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One-dimensional transport with dynamic disorder
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We study the mean quenching time distribution and its moments in a one-dimeriNisitaldonor-bridge-
acceptor system where all sites are coupled to a two-state jump bath for arbitrary disorder and an arbitrary ratio
k=(k)/R of the bath jump rateR and the average hopping ratk). When «kN~1, the quenching time
distribution has long power-law tails even when the waiting times are exponentially distributed. These disap-
pear forkN<1 where the hopping rate self-averages on the bath relaxation time scale. In the absence of
disorder or for smalk, the mean quenching time scales linearly withOtherwise, we observe a power law,
~N¥*7 with a crossover to linear scaling/€0) for largeN. Distributions of particle position, its second
moment, velocity and diffusion coefficient are computed in the infiNitemit. For times longer thaiR ™%, the
dynamic disorder self-averages and the average position, velocity, and diffusion coefficient scale linearly in
time.

DOI: 10.1103/PhysRevE.68.011101 PACS nun)er05.40.Fb, 82.3%j, 72.20.Ee

[. INTRODUCTION by more than one fluctuating bottleneck, diffusion can also
be affected by correlations among bottlenefkd].

Disordered systems are usually divided into two classes Dynamic disorder is also important in the studies of
depending on whether the disorder is anneatBthamio or  glassy systems who have a broad spectrum of time scales
quenchedstatig [1—4]. This paper studies the scaling prop- with no clear separation between fast and slow degrees of
erties of one-dimensional directed wdlk—7] with dynamic  freedom. The dynamic behavior of primary collective de-
disorder. Models of directed walk have been used to analyzgrees of freedom may be coupled to other modes which fol-
numerous systems, including excitation transport from a dolow the dynamics only on slightly shortéor longe) time
nor chromophore through a bridge of intermediate sites to ascale.

acceptor where this excitation is quencH&3-12], lateral The equilibrium behavior of glassy systems is studied by
diffusion of proteins on the surface of a membr{h8—15, the “replica trick” [38]. The existence of many minima of
charge transport in single molecular wires and DNS—  the free-energy landscape, unrelated by symmetry, gives rise
18], diffusion in ion channel§19—-24), and polymer translo- in the mean-field treatment to “replica symmetry breaking.”
cation through a narrow pof@5-29. This transition can be understood in terms of the extremal

The effects of fluctuating environment on transport are ofstatistics of the Boltzmann weights of the low-lying states
considerable intere$80—36. WhenxN<1, whereN is the  [38]. Their glassy dynamics are exhibited by lack of ergod-
total number of sitesy=(k)/R, R is the bath jump rate, and icity, violation of the fluctuation-dissipation relation, and ag-
(k) is the average hopping rate, transport is unaffected byng. The correlation and response functions depend sepa-
environment fluctuations. However, this is not the case in theately on the initial and final times and not on their difference
presence of dynamic disorder, i.e., when transport and bathlone[39]. This transition was found for the mean first pas-
jumps are coupled and occur on a compatible time scalesage time of a random walk on a random Cayley tree as the
This is an important regime relevant to many biophysicaltemperature is loweredt0].
systems. For example, excitation transfer may occur while Ranges of applicability of these mean-field results to re-
the bridge conformation fluctuates spanning a manifold ofalistic systems are still debated and alternative approaches
conformational states. Some of these states may facilitatere needed to go beyond mean-field theory. Here, we present
fast transport whereas in others the excitation may be trappeglich an approach by studying directly the effect of the noise
[35,37. Protein rare jumps over or through the cytoskeletaltime scales on the dynamics of a directed random walk
fence between “corralled regions” in membranes may takewhich models drift caused by a strong external field. In the
place over the same time scale as the reorganization of thebsence of noise, the behavior is simple: the walker hops to
matrix itself [13]. Matrix fluctuations can either open or the right to its neighboring site with a site independent rate.
close the gate of a “skeleton fence” and thus, may affectThe distance covered varies linearly in time and the velocity
protein transport. Charge transfer from donor to an acceptds given by the intersite distance to the hopping time ratio.
can occur while a molecule undergoes vibrational energy refhe dynamic disorder is modeled by coupling of the walk to
distribution which may alter the donor and acceptor wavea parallel channel. Despite the simplicity of this system, a
function overlap and thereby affect conductance. lon diffu-very rich variety of possible behaviors is found when time
sion may occur at comparable time as geometry fluctuatioscales of diffusion and fluctuation of the environment are
of a channe[19-23, which may increase or decrease theentangled.
effective size of the bottleneck region and therefore, affect Random walks which serve as intuitive physical models
ion diffusion. Furthermore, when an ion channel is controlledfor propagation of excitation or material transport in con-
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FIG. 1. Continuous time ran-
dom walk amongN sites in the
presence of dynamic disorder rep-
resented by jumps between bath
statesa and B: excitation is cre-
ated in the first site, which under-
goes a transition from the ground
|0) to the excited 1) state, and is
destroyed after it arrives to the ter-
minal siteN.
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densed phasd$—9|, may exhibit long tails in the distribu- generating Green function method to compute the distribu-
tion of various quantities. The directed walk considered herédion of probability of quenching times. In Sec. IV, we simu-
involves a single walker hopping to the next nearest neighboliate the quenching time distribution and study the scaling of
on a line withN sites and is a limiting case of the usual the mean and second moment of quenching time Witfihe
random walk when a jump back to the previous site can baistribution of particle coordinate, its average, the distribu-
neglected. It can be used to model excitation or materiation of second moments of coordinate, and its average are
transport subject to an external potential. The probabilitystudied in Sec. V. We also compute the distribution of
density of making a jump is given by waiting time distribu- velocity and diffusion coefficient and their average. Our re-
tions. When these distributions are exponential, the directedults are discussed in Sec. VI. The generating function for
walks may be described by an ordinary master equation witthe recursive computation of Green functions is given in the
random transition rates. For example, the directed walls caAppendix.
be used to model pulling of single DNA molecules by motor
proteins in bacteriophag¢d1l].

