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The effects of different polarization conditions on vibrational echo signals are systematically explored for the
rigid cyclic dipeptide 2,5-diazabicyclo[2,2,2]octane-3,6-dione. An anharmonic vibrational Hamiltonian is
constructed by computing energy derivatives to fourth order using density functional theory. Molecular frame
transition dipole orientations are then used to calculate polarization dependent orientational factors
corresponding to various Liouville space pathways. Enhancement and elimination of specific peaks in two-
dimensional correlation plots is accomplished by identifying appropriate pulse configurations.
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Introduction

Two-dimensional IR spectroscopy provides new insight
into structural dynamics of molecular systems with femto-
second time resolution.1,2 Cross peaks in 2D correlation plots
directly reveal the anharmonic coupling between different
vibrational modes in the molecule. Frequencies of these
peaks represent the coherent evolution of the system
between interactions with the laser pulses. The intensities
depend on the mutual orientations of the transition dipole
moments of the respective vibrational transitions in the
molecular frame as well as on the orientations of the IR
pulses in the laboratory frame.3,4 Structural characteristics of
the molecule are therefore represented by peak positions and
intensities.

For pairs of modes with frequency differences that are
comparable to the linewidth, the extraction of structural
information may be restricted by the overlap of intense
diagonal peaks with the desired cross peaks. For this reason,
techniques to eliminate the diagonal peaks by taking advan-
tage of the polarization dependence of the nonlinear IR
signal have been developed.3 The ensemble averaged
formula for the third order orientational factor given in
Reference 3 assumes that the transition dipoles are fixed in
the molecular frame during the course of an experiment
(~1-2 ps). Although molecular rotation is likely to be
negligible on this time scale, contributions resulting from
changes in internal degrees of freedom can be significant for
flexible systems. This formula is therefore most appropriate
for relatively rigid structures.

Structural parameters of peptides have been determined by
measuring the polarization dependence of 2D IR spectra
using double-resonance5,6 as well as heterodyned7-9 techniques.
Resolution enhancement of the structurally sensitive cross
peaks can be achieved by subtracting different tensor com-
ponents to yield spectra without diagonal peaks. However,
this approach is complicated by the need to normalize

spectra obtained in two different measurements with respect
to each other, and may result in imperfectly subtracted
diagonal peaks due to inequivalent contributions from
reorientational dynamics.4,8 These difficulties are avoided by
applying specific polarization conditions in single measure-
ments that are equivalent to linear combinations of certain
tensor components.8

In order to analyze 2D IR spectra and to design new
experiments independent simulations of the spectra are
necessary. To this end, we have developed a new approach to
predict coherent third order spectroscopic signals from first
principles.10-12 We generate an anharmonic force-field up to
fourth-order as well as dipole derivatives to second order for
a number of selected local oscillators represented by internal
coordinates. Higher-order force constants are calculated by
numerical differentiation of second-order (harmonic) force
constants obtained from standard quantum chemical methods
such as Hartree-Fock or density functional theory. An
anharmonic vibrational Hamiltonian is then generated and
diagonalized. The representation of the dipole is then
transformed into the eigenstate basis, resulting in transition
dipole moments between all the eigenstates. Those together
with the eigenstate energies are used to calculate nonlinear
coherent signals applying the sum over states approach.13

Scheme 1
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Different coherent nonlinear techniques are classified by
their phase matching conditions, four of them being
independent.1,13 In this contribution we analyze the effect of
different polarization conditions on nonlinear 2D IR spectra
generated in the kI = −k1 + k2 + k3 wavevector direction
calculated for a model dipeptide, 2,5-diazabicyclo[2,2,2]-
octane-3,6-dione (DABCODO, Scheme 1). DABCODO
exists in a single and rather rigid bicyclic conformation,
making it consistent with the approximations inherent in our
calculations of the orientional part of the response function.3

Theory

The third order nonlinear polarization is a convolution of
the response functions  and the three incoming pulsed
laser fields En

  × , (1)

where t1 and t2 are the delay times between the three pulses
and t3 is the time between the third pulse and the time t when
the signal is detected. The third-order response functions

 describe the microscopic behavior of the system under
the influence of the laser pulses. In the sum over states
approach they are given by

× (2)

× (3)

× (4)

× (5)

with the lineshape function in the homogeneous limit

. (6)

 are the transition frequencies between two vibrational
eigenstates v and ,  is a homogenous dephasing
linewidth, and  are the corresponding transition dipole
moments describing the coupling between the states.  is
the Heavyside function and P(a) is the thermal population of
the initial state a determined by a Boltzmann distribution.

