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Sequences of carefully timed and shaped optical pulses provide femtosecond snapshots of molecular
structure as well as electronic and vibrational dynamical processes, in analogy with
multidimensional NMR. We apply a genetic learning algorithm towards the design of pulse
sequences which simplify the multidimensional signals by controlling the relative intensities of
various peaks. Numerical simulations demonstrate how poorly resolved weak features may be
amplified and observed by using optimized optical pulses, specifically shaped to achieve a desired
spectroscopic target. ©2004 American Institute of Physics.@DOI: 10.1063/1.1691020#

I. INTRODUCTION

Elaborate NMR pulse sequences are currently routinely
used in structure determination of complex biomolecules.1,2

Recent progress in optical pulse shaping3–9 has opened up
the possibility of extending these techniques towards the
study of electronic and vibrational motions in
molecules.10–15 The interpretation of NMR measurements is
facilitated by the relative simplicity of spin Hamiltonians
which often allow back of the envelope, perturbative, design
of new pulse sequences.16 Vibrational and electronic motions
are far more complex than spins,12,17 and developing optical
or infrared pulse sequences generally requires elaborate and
expensive simulations.

In this paper we demonstrate how a genetic pulse-
shaping algorithm may be employed towards the optimiza-
tion of multidimensional signals. Introducing coherent-
control ideas into multidimensional spectroscopy provides a
new tool, that could make high-resolution ultrafast snapshots
of complex biomolecules a reality. The field of coherent con-
trol has been driven by the objective of selectively breaking
and making chemical bonds.18–20The primary goal has been
to guide chemical reactions to a desired product using laser
pulses, leading to the formation of novel stable or metastable
molecules.21,22 Other applications of coherent control were
directed towards the manipulation of current echoes in
semiconductors,23 energy flow in light harvesting
complexes,24 and vibrational wave packets.25 Nonlinear op-
tics applications include two-photon transitions,26,27 soft
x-ray emission,28 and four-wave mixing~coherent Raman!
spectroscopy and microscopy29,30 where the elimination of
nonresonant background and the selective excitation of
closely-lying Raman modes was achieved.

The proposed application of closed-loop learning optimi-
zation algorithms for the design of optical pulses has pro-

vided a major advance towards the practical implementation
of control techniques in complex molecular systems.31 The
implementation of the idea involves three elements:~i! an
input trial laser pulse,~ii ! applying the pulse to the sample
and observing the signal,~iii ! using a genetic learning algo-
rithm to generate new pulse shapes based on these prior
experiments.32 These steps are repeated until the desired tar-
get is achieved. Genetic algorithms perform a parallel search
on an entire ‘‘population’’ of pulses, use payoff~cost func-
tion! information, rather than derivatives or other auxiliary
knowledge, and employ probabilistic, rather than determin-
istic, rules. The necessary population size is typically much
smaller compared to Monte Carlo simulations. Various pulse
shaping schemes with genetic optimization were studied re-
cently by Zeidleret al.33

Multidimensional spectroscopy is based on an elemen-
tary nonlinear optical process known asfour-wave mixing.
Consider a molecule interacting with three monochromatic
optical fields with frequenciesva , vb , vc and polarized
along the directionsa, b, g, respectively~which assume the
values x, y, z!. The three beams mix by their coupling
with the molecule to generate a new signal field with
frequencyvs and polarizations. The amplitude of this field,
calculated perturbatively in the incoming fields, is propor-
tional to the third order nonlinear susceptibility tensor
xsabg

(3) (2vs ;va ,vb ,vc).
Generallyx (3) has 836381 contributions~8 Liouville-

space pathways, six permutations of the three frequencies,
and 81 tensor components!. Each contribution further in-
volves a fourfold summation over molecular eigenstates.34

x (3) is thus determined by strong interferences among the
various contributions. Using laser pulses defined by the en-
velopeEa(r ,v)[* dtEa(r ,t)exp(ivt), wherea5x, y, z de-
notes the polarization, the signal will be proportional to the
sth component of the induced polarization which is given
by34

a!Author to whom correspondence should be addressed. Telephone:
949-824-7600; Fax: 949-824-8571. Electronic mail: smukamel@uci.edu

JOURNAL OF CHEMICAL PHYSICS VOLUME 120, NUMBER 18 8 MAY 2004

83730021-9606/2004/120(18)/8373/6/$22.00 © 2004 American Institute of Physics

Downloaded 17 May 2004 to 128.200.11.130. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1063/1.1691020


Ps
~3!~r ,t !5 (

abg
E E E dvsdvadvbdvc exp~2 ivst !