In this paper, we model fluctuations of the environment by IIl. THE MODEL
the bath undergoing jumps between two states, one favoring consider anN-site donor-bridge-acceptor system, where
transport whereas the other acts as a trap. In many caseg, excitation is created on the donor disee Fig. 1, hops
environment degrees of freedom can be modeled by two re,ygh bridge sites,2 . . N—1, and finally reaches the ter-
evant state$42-47. For instance, when the diameter of a mina|"site N where it is quenched. The excitation transfer
bottleneck(or dimensions of the gate of a skeleton fence ,rqcess is coupled to a fluctuating environment modeled by

exceeds or equal to the characteristic size of diffusing entigo two-state jump bath with statesand 8 [43]. We assume
ties (ions, protein, etg, the channe{gate is open, otherwise 5 girected continuous time walk with nearest-neighbor hop-
it is closed[48]. When the overlap of donor and acceptor Fing from sitei to i + 1 determined by the waiting time dis-

P

wave functions is nonvanishing, the charge hops to the nea Fibuti ; @ B P ;
. ; : tribution functionsy*(t), ¥ (t) for the excitation jumpsi
est neighbor. When this overlap is zero, charge transfer is ARBAY Jumps i(

o . . . ; p ) =1,...N—1) when the bath is in state=«a or 8. Bath
profibied In s dynamc gaing pcure e Co0 S0 fuctyaions are descrbed by te raes, and, of
y P ' —a and a— B jumps, respectively, and are independent of

While the scaling properties of one-dimensional rando L . . L
walks in the presence of static disorder, i.e., the distributi(;ﬁhe excitation. Finally, the quenching of excitation from

of transition rates for various sites in the chain, have beer%'t‘fjl.t,:.asl Ntc.o ar&dll\l_,g)tpf theattirmlngl S[;ti Is described by the

extensively studied by many authd®#9-51], dynamic dis- waiting ime distribu 'OnSﬁD.( ) andyrp(1). itiadi]

order is less studied. The simple one-dimensional randomf]:!-h(;e. time evolution of quctzed walk_p:jobab_lgud b(t)h

walk was studied in the presence of dynamic and static dig2' finding excitation in site = 12, e N Is described by the
eneralized master equations which in matrix form are given

order when fluctuations are either fast or slow than the dif-J

fusion itself[49,52. However, modeling the intermediate re-

gime is more difficult. We have previously analyzed the

distribution of excitation arrival times for a donor-acceptor . t

system coupled to a two-state jump btl?]. We show that P(tn)= fodT‘I’(T;M)P(t— T M), (6N

a directed random walk in aN-site donor-bridge-acceptor

system with exponential waiting time distributions for hop-

ping between nearest-neighboring sites acquires memory fovhereu = «, 8 andP(t; 1) denotes the vector of populations

previously visited sites in the presence of dynamic disorderof sitesi=1,2, . .. N with vector component®'l(t; ) de-
Our model is defined in Sec. Il. In Sec. Ill, we employ a fined by
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®(t; ) is aNX N two-block-diagonal matrix of X2 matrix @1 (t; x) of generalized rates of excitation transfer and bath

jump rate matrixR,

-0 (t;u)—-R 0 0
otu)=| ®Dtw)  —®(tu)-R . 0 , &)
0 SN N(t;n) —@P(t;u)-R
|
where whereP(0;j«) is the probability to find excitation in state
|ju) at timet=0. G is given in Laplace domain by
. #i'(t) 0 - ~
N (t; )= 0 S0 (4) Bz =[2-BD(z )] L, (12)
andP(t; u) is obtained by inverse Laplace (':z—t) trans-
. #p(t) O form and substituting(t; «) back into Eq.(12).
Pt )= 0 )] ®) To study the scaling of quenching times wih we need
b to compute the Green functions, EG2). Because excitation
and is created in site 1, a22 matrix of Green functions.)} (1)
is formed by elements of the N2x2N matrix L~ [zl
Rug —Rga —®(z;)]™ %} of propagators of excitation from stajteu )
R=| _ Reg Raa | (6)  to state|Nw) (uv=a,pB). There are in total ¥~ ! bath state

Using the Laplace transformation

7(2)EJ’:dte*Z‘f(t), (7

the matrix elements of Eq$4) and(5) may be computed in
terms of the waiting time distributions

P2y =2 P(2)[1- Y F(2)] Y, (8)

P2P(2)=ZhP(2)[1-Y3P(2)] L (9)

With the choice ¢;(t,n) =k exp{—kt} for i=1,2,... N
and ¢o( 7, u) =Kp exp{—kpt}, ®(t) reduces to the ordinary
kinetic rate matrix with¢;(u)=k{* and ¢o(un)=kp, and
Egs. (16) become ordinary master equations, i.B(t,u)
=P(u)P(t, 1).

The generalized master equatiofi3 may be solved by
defining the conditional probability matri@ for the excita-
tion to reside in statéju) at timet’ given that excitation
was in statdiv) at earlier timet (i,j and u,v denote sites
1,2,... N and bath states, 8, respectively, i.e.,

G(t,ivit",ju)=[C(t=t";0) ] (- (10)

wherei u=ia,i B is the site and bath state dependent index.

PlI(t; 1) can then be expressed as

P“]<t;m=P<t;m>:j2 G(t,iv;0ju)P(0;jp), (11)
Y73

dependent pathways for propagation of excitation repre-
sented by ¥ diagrams for each of the propagat@s), (2)
(nv=a,p) resulting in total of 2 possible diagrams repre-
senting propagatowst ¢~ (z) + Ry, andz+ ¢*(z) + R, of
excitation in state§i ) and|j8), excitation hops from site

to sitei+1 while being in statex or 8 described by the

generalized rateg®(z) or ¢*,(z), and bath jumps rates.
These fragments are presented in FigpanelA). In each
diagram, the number of propagatgosplus the number of
bath jumpsaN—p is equal to the total number of sités The
number of diagrams withp propagators andN—p bath
jumps is given by the binomial distributioB=N!/[p!(N
—p)!]. Diagonal elements of the Green function matrix,
G (2) andGlj(2), have either even number of bath jumps
or zero. Off-diagonal element&))(z) and G} (z), have
either odd number of jumps or zero. Some of the diagrams
for computation of Green functior@Ly) (z) andGL}l(z) for
N=2 and 3 are given in Fig. &panelB).

