v1 ,r ,r1!

5
1

v2
2pS (

a561,62, . . . ,

2Va j a
ls~r ! j a

l1~r1!

Va
22v2

2
e2

2mc
n̄~r1!d~r12r !dlsl1D , ~25!

where the first term in the bracket isx̃lsl1

(1) (v,r ,r1), andn̄(r )

is the ground state charge density. Equation~25! provides a
microscopic algorithm for computing the Kubo formula;12 all
quantities are obtained from the quasiparticle modes.

To calculate the second order response functions (2)
th
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c
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.
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i
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Pls

(2)~r ,t !5
1

2E2`

t

dt1E
2`

t

dt2E dr 1E dr 2El1
~r1 ,t1!

3El2
~r2 ,t2!sl1l2ls

(2) ~ t,t1 ,t2 ,r ,r1 ,r2!, ~26!

we introduce the second-order exchange-correlation ke
gxc , obtained by expanding the exchange correlation pot
tial UKS@ j (r ,t)#(r ) to the second order byd j @Eq. ~8!#

gxc@ n̄#~r ,r1 ,r2 ,r28 ,r4!5g̃xc@ n̄#~r ,r1 ,r3!d~r12r2!

3d~r282r4!v̂~r1 ,r2!v̂~r28 ,r4!.

~27!

Repeating the procedure used fors (1) to the next order we
obtain the second order paramagnetic susceptibility13
charge
x̃l1l2ls

(2) ~v1 ,v2 ,r ,r1 ,r2!522 (
alsbg

Vg(2abg)~r ,r1 ,r2! j a
ls~r ! j

2b
l1 ~r1! j

2g
l2 ~r2!sasb

~Va2v12v2!~Vb2v1!~Vg2v2!
1(

ab

j
2ab
ls ~r ! j a

l1~r1! j
2b
l2 ~r2!sasb

~Va2v12v2!~Vb2v1!

1(
ab

j
2ab
ls ~r ! j a

l1~r1! j
2b
l2 ~r2!sasb

~Va2v12v2!~Vb2v2!
1(

ab

j ab
ls ~r ! j a

l1~r1! j
2b
l2 ~r2!sasb

~Va2v1!~Vb2v2!
, a,b,g561,62, . . . ,

~28!

wheresa[sgn(a). Vg(2abg) is obtained by substituting the exchange-correlation kernelsf xc from Eq. ~11! andgxc into the
expression forVg(2abg) given in Ref. 9.

Similar to the linear response function, the second-order response function is finally obtained by expanding of the
densityn(r ,t) in the modes@Eq. ~19!#

sl1l2ls

(2) ~v1 ,v2 ,r ,r1 ,r2!52
i

v1v2~v11v2!
2pF x̃lsl1l2

(2) ~v1 ,v2 ,r ,r1 ,r2!2
e2

2mcS (
a

2Va j a
ls~r !na~r1!

Va
22~v11v2!2

d~r22r1!dl2l1

1(
a

2Vana~r ! j a
l1~r1!

Va
22~v11v2!2

d~r2r2!dl2lsD G . ~29!

Higher response functions can be computed similarly.9 The third-order response function is given in Appendix A.
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rts.
s.

-
on

de
re-

-
are
ted
his
lle
IV. DISCUSSION

To get the high-order paramagnetic susceptibilities via
standard Hilbert space TDDCDT approach one needs to
consistently solve a chain of integral equations for ea
order.1 The linear paramagnetic susceptibility in the stand
approach is given by Eqs.~8!, ~9! in Ref. 1. In contrast, the
closed expressions for the linear@Eq. ~22!#, second-order
@Eq. ~28!#, and third-order@Eq. ~A12!# susceptibilities de-
rived in this paper use the CEO representation in Liouv
space. A similar representation was developed in Ref. 14

Correlation-function expressions for the linear, seco
order and third-order x-ray response functions were deri
in Eqs.~B1!, ~B2!, ~B3a!–~B3d! in Ref. 11. Equations~25!,
~29!, and~A1! express these TDCDFT response functions
the CEO representation, and provide a computational sch
e
lf-
h
d

-
d

n
e

for nonlinear x-ray response functions.
TDDFT exchange-correlation functionals are better dev

oped and more widely used than their TDCDFT counterpa
TDDFT currents can be obtained by simply modifying Eq

~11! by setting v̂51, and using the TDDFT exchange
correlation kernels2,9 where the scalar exchange-correlati
potential depends only on charge density.