The orientational factors  describe the polari-

zation dependence of the response functions and are
assumed to be decoupled from the vibronic dynamics. The
indices i, j, k,  refer to the lab-frame components
of the linearly polarized laser fields. The orientational
factors correspond to fourth-rank tensors composed of 81
tensor elements.14 For isotropic materials such as liquids,
there are 21 nonvanishing elements in the orientational part
of the third order response function, 3 of which are
independent: , , and . All
other tensor components can be expressed in terms of these 3
independent elements. For example,

. (7)

Polarization conditions for four-wave mixing photon echo
experiments have been examined by Hochstrasser.3 The
orientational factor for isotropic systems is given by

× 

× . (8)

Thus, the tensor components given in Eq. (7) can be
expressed as

   (9a)

   (9b)

    (9c)

    (9d)

In this work, calculations are performed in the time-domain
and the pulse envelopes are introduced approximately by
assuming the quasi impulsive limit; all the applied fields are
taken to be delta functions so that the integrations over time
intervals (Eq. 1) can be eliminated and the signal is directly
proportional to the nonlinear response function. Frequency-
selective excitation is accounted for by defining a finite
rectangular pulse bandwidth (± 100 cm−1). Transitions within
the frequency range of the carrier frequencies and the
bandwidth are resonant, whereas all other Liouville space
pathways are neglected, a manual application of the rotating
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wave approximation.
We report logarithmic two-dimensional absolute value

plots of the complex signals after Fourier transformation
with respect to either t1 and t3

×  (10)

or similarly t2 and t3

× .  (11)

Results and Discussion

We investigate the dipeptide model system DABCODO
because of its relatively rigid structure and its small size
which allows the use of high-level quantum chemistry
calculations. We applied density functional theory at the
B3LYP/6-31G(d,p) level,15-18 as implemented in Gaussian
98,19 to optimize the structure and calculate harmonic force
constants with respect to internal coordinates. Anharmonic
force constants were calculated for the subspace of 6 local
vibrational modes, the C=O, N-H and C-N stretches of the
two peptide bonds. An effective exciton Hamiltonian
constructed in a basis state manifold of up to 10 excitation

quanta was diagonalized and resulted in a total of 2153
eigenstates.12

Spectra are simulated in the frequency range of the sym-
metric (s) and antisymmetric (a) C=O stretching vibrations,

(C=O) = Ωs = 1780.8 cm−1 and (C=O) = Ωa = 1773.8
cm−1. Anharmonic shifts of the overtones and combination
bands are ∆ss = 4.6 cm−1, ∆aa = 12.3 cm−1 and ∆as = 16.9 cm−1.
We calculate signals for one-color experiments with carrier
frequencies  cm−1. In the phase
matching direction  the 3 Feynman
diagrams R2, R3 and  contribute (Fig. 1).

All polarization conditions investigated here are summarized
in Table 1. They are designed to eliminate certain groups of
peaks, for instance diagonal or cross peaks, to improve
resolution of specific peaks by removing overlaps with
others.3,8 Orientational factors are calculated using linear
combinations of the 4 basic tensor elements (Eq. 7). Diagonal
peaks (DP) result from the Feynman diagrams R2 and R3

when the 4 interactions are with the same mode, either
vs(C=O) or va(C=O); the corresponding Liouville space
pathways are denoted ssss or aaaa, respectively (cf. Table 1).
Cross peaks arise from interactions with different modes,
either asas/sasa (R2) or aass/ssaa (R3). In t1 and t3 the
coherences for the R2 and R3 pathways are identical, so their
intensities contribute to the same diagonal and cross peaks.
This is not the case for the (ω2, ω3) dimensions; diagonal
peaks at (ω2 = 0) arise from one R2 pathway but two R3
pathways, while cross peaks at  and

Sijkl ω3,t2,ω1( ) =  
∞–

∞

∫ dt3  
∞–

∞

∫ dt1Rijkl
S t3,t2,t1( )

exp iω3t3– iω1t1–( )

Sijkl ω3,ω2,t1( ) =  
∞–

∞

∫ dt3  
∞–

∞

∫ dt2Rijkl
S t3,t2,t1( )

exp iω3t3– iω2t2–( )

vs va

ω1 = ω2 = ω3 = 1700
k I k1–= k2 k3+ +

R1
*

ω2 = Ωs Ωa– , Ωs( )

Figure 1. kI = −k1 + k2 + k3: Feynman diagrams (Rs = R2 + R3 − R1
*) and energy level schemes (dashed arrows: interaction from the right;

solid arrows: interaction from the left; wavy arrows: signal pulse) for = 1770 cm−1 (v(C=O)).ω1 = ω2 = ω3

Table 1. Polarization factors 

Tensor element Polarization Configuration Feynman pathways:a αβγδ

i j k l
DP (R3,R3)
aaaa/ssss

CP (R2)
asas/sasa

CP (R3)
aass/ssaa

zzzz
zzyy
zyzy
zyyz

0
0
0
0

0
0

π /2
π /2

0
π /2
0

π /2

0
π /2
π /2
0

1/5
1/15
1/15
1/15

1/15
−1/30
2/15

−1/30

1/15
2/15

−1/30
−1/30

zyzy−zyyz
zzyy−zyyz
zzyy−zyzy

0
0
0

π /2
−π /4
−π /4

−π /4
π /2
π /4

π /4
π /4
π /2

0
0
0

1/6
0

−1/6

0
1/6
1/6

zzzz−3 zzyy
zzzz−3 zyzy
zzzz−3 zyyz

0
0
0

 0
π /3
π /3

π /3
0

−π /3

−π /3
−π /3

0

0
0
0

−1/30
−1/3
1/6

−1/3
−1/30
1/6

aDP = diagonal peak, CP = cross peak, a = vas(C=O), s = vs(C=O).