The entire distribution of quenching probabilities for ar-
bitrary N is obtained by summing over all'2* diagrams for
each of the four elements of Green function matrix. This
matrix can be obtained numerically by diagonalizing the ma-
trix @(t) itself when the waiting time distributiong’s are

exponential or finding the inverse of matfixl —d(z)] for
generaly’s followed by inverse Laplace transformation to
the time domain. It becomes a formidable task for lage
We have computed the Green functions for tResite
problem recursively starting from Green functions for a
single site using a generating function approach outlined in
the Appendix. The Green functions for tiNesite problem
are given by
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=z + ¢;(2) + R,

=2+ ¢/(2) + Ry

FIG. 2. PanelA: propagators,
waiting time distributions for ex-
citation jumpsia—ja and i
—j B and bath jump$a—ig and
i B—ia. PanelB: Green functions
Gl (2) and GL))(2) for calcula-
tion of the excitation population
the last site foN=2 andN=3.
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éE}g(z)) 13 g*ﬁ(t) = kgvﬁe* kg'ﬁt, (15)
GLl and using Eqgs(13), we have computed probabiliti€V (t)
and Q[a’\'](t) of excitation quenching from terminal states
where é[aljl(z) and é%(z) are single site Green functions |[Na) and|Ng) after it has been created in site 1 at titne
andX,(2), N,(2) are the eigenvalues of the generating ma-=0 defined by
trix Ay(2) given by Eq.(A2). _ _ QN1

All our calculations were carried out using E@.3). It ( “ )

ks 0 \/GWN®) clMm)(ws,
wgq '

shows that the Green functions for the excitation transfer | Q4" (t) o KB/l G

process can be computed from the Green functions for the (16)
two-eigenchannel problem in which this excitation is created o s _

and destroyed on a single site. whereweq=Rop/(Rapt Rpa)s Weq=Rpa/(RaptRpa) are

equilibrium populations of statgd«) and|18) of the first
site, respectively, and the average quenching probability

I1l. QUENCHING PROBABILITY DISTRIBUTIONS (Q[N](t)) given by
We now study a directed walk with no disorder so that INI/+3\ — [N [N]
t))= + . 1
zpf“["z y*P for i=1,2,...N—1. Assuming exponential (QT1)=Qu"+Qp @n
waiting time distribution We computedQN(t), Q%N](t), and (QINI(t)) for the
modelsM1-M9 of fast and slow channels, i.ek*<Kk?.
YoB(t) =k*Pe K"t (14  Models M1-M9 are summarized in Table 1. We sk§
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TABLE |. Parameters of models!1-M 12 used in Figs. 3—12.

Model k® kB Rup Rge kg k§
M1 1.0 7.0 0.1 0.1 10107 1.0x 107
M2 1.0 7.0 1.0 1.0 1010 1.0x107
M3 1.0 7.0 25.0 25.0 1010 1.0x 107
M4 1.0 7.0 0.1 0.4 1010 1.0x 1
M5 1.0 7.0 1.0 4.0 1010 1.0x 1%
M6 1.0 7.0 20.0 80.0 10107 1.0x 1%
M7 1.0 7.0 0.4 0.4 10107 1.0x 107
M8 1.0 7.0 4.0 1.0 10107 1.0x 107
M9 1.0 7.0 80.0 20.0 10107 1.0x 107
M10 1.0 10.0 0.05 0.05

M11 1.0 10.0 0.5 0.5

M12 1.0 10.0 50.0 50.0

=kB=kp and assumed that quenching is fast compared witlnodelsM1-M3 andN=4, 10, and 20. For large¥, peaks
excitation transfer and bath jumps, i.&p>k,R and when  f probabilities shift toward longer times. Plots @M (t),
bath jumps are slow>1 (M1, M4, andM7), intermediate Q[aN](t)’ and<Q[N](t)> for modelsM1 andM2 exhibit long
x~1 (M2, M5, a_ndMS), and fast;<_<l (Mgl’; MG.’ ar_ld tails which gradually disappear as jump rates increase as we
th) comp;ared with _e>|<C|ta_t|.on hopp(ljr)g rgll@ Wh'fcg,b;? move fromM1 to M2 and toM3. Note the remarkable
the case of exponential waiting time distributions o . . . , |

P 9 difference in the time profile oM (t) and QII(t) for

is given by L
modelsM1 andM2. This is not the case fav3 asQ!M (t)
@ differs from Q"'(t) only in the amplitude. Because “fast
dty A1) channel” primarily contributes to excitation quenching,
KoP=— =k, 18  (QMN(1)) resembleM(t).
j dtyeB(t)t ModelsM4-M6 are depicted in Fig. 4. Here, fast chan-
0 nel is less populated as excitation transfers to the terminal
siteN=4, 10, and 20 and the weights Qf, andQ in (Q)
In modelsM1-M3, R,5=Rg,. In modelsM4—M86, Rg,  are roughly equal. After creation of excitation in site 1tat
<R,g, where bath stat@ facilitating faster transfer, and in =, the fast channel probability quickly passes the probabil-
modelsM7-M9, Rg,>R,5. ity in slow channel. Coupling between these channels makes
In Fig. 3, we displayQ!M(t), QN (t), and(QINI(t)) for  faster(slowen part to decay from the terminal site at shorter

Q107 Q,"x10" <«@">x10"

=
‘\
1]
A
N
R
DO
S g
"

..... FIG. 3. Distribution of excita-

INI 2 N -1 tion uenchin robabilities
: X1 <Q™>x10 q g P
P i Q.10 QLM(t) (left panels and QYY(t)
6 (middle panels of the terminal
site stategNa) and|Ng) and the

2 ’__";.‘\ i a\{glrage .quenching probability

//\ R Q™(t) (right panel$ for N=4

: ‘M[N] : : (dashed lines 10 (dotted lines,
2 Qa x10 and 20 (solid lines for models

M1 (top), M2 (middle), andM3
1 {“‘ ," “‘ (bottom).