Finally we note that this work can be extended to inclu
nonadiabatic exchange-correlation potentials, as outlined
cently for the linear response.15 In general, the exchange
correlation potential and exchange-correlation kernels
time dependent.16 This time dependence has been neglec
within the adiabatic approximation used here. If we relax t
approximation, the eigenvalue equation for the Liouvi
superoperatorL, Eq. ~9!, should be replaced by15
4-4
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L~Va!ja~r ,r 8!5Vaja~r ,r 8!. ~30!

Methods for solving Eq.~30! using the frequency-depende
functional of Gross and Kohn16 were described in Ref. 15.
15510
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APPENDIX A: THE THIRD-ORDER RESPONSE

For the third-order response function we obtain

sl1l2l3ls

(3) ~v1 ,v2 ,v3 ,r ,r1 ,r2 ,r3!52
1

v1v2v3~v11v21v3!
2pF x̃l1l2l3ls

(3) ~v1 ,v2 ,v3 ,r ,r1 ,r2 ,r3!

1
e2

2mc
$F@ j ls~r !n~r3! j l1~r1!#d~r22r3!dl2l3

1F@ j ls~r !n~r3! j l1~r1!#d~r22r3!dl2l3

1F@n~r ! j l2~r3! j l1~r1!#d~r2r3!dl2l1
dl3ls

%

1S e2

2mcD
2

R(1)~v11v21v3 ,r ,r2!d~r2r3!d~r22r1!dl3ls
dl2l1G , ~A1!

where R(1)(v11v21v3 ,r ,r2) is the linear density-density response given by Eq.~46! in Ref. 9;
x̃l1l2l3ls

(3) (v1 ,v2 ,v3 ,r ,r1 ,r2 ,r3) is the third-order paramagnetic susceptibility given by the right-hand side of Eqs.~C23!–

~C31! in Ref. 9 by replacingr by j:

x̃l1l2l3ls

(3) ~v1 ,v2 ,v3 ,r ,r 8,r 9,r-!5 (
v1v2v3

perm

~ x̃ I
(3)1x̃ II

(3)1x̃ III
(3)1•••x̃VIII

(3) !, ~A2!

where

x̃ I
(3)5 (

abg

j
2ab
ls ~r ! j

2bg
l1 ~r 8! j a

l2~r 9! j
2g
l3 ~r-!sasbsg

~Va2v12v22v3!~Vb2v22v3!~Vg2v3!
, ~A3!

x̃ II
(3)5 (

abgd

j
2ab
ls ~r !Vg(2bgd) j a

l1~r 8! j
2g
l2 ~r 9! j

2d
l3 ~r-!sasbsgsd

~Va2v12v22v3!~Vb2v22v3!~Vg2v2!~Vd2v3!
, ~A4!

x̃ III
(3)5 (

abg

j
2abg
ls ~r ! j a

l1~r 8! j
2b
l2 ~r 9! j

2g
l3 ~r-!sasbsg

~Va2v12v22v3!~Vb2v22v3!~Vg2v3!
, ~A5!

x̃ IV
(3)5 (

abgd

2Vg(2abg) j 2gd
ls ~r ! j a

l1~r 8! j
2b
l2 ~r 9! j

2d
l3 ~r-!sasbsgsd

~Va2v12v22v3!~Vb2v1!~Vg2v22v3!~Vd2v3!
, ~A6!

x̃V
(3)5 (

abgdh

2Vg(2abg)Vg(2gdh) j a
ls~r ! j

2b
l1 ~r 8! j

2d
l2 ~r 9! j

2h
l3 ~r-!sasbsgsdsh

~Va2v12v22v3!~Vb2v1!~Vg2v22v3!~Vd2v2!~Vh2v3!
~A7!

x̃VI
(3)5 (

abgd

Vh(2abgd) j a
ls~r ! j

2b
l1 ~r 8! j

2g
l2 ~r 9! j

2d
l3 ~r-!sasbsgsd

~Va2v12v22v3!~Vb2v1!~Vg2v2!~Vd2v3!
, ~A8!

x̃VII
(3)5 (

abg

j ab
ls ~r ! j

2bg
l1 ~r 8! j

2a
l2 ~r 9! j

2g
l3 ~r-!sasbsg

~Va2v1!~Vb2v22v3!~Vg2v3!
, ~A9!
4-5
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x̃VIII
(3) 5 (

abgd

j ab
ls ~r !Vg(2bgd) j 2a

l1 ~r 8! j
2g
l2 ~r 9! j

2d
l3 ~r-!sasbsgsd

~Va2v1!~Vb2v22v3!~Vg2v2!~Vd2v3!
. ~A10!

Here n5a,b,g,d,h561,62, . . . , andVn is positive ~negative! for all n.0 (n,0) according to the conventionV2n

52Vn .
F@ j ls(r )n(r3) j l1(r1)# is determined by the right-hand side of Eq.~29! by replacingj l1(r1) by n(r3):
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