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Time-dependent quasiparticle current-density-functional theory
of x-ray nonlinear response functions
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A real-space representation of the current response of many-electron systems with possible applications to
x-ray nonlinear spectroscopy and magnetic susceptibilities is developed. Closed expressions for the linear,
guadratic, and third-order response functions are derived by solving the adiabatic time dependent current
density functional TDCDFT) equations for the single-electron density matrix in Liouville space.
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I. INTRODUCTION differences of Kohn-Sham orbital energfeCurrent re-
sponse functions should also be particularly suitable for
Time-dependent current-density-functional theorycomputing the resonant nonlinear response to x-ray fidlds.
(TDCDFT) offers a computationally tractable framework for Due to the short wavelength, the dipole approximation does
computing currents and response functions of many-electrofot generally hold, and x-ray susceptibilities may be ex-
Systems in response to externa| e|ectric and magnetieressed in terms of multitime correlation functions of cur-
iond ' i i rents and charge densiti#s!! TDCDFT thus provides a
perturbations. The time-dependent linear paramagnetic sus . ! -
ceptibilities are calculated as the linear response of a nonirff@tural direct computational approach for nonlinear x-ray
teracting Kohn-Sham reference system to an effective vectoPPECLroscopy.
potential, which consists of the external field, together with

the Hartree and the exchange-correlation contributtofist II. TIME-DEPENDENT KOHN-SHAM CURRENT-
the sake of computing current-related properties, it is naturabENSITY-FUNCTIONAL EQUATIONS FOR THE SINGLE-
to consider the effective potential to be a functional of both ELECTRON DENSITY MATRIX

current and charge density rather than charge density alone,

as in standard tme-dependent density-functional-theory % " ftective system of noninteracting electrons
(TDDFT).2 Another reason for applying TDCDFT to crystals : y . 9
subjected to an exchange-correlation scalar and vector

is connected with the recent argl_Jment th_at there_ IS a One'to'otentialsl, constructed to yield the same charge density and
one correspondence between time-varying periodic poter@

. . . .~ current profiles as the interacting system. The Kohn-Sham
tials and the current density but not with the charge deﬁs'ty'TDCDFT equations of motion for the time-dependent den-

TDCDFT was successfully used for calculating the polariz—sity matrix are
ability of conjugated polymer&® Current density functional
theory (CDFT) yields exact response functién® static ex-
ternal potentials and TDCDFT is thus expected to provide iﬂp(r'rl’t) =[A%(r,t) =A% (ry,t)1p(r,r1,t)

TDCDFT maps the original system of interacting elec-

reasonable approximations for time-dependent current prop- gt
erties. . % *
The linear magnetic susceptibilitithe response of the —HDAMD =17 (r DA™ (rL b
current to an external vector-potenjiaf the Kohn-Sham g2
noninteracting system has been calculated using the local + mAz(r,t)n(r,t)
current density exchange correlation kernel for the electron
gas! However, computing the response functions of the in- e? 5
teracting systenfwhere the quasiparticle energies cannot be ~omel *(ry,Hn*(ry,t) |, (1)

expressed as differences between Kohn-Sham energy)levels

requires the solution of a chain of integral equatibmg)ose where e(m) is the electron chargémass, and we set
computational cost rapidly increases with the nonlinear order:1 The time-dependent charge densit;/ and paramagnetic
of the response. In this paper we compute current reSponSe‘?e(;tronic current are given by

functions by recasting the TDCDDT equations in terms of
the reduced single Slectron density ma7trix forMumlectron _
systemp(r,rq,t) =2 _ 4, (r,t) ¢t (rq,1),” wherey,(r) are _ . e

the Kohn-Sham orbitals. Closed expressions are derived fairO=p(r.rt), (0 ==521(V, = %) op(1r1,O]r=r,.
the linear, quadratic, and third-order response functibfs 2
(the response of the total polarization current to the external

electric field by solving an eigenvalue equation in Liouville The observedphysica) current, which enters the continuity

space. The quasiparticle frequencies are not given simply ajuation, is given by
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e? — e’
IrH=j(r,t)— 5 —A(r,Hn(r.b); 3 UKS[j(rat)](r):U&S[p](r)_l_f dr1(m
H2. is the Kohn-Sham Hamiltonian H2(r,t) T oo -
‘s sl el ity + [ [ ar,