] 1Y

LAN [B A

0 X T 10 20
qils 11/ /K
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Qa[N]X] 0’ QB[N]X] 0! 3 <@™>x10"

FIG. 4. Distribution of excita-
., IN]. -1 tion quenching probabilities
3 <Q™>x10 QIN(t) (left panels and QYY(t)
(middle panels of the terminal
site stategNa) and|N«a) and the
average quenching probability
QINI(t) (right panely for N=4
(dashed lines 10 (dotted liney,
and 20 (solid lines for models
M4 (top), M5 (middle), andM6
(bottom.

~,
S,

/K t[1/K7 1/

of (QINI(t)) for modelM4. The shorter time peak becomes
more of a cusp for modeV15 and disappears altogether for
modelM6.

(longep times which shows up in the double-peaked feature ON(z) W1z 0
(QE;N](Z)) ) D(

G2 é[;,!(z))

0 X'2/\6Ll GLkz

Comparing Figs. 3 and 4, we see ti@f, Qz, and(Q) « Weq (19
for slow and intermediate bath exhibit power-law tails. This qu '
implies that excitation transfer retains memory to its initial
state. In fact, using the eigenchannel picture of the Appendix,
QN(2) andQ!M(z) can be recast as with the eigenvaluea,(z) andX,(z) given by

Nid2)= {2kkP+ R(K) + zK+ \/(2k®kP+ R(K) + zK)?— 4k*kP[ 22+ z(R+ K) + k°kP+ R(K) ]},  (20)

2defM(2)]

where the average ratek) is defined by (k)=wgKk" t
IN](+) =\ N-1 (]t —
+Wh kP, R=R,z+Rg,, K=k*+k#, and Qp (t)_Weqfod”‘l (7)Qpal(t—7)
t
B N—-1 1]t —
- Z+k*+Rg, Rga 5 +Wqu'odT)\2 (Qas(t= -
M(z)= . 1
@ Ry z+kPF+Ry, @1

Q1) (uv=a,p) in Eq. (22 represent memoryless
propagation of excitation on a single site. Memory effects
enter the dynamics through the eigenvalhg&z) andX,(z)
taken to poweN—1 which in the time domain become in-

t tegral memory kernels )~ 1(t) and\) " *(t).
Q[aN](t):quf dr AN Ql(t— 7) ~ Note that wherR,z= R, =0, Gi}(2) andGfl(2) van-
0 ish and eigenvalue0) of transformation(A2) are given by
. N(2)=k(z+k*) and \5(z)=kPFI(z+kP), where super-
+w§qf drAy Y(nQM(t—7), (22  script “0” denotes no disorder. The distribution of quenching
0 probability becomes

Taking inverse Laplace transform of Ed.9), we obtain
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I(N=-1)-T(N-1(k“—kp)t) _ toky et . .
[QLN]]O(t):P#(O) I‘(N_l)(k,u_kD)N*1 e th' 15 [ ] . 4 TB [1/k% ' :...
e e 3..|2:.-° 2 '::‘...o
u=a,p, (23 050 L.o" et aaett
. ‘.' ...
where P,(0) is a population_s of _statEL,u) at timet=0, Z KT s 0 P
I'(N)=(N—-1)!, andT'(N,y) is defined by d’ s .
” 2 S il
F(N,y)zf dte ¢tN-1 (24) et 2
y ief o3t
q_° q4 O :
In particular, whenk“=kp, Eq. (23) gives [QIM]%(t) 03 111K R A UL aider
=P,(0)[ "1(N) [k“INtN"texp{—kH“t}. It follows from Eqg. ailet
(23 that in the absence of dynamic disorder excitation 2 ieet
guenching probability is exponentially distributed. 0.1 -"::: .......... L ‘3:“
From Figs. 3 and 4, we see that the dynamic disorder -* .t
self-averages for fast bath jump mod&ls3 andM6. As a 0 5 10 15 20 0 5 10 15 20
result, aside from the overall amplitud@™(t), QIN(t), N N
and(Q[N](t)> are identical. Invoking eigenchannel represen- o )
tation, the eigenvalue&20) of transformation(A2) in the FIG. 5. Partial first moments, (left panel$ andt, (right pan-

o . N T ~fb els) of quenching time va\ for modelsM1—M3 (top), M4-M6
l'_m't of fast bath jumpi become,;’(2)=0 and A; (Z). (middle), andM7-M9 (bottom). Size of circles increases with bath
=(k)/(z+(k)), where R=R,s+Rg, and the superscript j,m rates: small, intermediate, and large circles represert,

“fb” denotes fast bath. Vanishing{” implies that we no «x~1, andx<1, respectively.
longer have two interacting eigenchannetsand g but
rather, the dynamics of quenching probability is now aver-(not shown, we found that the time profile O(fQ[N](t» is

aged. As a result, excitation hops in the “averaged channelgominated by a contribution from a fast channel.
with the average raték) and the average quenching prob-

ability
IV. DISTRIBUTION OF QUENCHING TIMES
<Q[N](t)>fb:F(N_1)_F(N_1,(<k>_ kD)t)e,th. ~ Using Eqs(16) for the probability distribution of quench-
I(N—1)((k)—kp)N "1 ing times, we now compute its partial momentp (