3xsabg
~3! ~2vs ;va ,vb ,vc!

3Ea~r ,va!Eb~r ,vb!Eg~r ,vc!. ~1!

In a frequency-domain experiment,Ea(r ,va) is a nar-
rowly peaked function of frequency and the integrations in
Eq. ~1! can be eliminated so thatPs

(3)(r ,vs) is directly pro-
portional toxsabg

(3) (2vs ;va ,vb ,vc). The multiple integra-
tions over pulse envelopes in Eq.~1! imply that Ps

(3)(r ,t) is
given by acoherent superpositionof the various frequency
components ofx (3) which may be externally controlled by
the pulse envelopes.Ps

(3) is thus affected by two types of
interference: those contained inx (3) and those resulting from
the multiple integrations~coherent superpositions of various
frequency components!. Pulse shaping3–6,8,9offers numerous
possibilities for affecting the signal by controlling the latter
interferences. These will be the focus of the present study.

We shall consider a four wave mixing process carried
out with three incoming fields (j 51,2,3) and a fourth
field ( j 54) associated with the heterodyne detection:
E(r ,t)5( j 51

4 (aEj a(t2 t̄ j )exp@i(k j r )2 i v̄ j t#1c.c. Here
Ej a(t2 t̄ j ) is a complex envelope function~slowly-varying
compared to the optical period 2p/v̄ j ). k j , v̄ j , and t̄ j are
the wave vector, carrier frequency, and peak time of thejth
mode, respectively. The frequency domain amplitude of the
field is given by

Ea~r ,v!5(
j 51

4

Ej a~v2v̄ j !exp$ ik j r1 i ~v2v̄ j !t̄ j

1 if j a~v2v̄ j !%1c.c., ~2!

where Ej a(v)exp(ifja(v)) is the Fourier transform of the
envelopeEj a(t). Both the envelope functionEj a and its
phasef j a are taken to be real.

The heterodyne signal involves interference between the
polarization and the heterodyne field (E4a(t)), and is given
by17,34

S~ks!5Re (
s,a,b,g

E E E dvsdvadvbdvc

3xsabg
~3! ~2vs ,va ,vb ,vc!E1a~va2v̄1!

3E2b~vb2v̄2!E3g~vc2v̄3!

3E4s~vs2v̄4!exp~ iksabg
~s! !. ~3!

The only possible directions of the signal areks5uk1

1vk21wk3 , where u, v, and w are integers
~50,61,62,...!.34 The phaseksabg

(s) which depends onks

is ksabg
(s) 5uF1a(va)1vF2b(vb)1wF3g(vc)2F4s(vs),

where the phase functions are given byF j a(v)5f j a(v
2v̄ j )1(v2v̄ j ) t̄ j with j 51, 2, 3, 4. Each choice of inte-
gersu, v, and w represents a distinct technique. When the
pulses are very short and well separated,k1 comes first, fol-
lowed byk2 and finallyk3 . However, Eq.~3! is not limited
to this case and any time ordering is permitted. The signal
depends on the observation directionks as well as all the

parameters specifying the different pulses such as the enve-
lopes Ej a(v), f j a(v), v̄ j , t̄ j , etc. This large parameter
space may be explored and optimized to achieve desired
spectroscopic objectives.

Our model system of coupled localized vibrations~or
electronic excitations of molecular aggregates! is introduced
in Sec. II. Simulations of two-dimensional spectra presented
in Sec. III show how the intensities of different peaks may be
independently controlled by pulse shaping, allowing us to
observe new, otherwise unresolved, spectral features. Our re-
sults are discussed in Sec. IV. Details of the pulse shaping
algorithm are given in the Appendix.

II. THE NONLINEAR RESPONSE OF EXCITONS

We consider the system of coupled localized anharmonic
vibrations shown in Fig. 1. The vibrational modes are labeled
m, n,..., and thestates areg ~ground state! and excited states
a, b, c,... . The eigenstates of this system are known as
excitons. The same model of coupled multilevel chro-
mophores can also represent electronic excitations of
aggregates,35 but for clarity we focus on vibrations.