=H%n(r,t),j(r,t)]. The remaining terms in Eq1) repre-

sent the coupling to an external vector potential ~ — . .
uping xternal vector potent XOd P11, (1, i (2,0, (®

@) wheref, [ p](r,r;) andg,J p](r.r1.r,) are the first and the
second order adiabatic exchange-correlation kernels. We
have made the commonly used adiabatic approximation

0 i __i 2
HKS[n(rat)1J(r=t)]_ zmvr+UKS(r1t)v

where the potential xs(r,t) =Uxg[ n(r,t),j(r,t)] is

e e
Ugs(r,t)=— EVrAxc(rat)_ EAxc(rit)Vr

+URs(r,t) +Ug(r). (5)

The exchange-correlation vector poten#gl n(r,t),j(r,t)]
and the Kohn-Sham scalar external

where we assume that the kernels are time independent.

IIl. QUASIPARTICLE REPRESENTATION OF X-RAY
NONLINEAR RESPONSE FUNCTIONS

We next separatép into an electron-hole, interband),
and intraband (T) components Sp(r,rq,t)=&(r,rq,t)
+T[&(r,rq,t)]. It follows from the idempotent property of

potential, that T is uniquely determined byg.8 The matrix elements

Ugdln(r.t),j(r,1)] are functionals of both the charge density of ¢, unlike those ofép, constitute independent variables,

and the current.The scalar potential is given by

n(ry,t)e?

U&S(r,t):JdI’lW-FUXC(T,t); (6)

Ug(r) is the field created by nuclei andl,Jn(r,t),

that can be used to construct a quasiparticle representation.
The quasiparticle spectrum is obtained by solving the lin-
earized Kohn-Sham eigenvalue equation

Lga(r!rl)zﬂaga(r!rl)y (9)

where

j(r,t)](r) is the exchange-correlation potential in the adia-
batic approximation. The time-dependent external potential
IS Ugy(r,t)=Ugy(r) at time t<ty and Ug,(r,t)=Uqy(r)
+Uq(r,t) for t>ty. A,. adds a magnetic field induced by
the exchange-correlation interaction between electrons. Note
that unlike the paramagnetic canonical currehis gauge
invariant!

The stationary solution of Eq1) gives the ground-state
single electron density matrix(r,r;) which carries no cur-
rent. We then writep(r,rq,t)=p(r,rq)+ dp(r,r1,t) where
Op represents the changes inducedWy(r,t). Its diagonal
elementssn(r)= 8p(r,r,t) give the changes in charge den-
sity, whereas the off-diagonal elements represent the changes
in electronic coherences between two points. The physical e _F o TR
current may be obtained by expandifig in powers of the dpI(nrra) =helpl(rr) ot =ra)u(r.r), (11)
external vector potential(r,t): Sp=p,+ Sp,+--- and
solving Egs.(1) and (2) self-consistently forép order by
order. To that end we first recaktcg n(r,t),j(r,t)] as a
functional of the paramagnetic currepft,t) alone. This is
done by substituting the total curreiftr,t) [Eqg. (3)] into the
continuity relation between the charge density and the total
current

(VE=VE)Ea(r,r)
2m

Lga(r!rl):_ +p(r1rl)

x(fdrlf drzf;m(r.rl,r2>§a<r1.rz))

—?(rl,r)(f drfdrz

><f),(c*[zl(rllr!rZ)ga(rZIr))! (10)

ando is the velocity operator

B == 5= (%, - ). 12

The quasiparticle modeg, come in pairsa==*1,
+2,...,with Q_,=Q,. Their orthonormality and alge-
sn(r,t)=— EJIV Jr,ndr @) braic properties make it possible to expand an arbitrary in-
' elo T ' terband matri% in the form
Solving Eq. (7) self-consistently for the charge density
n(r,t) in terms of the paramagnetic currgit,t), and sub-
stituting it in Uyg[ n(r,t),j(r,t)] eliminates the explicit de-