(25 =12,...),

The distribution of quenching probability can be computed as o

[QLI1™(t) =we, (QM(1))™. In particular, when(k)=kp, tP(N)= f dtQM(Ot?, v=a,B, (27)
we obtain(QNI())™P=T"1(N) (k)Nt"N~texp{—(K)t}. In the 0

limit of large N, (Q!NI(t))™ becomes a Gaussian distribu-

tion, t(yp) is thepth moment corresponding to quenching from state
INv). The total moment of quenching time distribution is
k t—N/(k)]? given by
(QINI(1)) P~ % ex;{ - ﬁ} for large N,
LT
(26) (tP(N))=tP(N) +t{PI(N). (28)

which is a consequence of the central limit theorem. When In Fig. 5, we display partial first momentg(N), tz(N)
N— o, the relative width of QM (1))™, (VN/(k))/(N/(k))  of the quenching time vl for modelsM1-M9. Because in
approaches zero and excitation transport becomes a sethese modelky>k,R, t,(N), and tz(N) and the mean
averaging deterministic process. guenching timgMQT) (t(N)) studied below are equivalent
Therefore, both in the fast bath jump limit when the dy-to partial first moments of passage time and the mean-first
namic disorder self-averages and in the absence of dynamjzassage time, respectivety(N) andtz(N) for modelsM 1,
disorder, the distribution of quenching probability, given by M4, M7 («>1) andM2, M5, M8 (k~1) exhibit nonlin-
Egs.(23) and(25) respectively, is exponential and thesite  ear scaling withN. Only when the dynamic disorder aver-
walk can be described as a Markovian process without inages out, da,(N) andtz(N) scale linearly withN for mod-
cluding explicitely the bath variable. However, wheaMN els M3, M6, and M9 (x<1). Note thattys(N) (fast
~1 (dynamic disorder the distribution of quenching prob- channel approaches linear scaling faster tHggN).
ability is governed by Eqg22) with nontrivial memory ker- Before analyzing the MQT for models!1-M9, let us
nels\) "1(t) and\) *(t), and excitation transfer becomes a examine the limiting cases of no dynamic disorder{)
non-Markovian walk with memory. For modeld7—-M9 or fast bath jumps £—0) considered in the preceding sec-
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INN

FIG. 6. Log-log plots of the mean quenching time Msfor
models M1-M3 (top panel, M4-M6 (middle panel, and

M7-M9 (bottom panel Size of circles increases with bath jump

rates(see Fig. 5. Upper curves reflect scaling with no disordey,.
Lower curves are obtained for fast bath jum{py, .

tion. Using the distribution of quenching probability given

by Egs.(23) and (25) in Egs. (27) and (28) and settingp
=1, we obtain

(t(N))o=AoN+ By, (29
(t(N))tp=AspN+ By,

where the coefficientdy, By, As,, andBy, are given by

1 1
AO:WPa(O)+WPB(O)’ (30

Bo= L ! P_(O L P,(0
o~ lig k= o(0)+ KEKP 5(0),
App=(k) 1,

1 1
o) ()

and the average excitation quenching rég) is given by

(Kp)=Wg k5 +wWEKE . Therefore, for a Markovian random

walk in the limit k—« or k—0, the MQT (t(N)), and
(t(N))¢p scale linearly withN. Whenk2#=k*# and (kp)
:<k>, we Obta|n<t(N)>o:A0N and<t(N)>fb:Abe.

In Fig. 6, we present log-log plots dft(N)) vs N for

PHYSICAL REVIEW E68, 011101 (2003

FIG. 7. Plots of the fractional exponemtvs N for modelsM 1,
M2 (top), M4, M5 (middle, and M7, M8 (bottom. Solid
(dashed curves denotec>1 (k~1) modelsM1, M4, andM7
(M2, M5, andM8).

by (t(N)), and the lower boundt(N))s,. When the time it
takes for excitation to reach the sites short compared with
1/R, i.e., whenN«>1, the MQT can be reasonably approxi-
mated by(t)y. For our model parameterd|~1 (note that
both curvegt), and(t)s, coincide with data points for mod-
els M1-M9 for N=1). In the opposite limit{t)~(t).
Therefore, model$11-M9 tend asymptotically tdt)¢, for
largeN (in our calculationN~20).

The crossover between the two asymptotic regimes is
clearly observed wheix~1. Indeed, the log-log plot for
this case indicates that the apparent exponent is somewhat
larger than one for intermediafe, and only gradually ap-
proaches the scaling forfh)~N. We have found that in this
parameter regime, the MQT is described by the nonlinear
scaling law

(H(N))=ApNT N 4+ Byy (39
where v is the N-dependent fractional exponent. Therefore,
in a context of the MQT the non-Markovian memory effects
(e.g., long tails of the distributions of quenching probability
depicted in Figs. 3 and)4are reflected in the deviation of
apparent exponent from the unity in the log-log plot of
(t(N)) vsN.

In Fig. 7, we display the fractional exponeptas a func-
tion of N for modelsM1, M2, M4, M5, M7, andM8. y
asymptotically tends to zero for lardé Faster bath jumps
result in smaller initial amplitude and faster decay pf
When Nk>1, the dynamic disorder self-averages and
(t(N)) again approaches linear scaling. In this lindi, and
B¢, are given by the average transfer and quenching rates

modelsM1-M9. (t(N)) lie between the upper bound given (k) and(kp) [see the last two Eq$30)].
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FIG. 8. Partial second momert’ (left panel$ andt(?) (right RS
panelg of quenching time vsN for models M1-M3 (top), -2 -t
M4-M6 (middle), andM7-M9 (bottom). Size of circles increases .
with bath jump rates as in Fig. 5. _4
_ Using the generating Green function technique of the pre- 0 1 2 3
vious sections and E@22), we now Taylor expand Ed28) N
(with p=1) around(t(N))s, i.e., In

d 5 FIG. 9. Log-log plots of(t‘®) vs N for modelsM1-M3 (top
EG(N» +0(¥9), (32 pane), M4-M6 (middle panel, andM7-M9 (bottom panél Size
y=0 of circles increases with bath jump rates as in Fig. 5.