To describe the system we introduce creation (B̂ma
†

[uma&^mgu) and annihilation (B̂ma[umg&^mau) operators,
which create/annihilate the excited stateua& on themth chro-
mophore,umg& being its ground state. The Hamiltonian has
three terms:Ĥ5ĤS1ĤSB2P̂"E(r ,t). ĤS represents the
coupled chromophores

ĤS5(
m,a

VmaB̂ma
† B̂ma1 (

m,a,n,b

mÞn

Jma,nbB̂ma
† B̂nb , ~4!

where Vma are the chromophore energies andJma,nb their
couplings. ĤSB represents the interaction with a thermal
bath,

ĤSB5(
m,a

B̂ma
† B̂maqma

~C! , ~5!

FIG. 1. Model dimer of three level molecules, representing either electronic
excitations or anharmonic vibrations.ug&, ua&, andub& indicate ground, first,
and second excited states of individual chromophores. Molecular excited
states are defined as follows: First excited state energy equal toVma5V
51677 cm21 (m51, 2; a51) and the first overtone energyVmb52V
21653338 cm21 (m51, 2; b52). The dipole–dipole coupling between
the excited molecular states is assumed asJma,na510 cm21 (a51, mÞn).
The coupling with the second excited states is neglected (Jma,nb50; a
52, mÞn). The transition dipole moments are parallel andmm,ab

5A2mma . In the eigenstate representationue& andue2& indicate one-exciton
state and two-exciton state, respectively. The overtone states are the same in
exciton basis in our model. Possible optical transitions and the linear ab-
sorption spectrum is shown as well.
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whereqma
(C) is a collective bath coordinate which modulates

the chromophore energies and represents the coupling
strength between statea of the mth chromophore and the
bath. This coupling is linear in the bath coordinate which
induces fluctuations in the diagonal elements of the Hamil-
tonian. All relevant information about the bath is contained
in the Brownian oscillator spectral density

Cma,nb~v!52 Im E
0

1`

dt exp~ ivt !^qma
~C!~ t !qnb

~C!~0!&

52lmanb

vL

v21L2
, ~6!

wherelmanb is the strength andL21 is the time scale of bath
fluctuations.34,36

The last term in the Hamiltonian represents the interac-
tion of the vibrations with the optical field. In the dipole
approximation the polarization operatorP̂ can be expressed
as

P̂5(
ma

mma~B̂ma1B̂ma
† !1mm,abB̂ma

† B̂mb , ~7!

mma is the transition dipole moment between the ground state
and the excited statea of the mth chromophore, whereas
mm,ab is the transition dipole between the excited statesb and
a of the same chromophore.

In our simulations we assumed two identical three level
anharmonic vibrations with parameters similar to those of
Ref. 37 ~see Fig. 1!. Excited state energies areVma and
Vmb , and the coupling between the lowest excited states is
Jma,na . The system has two singly-excited Frenkel exciton
states~related to the excitation of molecular statesa! with the
energiesVma2Jma,na andVma1Jma,na . The lowest excited
state is dark, i.e., has zero transition dipole to the ground
state, while the higher state has the transition dipole moment
A2ma . The linear absorption~Fig. 1! consists of the single
allowed exciton transition. The higher excited states are two
overtone states,umb&, and one double exciton state~combi-
nation band! with energy 2Vma . The resonant transitions
relevant for the photon-echo experiment involve these opti-
cally allowed states.

The third order polarization created by two optical
pulses polarized alongs5z was simulated by numerical so-
lution of the nonlinear exciton equations~NEE!,38 which are
coupled equations of four types of dynamic variablesBma

5^B̂ma&, Yma,nb5^B̂maB̂nb&, Nma,nb5^B̂ma
† B̂nb&, and

Zma,nb,kc5^B̂ma
† B̂nbB̂kc&. The interaction with the bath re-

sults in line broadening and is described using relaxation
superoperators in the NEE. We have computed the two-pulse
photon echo signal generated in the directionkI52k22k1

~settingk35k2). The signal was expressed as a function of
the two delay timesPz

(3)(ks ,t)5Pz
(3)(ks ,t21,t42), where

t21[t̄22 t̄1 is the delay between the two pulses andt42

[t̄42 t̄2 is the delay between the second pulse and the de-
tection. The signal is displayed as a correlation plot in the
frequency domain,

F~v1 ,v3![U E
0

`

dt21E
0

`

dt42

3Pz
~3!~kI ,t21,t42!exp~ iv1t211 iv3t42!U. ~8!