iαjβkγlδ〈 〉
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 ) originate from single R2 pathways.
DABCODO is C2-symmetric, the 2 local C=O modes are

degenerate and split symmetrically. Thus, the two transition
dipole moments between the symmetric and antisymmetric
C=O stretching modes (eigenstate picture) are orthogonal to
each other.3 This angle is needed to compute the orienta-
tional factors in Eq. (9) for the different Liouville space
pathways underlying the diagonal and cross peaks (Table 1).
The relative weights of the various Liouville space pathways
also depend on the polarizations of the incident fields. The
sign of the sum of Liouville pathways contributing to certain
peaks may be directly observed in the real part of the spectra,
however, we only show absolute values of the signals here.

Absolute value correlation plots for the 4 basic tensor
components are shown in Figure 2. The spectra contain the
complete set of diagonal, cross, overtone and combination
band peaks. In the frequency range of the carbonyl stretching

vibrations, a total of 10 and 16 peaks are seen in the
 and  plots, respectively. The sign of the

sum of contributions to the cross peaks is negative for the
zyyz polarization configuration in contrast to zzzz, zzyy and
zyzy configurations.

The effect of taking linear combinations of different tensor
elements is now easily evaluated from the linear combi-
nations of the coefficients (see Table 1). It follows that
diagonal peaks are eliminated by the linear combinations
zyzy−zyyz, zzyy−zyyz and zzyy−zyzy as well as by zzzz−
3zzyy, zzzz−3zyzy and zzzz−3zyyz. In addition, cross peaks
vanish for the zzyy−zyyz combination.

The effects of forming the combinations zyzy−zyyz and
zzyy−zyyz (Fig. 3) are similar in the  dimensions;
the diagonal peaks are eliminated and the cross peaks
intensities are enhanced. 

The relative intensities of the overtone peaks for the
antisymmetric stretch at ( ) are significantly
reduced, whereas those of the combination bands at
( ) are increased, which improves the resolution
of the combination bands by reducing their overlap with the
stronger overtone peaks. The intensities of the peaks at (Ωa,
2Ωs−Ωa−∆ss) are sligthly reduced but remain comparable in
strength to the cross peak at ( ) with which they
overlap. Conversely, the overtone and combination band
peak intensities for  are all enhanced.

In contrast to the  plots, the two combinations
zyzy−zyyz and zzyy−zyyz differ considerably in the 
dimensions. All diagonal peaks in which ( ) vanish
for the zyzy−zyyz combination, whereas the intensities of
the cross peaks with ( ) and ( )
are identical to those in the  plots. In contrast, the
cross peaks at ( ) and ( ) cancel but
the diagonal peaks survive for the zzyy−zyyz tensor
combination.

Both diagonal and cross peaks which access only singly
excited levels are entirely eliminated in the zzyy−zyzy
combination. These peaks vanish due to destructive inter-
ferences between the Liouville space pathways (Table 1).
The most intense peaks in these spectra appear at (Ωa,

) and ( ). Thus, the resolution of the
peaks at ( ) and ( ) is
improved. However, no clear improvement in resolution is
gained in the  dimensions where all peaks persist.

In addition, the linear combinations zzzz−3zzyy, zzzz−
3zyzy and zzzz−3zyyz (Figure 4) can also be employed to
eliminate diagonal peaks from the  spectra. The
advantage of these combinations compared to zyzy−zyyz
and zzyy−zyyz spectra is the greater overall intensity of the
remaining peaks. As in the zzyy−zyzy combinations, no
peaks are eliminated in the  plots.

In summary, we have simulated the effect of different
polarization conditions on 2D IR spectra generated in the kI

= −k1 + k2 + k3 wavevector direction. We demonstrated how
diagonal and/or cross peaks can be eliminated from the
spectra, facilitating the observation of peaks which are
unresolved due to overlap with these stronger bands.

(ω2 = Ωa Ωs– , Ωa

ω1– , ω3( ) ω2, ω3( )

ω1– , ω3( )

Ωa, Ωa ∆aa–

Ωa, Ωs ∆as–

Ωa, Ωs

ω1–  = Ωs( )
ω1– , ω3( )

ω2, ω3( )
ω2 = 0

ω2 = Ωa Ωs– ω2 = Ωs Ωa–
ω1– , ω3( )

Ωs Ωa,Ωs– Ωa Ωs,Ωa–

Ωs ∆as– Ωs,Ωa ∆as–
Ωa,2Ωs ∆ss– Ωs– Ωs,Ωs ∆ss–

ω2, ω3( )

ω1– , ω3( )

ω2, ω3( )

Figure 2. kI: 2D magnitude spectra for the four basic tensor
components where = 1770 cm−1 (v(C=O)), 1st and
3rd row: log|S(−ω1, t2 = 0, ω3)|, 2nd and 4th row: log|S(t1 = 0, ω2, ω3)|.

ω1 = ω2 = ω3
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