E(r,ry, )= 2 £,(r,r)z,(1), (13)

pendence on the charge density. Expanding around;to
second order i, we obtain

where z,(t)=(&!|£(t)) and the scalar product of any two
interband matriceg and # is defined by
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<§|77>EJdrfdf’;[g-n](r,r’w(r—r’)- 14

The bra(ket) notation underscores the similarity with Dirac’s
Hilbert space notatiorz_ ,(t) =Zz% (t) constitute complex os-
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A(r,t) andj(r) by substituting the mode expansionéinto
these equations. Substituting the solutig®(t) into Eq.
(15), gives

t
cillator amplitudes. We shall denote their perturbative expan- J(l)(r t)—f dff dr, 2 X3 LT T)AL (P, 7),
—o H=XY

sion in the external vector-potentialA(r,t) by
20 72)

(20

The paramagnetlc current is calculated by taking the ex-

pectation value of the velocity(r,r;) with respect to the
time-dependent density matrix

1
D=2 JoN2e O+ 5 2 Jap(NZa(DZ4(1)

ls .
+3 2 Jap (11202021, (19
aBy

where @,8,y=*1,=2,...) and weonly retained terms
that contribute to the third order response. Here

D)= = g | AL =%~ TErr0). (16

jap(n)= 'efdrl(au )(vrl—vofdrz
x{[é(rz—w—zF(r,rz)]f dra[£4(r2,r3)

><gﬁ(r31r1)+gﬂ(r21r3)§a(r3’rl)]])’ (17

ot D)= | ar a5, %) [ ar,

x ga(rirZ)fdr3[§a(r2’r3)§ﬁ(r3lrl)

+§B(r2,r3)§a(r3,rl)]]). (18

The collective electronic oscillatdiCEO) expansion for the
charge density\(r,t) is given by

1
BN(1.0=2 No(NZa()+ 5 25 Nag(N)Zal()Z4(1)

1
T3 2 Nap(NZa(HZ6(HZ,(1),
aBy

a,B,y=*x1,+2,.... (19

The coefficients of this expansion are given by E@9)—
(31) in Ref. 9.

The equations of motion fof can be obtained from Eq.

(1) by expressing the density matrix in termsé&nd T(£).°

where ) is the linear paramagnetic susceptibility, and
N\, are Cartesian tensor components.

We further introduce the observed susceptibility
X&ﬂ(t,r,r,rl) defined by replacing the paramagnetic current
j(r,t) with the physical curreni(r,t) in Eq. (20). Substitut-
ing jM(r,t) from Eq.(3) into Eq.(20), we obtain

~ 1
1 1
)((M)(t,r,r,rl)=X§\l2(t,r,r,r1)—ﬁn(rl)

X 8(r =) 8(7—1)8) - (22)

We next derive equations of motions fgf*)(t) in terms of
A(r,t) andj,(r), by substituting the CEO expansion &f
from Eq. (13) into the equation of motion fog, which can
be obtained from Eq(1) by expansion of the density matrix
on ¢ andT(£).° Solving these equations we substitat®(t)
into Eq. (15).

Qi .
X}\M(w,r,rl)— E 2 aJa)\(r)Ja,u,(rl). (22)

a=12 ..., 02— w?

a

Optical and x-ray signals are most conveniently expressed
using response functions which connect the polarization with
the electric field. For example, the linear response function
aﬁ (t,7,r,rq) to first order in the external fiel&(r,t) is

deflned as

t
P§1)<r,t)=j drj dry > o (t,nrr)E, (ry, 7,
S S W=Xy,Z 1*s 1
(23)

whereP(r,t) is the total polarizatiod* o*)(t, 7,r,r,) can be
obtained from Eqg{(20) by noting thatj is connected taJ
through Eq.(3); J is connected toP through® P(r,t)
=[' _.d7J(r,7) and A(r,0)=—icE(r,0)/». Using these
relations we obtaitt

o (w,r,ry, . . @, ... 01)

S — (n)wrr M,w w
wlwzwan ( shslns N 1:Wn, 1 1)1

(24)