(t(N))=(t(N))sp+ ¥

and to the first order iy, we obtain

N—-1
YN)= K (33

Eq. (33) implies that the amplitude of(N) is proportional 9 :
to « and thaty scales asy~1/InN for large N. When « C il
—0, y(N)—0. o Trelllllnes

We have also analyzed partial second moments of 1 T TP .o i
quenching timet?)(N) andt{)(N) and the average second
moment(t@(N)). t& andt? vs N shown in Fig. 8 for 2l
modelsM1—-M9 are similar to the distribution of first mo- > , : .
mentst, andt, (Fig. 5. In Fig. 9, we present the log-log <tO>/<t> .s
plots of (t(?)) vs N for modelsM 1-M9. Again, we observe e tteiiiiial..
similarity in theN profile betweer{t(®)) and(t) (Fig. 5). The 1 Tteeaanaaiiill
log-log plots also indicate that the apparent exponent is 3l

larger than two for smalN, but asymptotically approaches
the scaling form(t?)~N?2 for largeN or fast bath jumps.

In Fig. 10, we show the ratio of second moment of the 2
MQT to the square of the MQT, . . el
()= (tA(N)) 34 YT i
(t(N))? N

as a function of for modelsM1-M9. This quantity probes FIG. 10. Plots of the dimensionless raitd?)/(t)? vs N for

a contribution to quenching times from rare evemt@\) models M1-M3 (top panel, M4-M6 (middle panel, and
starts off from a finite valuénot equal to 1and decays with M7-M9 (bottom panél Size of circles increases with bath jump
N, approaching asymptotic valu¢N) =1 for largeN. Varia-  rates as in Fig. 5.
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.......

FIG. 11. Top:V,(t) (left pan-
ely), Vg(t) (middle panels and
(V(1)) (right panelg vst for mod-
els M10 (dotted lines, M11
(dashed lings and M12 (solid

01T 812 0

t[1/K] t[1/K]

lines). Bottom: An,(t) (left pan-
els), Ang(t) (middle panels and
(An(t)) (right panelg vs t for
modelsM 10 (dotted liney, M11
(dashed lings and M12 (solid
lines). Initial populations of states
a and B of the donor areP ,(0)
=0.95 andP4(0)=0.05.

t[1/K]

tion of r with N demonstrates that higher moments of meanwhere the Green functiorg,.(t) andg,g(t) are given by

quenching time provide additional information to that con-g,,(t)=R™*(R,z+Rg.e ")

tained in the MQT.

V. DISTRIBUTIONS OF COORDINATE, VELOCITY,
AND DIFFUSION COEFFICIENT

and  g,5(1) =R (R,
—Rﬁae‘R'), respectively, andyz,(t) and ggg(t) are ob-
tained by interchanging indices« B. These functions de-
scribe propagation of the total occupation probability from
channelu to v (u,v=a,B) subject to initial condition
P.(0)=27_oPL(0), P40)=37_oPL"(0), and P,(0)

We now examine the scaling behavior of excitation coor-, P4(0)=1.

dinaten, velocity V, and diffusion coefficienD in the limit
whenN—oo. The velocity distribution is defined by

d
Vﬂzan#(t), n=a,p, (35
and the average velocity function is
d
(V)= gy (n(1)=Va+Vp. (36)

The distribution of excitation coordinate,(t) and the aver-
age coordinatén(t)) can be obtained by integrating,(t),
Vg(t), and(V(t)) with initial conditionn(0)=1.

It follows from Eq. (1) that

d o d
qrn()= 2 n PO +PEI(D)]

=k, P+ Pit),
n=0 n=0

(37

where the total populationsP,=3;_P") and P,
=>7_oPLY of channela and 8 obey the system of coupled
differential equations
Pa(t)
[P

d(mt))_(—Rﬁa
dt\ Pa(t)) | R, Pp(t)

Egs.(38) can be readily solved to give

( Pa(t)) _ Jualt) gag(t)) ( Pa(o))
Ps(t) 9pa(t)  gpp(t) P,g(o),

Rz
— RQ,B

(39

Using Eqgs.(39), we obtain for the average velocity func-
tion

a0 BB Ak —Rt
<V(t)>:k Weq+k Weq+F[Rﬁapa(o)_RaﬁPﬁ(o)]e )
(40)

where Ak=k%—k? is the magnitude of disorder. It follows
from Eq. (40) that{V/(t)) starts off from its valu&k®*P ,(0)
+k'3PB(O) at timet=0 and asymptotically approaches the
limit

(Vy=lim(V(t)) = k*wg,+ kPws

g (42)

t—oo

whereV,=k“wg, and Vﬁ=kﬂwgq is the distribution of ex-
citation velocity. The transient pgsecond term in Eq(40)]
decays on the time scale of bath relaxat®n'. Thus, dy-
namic disorder self-averages wheaR™ 1.

In Fig. 11 (upper panels we plot the distribution of ve-
locity

V() =kwg,+R™k*Rg,P,(0)exd — Rt],
V(t) =kPwg,— R™KPR, 4P 5(0)exd — Rt],

(42

and(V(t)) for modelsM10, M11, andM 12 with x>1, &
~1, andx<1, respectivelysee Table)l Note that since in
our calculatiorAk<0, V4(t) grows at the expense f,(t).
All three quantities,V ,(t), Vg(t), and (V(t)), approach
their respective asymptotic limit§/,, Vg, and(V), as«
—0.