III. CONTROLLING THE DIAGONAL,
OVERTONE, AND COMBINATION BANDS
OF COUPLED VIBRATIONS

The frequenciesv̄1 and v̄2 were tuned to the transition
frequency of the isolated chromophoresVma and both pulses
were taken to be Gaussian with widthssG5200 fs ~see Ap-
pendix!. The time and frequency profiles of the pulses may
be visualized by displaying their Wigner spectrogram,

FIG. 2. ~Color! Wigner spectrograms of the second optical pulse and the
corresponding photon-echo signalF(v1 ,v3) of the system. Each row cor-
responds to one nonlinear experiment. The top row shows the results for the
Gaussian pulse. The right panel gives the 2D spectrum (2v1 vs v3) ~c!
together with the correspondingv1510 cm21 slice alongv3 axes~d!. The
left panel shows the Wigner spectrograms of the second pulse~b! and it
temporal profile~a! obtained integrating the Wigner spectrogram over the
frequency. The following rows shows corresponding the corresponding data
for the optimized pulses:~D! diagonal peak maximized;~C! combination
band optimized;~O! overtone band optimized. All energies are computed
with respect toVma51677 cm21. The optimal field parameters for diagonal
peak are:c1523.21381,c2523.30351,c35903.531 fs,c4520.40409;
for combination peak:c152.69819, c2523.31746, c35542.42 fs, c4

521.28757; for overtone peak:c1520.23587, c253.49987, c3

5343.075 fs,c452.7182.
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I W~t,v!5U E
2`

1`

dsE* ~t2s/2!~t1s/2!eivsU. ~9!

The spectrogram of our Gaussian pulses is shown in the left
column top row panel in Fig. 2. We also show its temporal
profile uE(t)u2 given by the frequency integral of the spec-
trogram~known as a marginal!.

F(v1 ,v3) was simulated by varying the time intervals
t21, t42 between 0–50 ps inDt5250 fs increments creating
a grid of 2003200 points. The time step for integrating the
NEE equations was 200 fs in the absence of optical field and
50 fs when the field is present. This is much shorter than the
oscillation period of polarization envelope~200 fs,;3 ps!
and of the optical field envelope~50 fs,;300 fs!. The pho-
ton echo spectrum of an ideal system with narrow spectral
lines should have three peaks: the diagonal peak
(D) (v1

D ,v3
D)5(10 cm21,10 cm21); the combination two-

exciton band (C) (v1
C ,v3

C)5(10 cm21,210 cm21), and the
overtone cross-peak (O) (v1

O ,v3
O)5(10 cm21,226 cm21)

related to double excitations of the individual chromophores.
We assumed room temperature (kBT5200 cm21) and

the bath relaxation rateL550 cm21. The coupling strengths
to the bath correspond to the strong coupling regime
@2plma,ma50.25 cm21, 2plmb,mb51 cm21 (a51, b52)#
leading to dephasing time~inverse linewidth! td'5 ps and
overlapping spectral lines. The resulting 2D signal is shown
in the top row of Fig. 2~right column!. The broad peaks
overlap and the combination band~C! is hidden under the
diagonal peak~D!.

We next show how the various peaks may be resolved
using optimized pulse shapes. To define the cost function
which will be maximized we first introduce the integrated
intensity of peakj;

I j[E
2d1

d1
dv1E

2d3

d3
dv3F~v11v1

j ,v31v3
j !,

j 5D,C,O, ~10!

where we focused on the three peaks: the diagonal peakI D at
(v1

D ,v3
D), the combination peakI C at (v1

C ,v3
C), and the

overtone peakI O at (v1
O ,v3

O). The integration intervals
are d152 cm21, d3510 cm21. The cost function used to
maximize the diagonal peak is then defined asWD

[I D /(I C1I O). Similarly we define cost functions for the
other peaksWC[I C /(I D1I O) and WO[I O /(I D1I C). The
evolutionary algorithm is then applied to search for the op-
timal shape of the second pulsek2 which maximizes the
particular cost function while the first pulse is kept in its
original Gaussian form. Further details and parameters of the
optimization algorithm are given in the Appendix.