Equations of motions foz(*)(t) are derived in terms of which gives for the linear response
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1 1t t
oD 0.1 = 5 rfY (0= r.r PO =5 [ an [ an | ar,[ drghm)
1 200, s(r)jM(ry) ><E)\Z(rz,Tz)Ug\zl))\z)\s(t,Tl,Tz.r.rl,rz), (26)
- ;277 P 02— o2 we introduce the second-order exchange-correlation kernel

Oxc, Obtained by expanding the exchange correlation poten-

2 tial Ugd[j(r,t)](r) to the second order byj [Eq. (8)]

e’ _
5 N(r)6(ri—r)dyy,

- 2mc ’ (25

gxc[a(r!rlir21réir4) :axc[a(rirlirS) 5(rl_ rZ)
where the first term in the bracketﬁt{l(w,r,rl), andn(r)

, _ , X 8(ry=r4)v(ry,12)o(rs,r).
is the ground state charge density. Equaii@® provides a

microscopic algorithm for computing the Kubo formdtaall (27)
quantities are obtained from the quasiparticle modes. Repeating the procedure used fof') to the next order we
To calculate the second order response funciiti obtain the second order paramagnetic susceptibility

) L,y V(- apn (NI 1,12 (0§ (1) "2 (12)8.85 2j”faB(r)j§l<r1>jizﬁ<rz>sasﬁ
Wi On 02 il =72 & TG G o Qo) wp) % (@ w1 w2( Q- wp)

+Ejisaﬂmjf;(rl)j52,3<r2>sas3 P (A1)} 2(12)5,85

] 1M = il,i 2, “ ey
2 Qo) Qpw7) 2 Qo) Qp—wy) P

(28)
wheres,=sgn(a). Vq(- .z, iS obtained by substituting the exchange-correlation kerhglérom Eq. (11) andg, into the
expression foNVgy .z, given in Ref. 9.

Similar to the linear response function, the second-order response function is finally obtained by expanding of the charge
densityn(r,t) in the modegEq. (19)]

(2) - _
P (@1,02,T,11,17)

- 7(2) — _
wlwz(w1+w2)27r Xah,(@1,02,1,1,1) r2=r1) o,

e2 2Q,jhs(r)n,(ry)
Zmels Q% (w1t wy)?

+ O(r—ro)o
% Qi_(wl+w2)2 ( 2) )\2)\5

20,0, (N (ry) ) 9

Higher response functions can be computed simifafije third-order response function is given in Appendix A.

IV. DISCUSSION for nonlinear x-ray response functions.

To get the high-order paramagnetic susceptibilities via the TDDFT exchaqge-correlatlon fungtlonals are better devel-
standard Hilbert space TDDCDT approach one needs to sel2Ped and more widely used than their TDCDFT counterparts.
consistently solve a chain of integral equations for eachl PDFT CurrentsAcan be obtained by simply modifying Egs.
order! The linear paramagnetic susceptibility in the standard11) by settingv=1, and using the TDDFT exchange-
approach is given by Eg$8), (9) in Ref. 1. In contrast, the correlation kernefs® where the scalar exchange-correlation
closed expressions for the linefEq. (22)], second-order potential depends only on charge density.

[Eqg. (28)], and third-orde{Eq. (A12)] susceptibilities de- Finally we note that this work can be extended to include
rived in this paper use the CEO representation in Liouvillenonadiabatic exchange-correlation potentials, as outlined re-
space. A similar representation was developed in Ref. 14. cently for the linear respong@.In general, the exchange-

Correlation-function expressions for the linear, second<correlation potential and exchange-correlation kernels are
order and third-order x-ray response functions were derivetime dependent This time dependence has been neglected
in Egs.(B1), (B2), (B3a—(B3d) in Ref. 11. Equation$25),  within the adiabatic approximation used here. If we relax this
(29), and(A1) express these TDCDFT response functions inapproximation, the eigenvalue equation for the Liouville
the CEO representation, and provide a computational schenssiperoperatok, Eq. (9), should be replaced by
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APPENDIX A: THE THIRD-ORDER RESPONSE

For the third-order response function we obtain

1

010,03(01+ 0+ 03)

3 _ ~(3
0-5\1))\2)\3}\5(0)11(‘)21(‘)31“"11r21r3)_ - 2w ngl))\z)\:g)\s(wl'wZvw31rvrlvr2!r3)