The distribution of thepth moment p=1,2,...) of ex-
citation coordinate is defined by

011101-10
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0

an in[n] ,
M nzo M

m=a,p, (43

wherePL(t) andP(t) are populations of statésa) and
I[na). The average coordinate is given by

o0

<np(t)>sn§O PP (t)=nP+nb. (44)

The distribution of coordinates,(t), ng(t) and the av-
erage coordinatén(t)) can now be obtained by integrating
V,(t), Vg(t), and(V(t)) subject to initial conditionn(t
=0)=ng. For{n(t)), we obtain

(n(1))=no+ (K wg+KAwE )t

Ak Rt
+R2Z[RpaPa(0) ~RagP4(0) J(1—€7™).
(49)

The distribution of displacement given by

An,(1)=n,(t) = N,o=k*Wgt+R™?k*Rg,P,(0)
X (1—exd —Rt]), (46)
Ang(t)=ng(t)—ng=kPwit—R"

X (1—exd —Rt]),

kPR, 5P 5(0)

and the average displaceménamn(t))=(n(t))—n, for mod-
els M10—M12 is plotted in Fig. 11(lower panels Again,
we see that all three quantitiegyn,(t), Ang(t), and
(An(t)) approach linear scalingdn,(t) ~Kk*wgqt, Ang(t)
~kPwgt, and (An(t))~ (k*wg,+kPwE )t after the dy-
namic dlsorder self-averages.

We next examine the distribution of higher moments of

excitation coordinatenf(t), nj(t) and higher moments of
the average excitation coordinat@wp(t)) (p>1). For
(nP(t)), we obtain

; .
d<nd(t)>—k“2 [(n+1)P—nP]PLY(t)

+kBZO [(n+1)P—nPIPLY(1)

p o]
=k*>, Cp 2, nP'Pi()
=1 n=0

p—1

kﬁ’Z c! 2 nP- 'P”l(t)+2 Cplkenl k(1)

[

+kﬁnz‘1(t)]+k“2 Pl (t kBZ PLI(D),

(47)

PHYSICAL REVIEW B58, 011101 (2003

where C'pzp!/[l!(p—l)!]. Equation(47) implies that the
distribution of pth moments of excitation coordinate can be
computed recursively from the corresponding distribution of
moments of ordep—1.

The distribution of second momem%(t) nﬁ(t) and the
average second momef?(t)) are obtained by setting
=2 in Eq.(47), i.e.,

d(nt)) d
¥=m[ni(t)+n2(t)]

=k, (1) + P () ]+ K ng(t) + Py(t)].
(48)

Insertingn,(t), n,(t), P,(t), andP4(t) into Eq. (48) and
integrating Eq.(48), we obtain the distribution of second
moments,

ke 2
N2(t) =2+ | N ok + KW+ [RZ] [RgaP(0)
ke [ka]Z
aBP,B(O)] t+3 [ka]z eqt2+ RZ R3 )

X[RgaPa(0)=RasP4(0)1(1—e" Y,

B 2
[RZ] [Rﬂa a(o)

1 kP [kP]?
t+ E[kﬁ]ngth_ (ﬁz— —Rg—)

2 2
N5(t)=n5o+| ngokP+kAws —

RasPs(0)]

X[RgaPal(0)=RasPp(0)](1—e~ Y, (49

wherena0 nZ(0), nﬁ0 nB(O) are initial conditions 1%,
+n2,=1) and the average second moment (ig?(t))
=n,(t)+n (t)

Plots ofAn (1), AnB(t) and(An?(t)) for modelsM 10
—M12 are presented in Fig. 1@pper panels The ampli-
tude of An? for a slow channel £n7 for a fast channgl
increasesdecreaseswith bath relaxation time scale. As fol-
lows from Egs.(49) and seen in Fig. 12, all three quantities
An’(t), Anj(t), and(An(t)) scale linearly with time for
short times and quadratically for long times. In the interme-
diate time regimeRt~1), the dynamic disorddterms con-
taining factor 1-exd —Rt] in Eqgs.(49)] gives nonvanishing
contribution.

We have also computed the distribution of diffusion func-
tion D ,(t) andD 4(t) defined by

1d

(Daa))_ na(t) (
Da(t)) ~ 2dt| | n3t))

and the average diffusion functid(t)),

n,(t)?
n,e(t)zﬂ’ 0

011101-11
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<An*>x10?

FIG. 12. Top: AnZ(t) (left
panel3, Ang(t) (middle panels
and (An?(t)) (right panel$ vs t
for models M10 (dotted lineg,
M11 (dashed lines and M12
(solid lineg. Bottom: D (t) (left
panel3, Dg(t) (middle panels
and({D(t)) (right panel$ vst for
modelsM 10 (dotted liney, M11

{ (dashed lings and M12 (solid
M H o lines). P,(0) andP4(0) are as in
— = Fig. 11.
0 20 40 20 40 0 20 40
t 1/ t1/K°] t[1/K]
1d_ ) Examination of the probability distribution of quenching
(D))= 5 [(n“(1)) =(n(1))“]. (51)  at the terminal site shows that when hopping rates associated

2 dt
with bath states are notably different, bath state dependent

, guenching probabilities develop interesting dynamical pat-
Expressions foD ,(t), Dg(t), and(D(t)) are too lengthy e (j.e., anomalously long quenching time tails for a slow
an?nvgzgnitztzﬁ)v?/;(erssgit we displayD.(t), D (1), and channel and peaks at short times for a fast chanwi¢h the

' A AT A average quenching probability exhibiting multiply peaked
<D(t).> for mod'eIlelo—M 12.' Note drastic difference in the long quenching tails. This implies that in the presence of
amplitude of diffusion coefficients for slow and fast Chan'fluctuating environment wherR is comparable with the
nels..We see that only after the dynamic disorder averageﬁlQT random walk becomes a non-Markovian process once
?Igt(t()l}eépf:rrol:cﬁut%hei:hl?r::fcmj %j)|stdr %Ei‘z)(;)éi\?eﬁétg ?jri]f?u- the bath is eliminated. When bath jumps are fast compared
sion coefficientd , ,=lim,_...D. 4(t) and the average dif- with transport time, quenching probabilities and the average

.p tme @ f probability are identically distributed. In this limit, we

fusion coefficient D)=Ilim,_,..(D(t)). A slow channelfast ) ) .
channel approaches its asymptoti@, (D) from below merely see the average channel since self-averaging sets in
on the bath time scale almost immediately.