The signals for the optimized diagonal, combination and
overtone peaks are shown in the second, third, and fourth
rows of Fig. 2 ~right column!. The corresponding spectro-
grams of the optimized second pulse are shown in the left
column. We further show a section of the 2D spectra for a
particular value ofv1 . The convergence of the cost function
with generation number is displayed in Fig. 3. For the diag-
onal peak optimization,WD is increased by a factor of 2 and
the optimized signal shows only the diagonal peak. For the

combination band optimization,WC is increased almost
threefold and the combination peak, which was not resolved
prior to optimization, is now clearly visible. The overtone
peak is visible even in the case of Gaussian pulses. However
WO is increased by about 3.5 times upon optimization and
the signal is better resolved. Figure 3 shows that convergence
to the optimal result is fast in all three optimizations and
takes 10–20 generations.

IV. DISCUSSION

We have shown how the coherent femtosecond two-
dimensional correlation spectrum may be simplified by opti-
mized pulse shapes. The second pulse was optimized to
maximize the ratio of the intensity of the diagonal~D!, com-
bination ~C! or the overtone~O! peaks relative to the other
peaks. The ratio was increased two or three times for differ-
ent peaks and the three peaks are clearly resolved by using
shaped pulses. Our simulations demonstrate that the applica-
tion of shaped optical pulses in coherent nonlinear spectros-
copy can reveal otherwise unresolved features, such as the
combination peak. The optimal pulse shapes show elaborate
time-frequency patterns, as seen in the spectrograms~left
column of Fig. 2!. These indicate that many frequencies are
involved in interference between different elementary transi-
tions or Liouville space pathways.

The ability to control the signal by manipulating phases
is intimately connected with the nonlinear response which
directly depends on the sum of phases of the fields. Different
peaks in the spectrum are controlled through the frequency-
dependent phases of the shaped optical pulse. Pulse shaping
offers various avenues for interfering the many contributions

FIG. 3. Distribution of the cost function in the population of genetic algo-
rithm ~circles! and its evolution during optimization; solid line shows the
average cost value:~D! diagonal peak maximization;~C! combination band
optimization;~O! overtone band optimization. The cost value for the initial
Gaussian pulses is indicated by a ‘‘star.’’
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to x (3), and genetic algorithms provide an affordable way to
search the huge parameter space. We have only explored a
small fraction of the numerous possibilities offered by Eq.
~3! for control: We focused on thekI technique and only
shaped the second pulse with a limited set of parameters. In
the two pulse echo generated in the directionkI52k11k2

1k3 the second and third pulses are the same and the phase
factor is 2 iF1(va2v̄1)1 iF2(vb2v̄2)1 iF2(vc2v̄2).
Studying the other techniqueskII5k12k21k3, kIII 5k1

1k22k3, and kIV5k11k21k3 together with a full scale
three pulse optimizations will be most valuable.

Our simulations performed in the weak laser field limit
demonstrate the importance of interferences among different
coherences@Eq. ~3!#. The control could be also improved
applying strong saturating laser fields. The Liouville path-
ways involving saturated populations of the excited states
during particular times could contribute significantly to the
signal, providing new avenues for control.

Controlling the pulse polarizations by separately shaping
the envelopesEj a with a5x, y, z is an exciting new possi-
bility opened up by the pioneering work of Gerber.7 This
should be particularly appealing for the study of chiral sys-
tems. Pulse shaped signals combine all tensor components
coherently. Circular dichroism~CD! spectra, widely used for
characterizing chiral systems probe particular tensor compo-
nents ofx (1). Pulses with shaped polarization profiles should
provide a novel and unexplored domain of nonlinear spec-
troscopy, which could provide many more sophisticated
means for studying chiral systems with much more detailed
information than linear CD spectroscopy. Coherent control
algorithms could also be helpful in the design of NMR pulse
sequences.1,2,16 Employing shaped pulses in third order ex-
periments allows not only to resolve the underlying transi-
tions~which can be obtained using tunable narrow band laser
sources! but also makes it possible to resolve dynamical pro-
cesses such as exciton transport and relaxation, charge sepa-
ration and transfer.
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APPENDIX: THE GENETIC ALGORITHM

In this Appendix we briefly describe the pulse parametri-
zation ~and shaping! algorithm and the genetic optimization
scheme used in our computations.

The envelope functionEj a(t) (t5t2 t̄ j a) is parameter-
ized by changing Fourier amplitudes and phases of its direct
Fourier transform.33 The complex time envelopeEj a(t) is
given by

Ej a~t!5W~t!E dvEj a~v!exp@ if j a~v!2 ivt#, ~A1!

whereEj a(v) and f j a(v) are real functions. The window-
function W(t) selects the interval (2T,t,T) by adding
smooth decay of the field amplitude at the edges of the in-

terval: W(t)5$tanh((tw1t)/sw)1tanh((tw2t)/sw)%/2; the
parameterstw and sw define the width of the window and
decay rate of the cutoff.