2

e
+ m{F[j"S(r)n(rg)j)‘1(r1)]6(r2—r3) SxngHFLM(NIN(rg)jr(r)18(ra—r3) )0,

+FE[N(r)j*2(rg)j*(r)16(r—=r3) Sy n

22
e
+(m:> R(l)(w1+w2+wg,r,rz)é(r—r3)5(r2—r1)5>\3>\s5)\2)\1 , (A1)
where RM(w;+w,+ws,r,r,) is the linear density-density response given by E@6) in Ref. 9;
}}(fl)xzxsxs(wl,wz,w3,r,r1,r2,r3) is the third-order paramagnetic susceptibility given by the right-hand side of(EG8)—
(C3)) in Ref. 9 by replacing by j:

perm
ngs))\ A )\((1)1,(1)2,(,03,r,r,,r”,rm): 2 (XI(3)+X|(|3)+X|(|?)+X£/3|,|)| ’ (AZ)
1%273%s w1wpw3

where

-)\5 N ryi A m N "
25 g (NI 2 (K] 22 (17)S, S8,

~(3)_ , A3
= 2 O orwor 090y 0 09)(@, a3 (A3)
')\S N ! N n N n
S-S 125 8NV g(— gy (1)1 2 (1M 25(1")$4868,55 | Ad)
aBys (Qa_wl_wz_ws)(ﬂﬁ_wz_ws)(ﬂy_wz)(ﬂa_ws)
iNg sNp i N2 oy N3 om
O gy (DI (M1 2 (1) S0 SgSy (A5)
! afy (Qa_wl_w2_w3)(Q,B_w2_w3)(Qy_w3)’
TR A O el v Ul v GO (A6)
Vs (L= 01— 0~ 03) (D~ 01) (2~ 0~ 03) (A5~ w3)’
')\5 ')\1 ’ -)\2 ”n ')\3 "
~3)_ 2Vg(fa,3y)vg(f'y§77)1a(r)Jfﬂ(r )Jfg(r )an(r )Sasﬁsysﬁsn (A?)
afyon (L= 01— 0= 03)(Qg—01)(Q )~ 03— 3) (5~ @) (Q,— w3)
~o_ s el 0TI I)555,%, (A8)
v 0’.575(Qa_wl_w2_w3)(Qﬁ_wl)(Qy_w2)(Q§_w3)’
')\s N i N myi N "
“O_S Jap(DI 2 (F)J 2 (r) 2 (") s, Sps,, o)
I3 (O 0)(Qp— - 03)(Q,~w3)
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~o _ 5 JaDVa il SIS )8065,5
XV s (= 01)(Qp— 02~ 03) (0~ 02) (A5~ w3)

(A10)
Here v=a,B,7,6,7=£1,£2,..., andQ, is positive (negative for all »>0 (»<<0) according to the conventiof _,
=-Q,.

FLj*s(r)n(r3)j*1(r,)] is determined by the right-hand side of E89) by replacingj*1(r;) by n(rg):

FLj*s(r)n(rz)j*i(ry)]=—

2 20 js(ryn,(r
~ e aJa( ) a( 1)
Xﬁiilxz(wl,wz,r,rl,ra)— (Z Py

— S(rz—rq1)é
2mel| < Qi_(w1+w2)2 (rz—rq) Aohy

w10x(w1+ ) i
2Q  n,(r)n(rg)
3 | o

where

i Vo apy(FT1,T2)i (0N 4(r3)jM (r1)s,s it (NNg(rg)jtL(ry)s,s
g(—aBy) 1,13/ p\'3 1/°a>p a a\l3 1/>a>p
ngzl))\z)\s(wla(")Z!r!rl!rS):_2 E - 2 £ £

aNgBy (Qa_wl_wZ)(QB_wl)(Qy_ 3) afB (‘Qa_wl_wZ)(‘Qﬁ_wl)

2ji;B(r)na(rg)jilﬁ(rl)sasﬁ Ph5(NN(ra)jMy(r1)s,s,

, B,y=x1,£2,...,
2 Qo) Qpwp) S Q- Qpwy = WP

(A12)
wheres,=sgn(x).
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