(above, which reflects conservation of the total probability o - ] )
These findings motivated our study of scaling of the entire

in channelsa and . o . . -
Note that before the disorder self-averages, may be- distribution of quenching time and the MQT witl. In the

come negative, implying the absence of excitation transfer iPsence of dynamic disorder when the waiting times are ex-
channela and funneling of the distribution from channel ~ Ponentially distributed, the average posing time for a di-
to channelg at short times. However, as the disorder self-rected walker is inversely proportional to the hopping rate
averages at longer timeB,, becomes positive. and the MQT is linear irN. However, with disorder partial
first moments of quenching time and the M@} notably
deviate from linear scaling. We found tha~N*"” where
the fractional part of the exponentscales withN as 1/IiN

In this paper, we studied the effects of a fluctuating envi-and is inversely proportional to the bath jump time scale.
ronment on transport, modeled by a directed one-Therefore, as the dynamic disorder self-averages, deviations
dimensional walk. We consider a walker created at time of (t) from linear scaling gradually disappear for a longer
=0 on the first site of the chain and destroyed at some latewalk or faster bath jumps. Only whed«<1, does(t) ap-
time on a terminal siteN. The fluctuating environment is proaches asymptotically linear scalingt)~N. The exis-
described by stochastic jumps between two states of the battence of finite fractional counterpat is directly related to
In this stochastic model, transport is affected by the batton-Markovian long tails of the distribution of quenching
dynamics but the bath is not affected by transport. probabilities and is a result of the memory of the random

We studied the dynamics when the waiting time for awalker to its initial state.
walker to hop to the next nearest neighbor are exponentially We have further examined partial second moments of
distributed in a regime when both transport and bath fluctuaguenching time and the average second mortéfh. Simi-
tions occur on a comparable time scale assuming the saniar to the behavior oft), we found deviations oft(®)) from
transfer rates for all sites. The present analysis could be exjuadratic dependence and ti#f))~N? only after the dy-
tended to include both static and dynamic disorder as well asamic disorder is self-averaged. In view of the interesting
backward transitions. types of dynamic behavior fdit) and(t?), we examined the

VI. CONCLUSIONS
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inverse problem, namely, how the length of a directed walkmatrix ®("(z) is obtained by Laplace transformation of en-
scales with t|md|.e.,<n> and(n > as functions Ot) in the trees of matnx(l)(n)(t) given by Eq(4), and matrixR is

limit when N is infinite. We computed the distribution of gven by Eq.(6). Similarly, Green functioné[ﬁn;l](z) and

displacements, average displacement, the distribution of di [n+1] _ = [n] =n]
placement second moments, and the average second momé&hts (2) can be obtained fror;;,(z) andGy;(2) by the

of displacement. We have shown that the distribution ofif@nsformation —in — which ~we have interchanged

higher (pth) moments of coordinate can be computed fromé(2) < ¢4 (2) andR,z—Rpg, .

the distribution of moments of lower ordep{1). The matrix transformatiorA,(z) in Eq. (A1) allows to
Similar to (t(N)) and (t*(N)), (An(t)), and(An%(t))  derive a recursion relation between thsite and O+ 1)-site

exhibit interesting scaling behavior with timeAn) scales — proplem. Alternatively, the matrix transformatiof,(z)] 2

linearly with t only after the transient part reflecting dynamic inverse toA,(2), reduces ther(+ 1)-site problem into the

disorder decays to zero on the time sdale!; (An?) scales , _ -
linearly with time for times shorter thaR~* and quadrati- N-Site problem. Therefore, applying transformatiég(z) to

cally for times longer tharR™* with the cross over facili- Green funCtionSégF],(z) and é[alg(lz) for 1-site problemN

tated by the transient terrfdecaying exponentially on the —1 times, we obtain Green functions ffsite problem, i.e.,

time scaleR™ 1) coming from dynamic disorder. We have &(z)
aa Z )

&IN
also computed the distributions of velocity and diffusion co- Gl a](z)
Gh@)

a

_aAN-1
é[[\g(z) _An (Z)

efficient, and the average velocity and diffusion coefficient (A4)

and found that only after the dynamic disorder self-averages,
do distributions of velocity and diffusion coefficients ap- Although Eq.(A4) has a simple form, it is not practical for

proach their limiting constant values. computations with largél. To make it more useful, we solve
the eigenvalue problem fok,(z), i.e.,
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wherea,(z) is the matrix of eigenvalues, ;(z) and\, 5(z)
APPENDIX: RECURSIVE CALCULATION of Ay(2).
OF THE GREEN FUNCTIONS In the absence of static disordev; 1(z)=X\,4(2)="--
=X\1(2) andX; Az) =\, A2)=---=X\,(2), and solving the

The Green functionss!""(z) and GI"/*!(z) for the . . \ ;
aa af —
(n+1)-site transfer problem can be obtained from Gree ellg)envalue problenfA5) N—1 times, we finally obtain Eq.

functionsGL[}(z) andGLj}(2) for the n-site problem by the Equation(13) sums the ¥~ diagrams in calculation of
following matrix transformation: ég\g and éEINB] and the result iSHi’\‘;lei,léEﬂ(Z) and
B+ 1) Bl (2) niN;ZiXi,zégg(z), respectively. Note that the eigenvallgs
Bl =An(z &z (A1)  and \;, must remain invariant VYIth respect to th 'l\‘nter—
ap ap changex« B, and for the other pair of Green functloﬁém]
where the generating matrix,(z) is defined by andGly , we obtain
. - - G| (Xi™*2 0 GLa(2)
An(2)= —=——[Pl(2) +RI®"(2), (A2) = TN | g )
defPl"(z) +R] Ghi») \o N2/ \ Ghl2)

where matrixP"l(z) of excitation propagators is given by ~The bath state dependenix and a8 elements of Green
function matrix for N-site problem depend ona and a8

z+¢P(z) O elements for the problem involving a single site. In this
pinl(z)= ] (A3)  “two-eigenchannel” picture, excitation pathways from state
0 z+ ¢n(2) of the bath| 1) to state|Nv) (u, v=a, B8) are decoupled.
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