Our search starts with a Gaussian envelopeEG(t)
5exp(2t2/2sG

2 ). Direct Fourier transform applied
to the Gaussian pulse gives* dtEG(t)exp(ivt)
[EG(v)exp(ifG(v)), where the amplitudeEG(v) and the
phasefG(v) describe the Gaussian field. The shaped pulse
is obtained by adding a frequency dependent phase:
fG(v)⇒f j a(v)5fG(v)1c j a(v), where the additional
phase profilec j a(v)5c1 j a1c2 j a sin(c3jav1c4ja) is defined
by four parameterscu ja , (u51,2,3,4). It is also possible to
modulate the amplitudeEj a(v), this was not done here and
we setEj a(v)5EG(v).

The initial width of Gaussian pulses was taken to be
sG5200 fs, a time window of 4 ps was considered for the
shaped pulse (T52 ps), Nf5128 frequencies of the Fourier
space were used in the Fourier transformation and the win-
dow function parameters were accepted as follows:tw

51.6 ps,sw5100 fs. We used a fixed pulse polarizationa
5z, parallel to the transition dipoles. All quantities in this
section refer to this component of the field. We will therefore
omit the indicesj a in the following.

The genetic algorithm consists of several steps which,
adopting evolution theory terminology, are labeled as
population-creation, selection, crossing, and mutation.32

These are defined within the chosen optimization parameter
space.

In the first population-creationstep, an ensemble ofN
phase profiles~representingN trial optical pulses! is gener-
ated randomly. This forms the first generation of pulse popu-
lation; N is a parameter of the algorithm. Each member of
the population corresponds to one point (c1 ,c2 ,c3 ,c4) in the
four-parameter space. In the second,selection, step, the cost
function is calculated for each population member and the
decision whether a selection is accepted is made using the
following rule: An integer random numberx is generated in
the interval@Li ,L f # andx population members with the low-
est cost are selected. The numbersLi (Li,N) and L f (Li

,L f,N) are also parameters of the algorithm.
A new generation of the population is created using the

selectedx members of the first generation while the other,
N2x, are created from the selected members by means of
crossing. The following rule draws an integer random num-
ber y from the interval@1,M #, whereM is the number of
parameters~4 in our case!, select randomly two members
~with parameterscu

(1) andcu
(2) respectively!, from the selec-

tion, and create a new membercu
(3) , defined as

cu
~3!5H cu

~1! , u<y

cu
~2! , u.y.

~A2!

This is known as a single point crossing.
In order to explore the new points of the parameter

space, a noise,mutation, is added to all parameters of the
newly created population. The mutation is added as a shift of
the parameter value by a Gaussian random numberz with
zero mean and the widthsmut. Then, for instancecu⇒cu

1wcuz, wherewcu is a weight factor for the parametercu .
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The optimization process involves repeating the selec-
tion, crossing, mutation sequence, finally leading to an opti-
mized population. In order to narrow down the range of
populations in the optimal solution, the noise is reduced~or
increased! depending on the average cost of the population
on the previous step. The population is evaluated by defining
the cost thresholdWmax and the number of population mem-
bers Nbad with the cost below ~for maximization—above
would be for minimization! Wmax. The decision is then made
depending on the ratioh5Nbad/N. If h<0.5 ~population is
‘‘good’’ ! the cost threshold is increased~reduced! by a factor
of 2 ~and the noise parametersmut is increased by a factor of
e to escape possible local minima!. For h.0.5 the noise
parametersmut is reduced by the same factore allowing to
narrow the population distribution around the global minima.

Initially the cost threshold is small compared to the pos-
sible values of the cost function and the noise parameter is
large covering the entire parameter space. Fast exponential
convergence was observed for the valuee50.621 which was
held constant in all simulations. The population number was
N520 and the parameters of the selection:Li54 and L f

56. Other parameters used are the initial cost threshold
Wmax50.1, the initial widthsmut51, the weights of the pa-
rameters:wc15wc25wc451, wc35180. Thec parameters
were varied in the rangec1 , c2 , c4P(2p,p) and c3

P(0,1000).
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