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1. Introduction

Many important molecular systems are made out
of assemblies of coupled localized chromophores.
Examples are molecular crystals,1-3 J aggregates,4-8

biological light-harvesting complexes,9-16 organic nano-
structures,17 and supramolecular structures.18-23 The
description of elementary electronic excitations of

such systems is greatly simplified when the chro-
mophores have non-overlapping charge distributions.
The excitations are then known as Frenkel excitons,
and their localization and energy-transfer dynamics
have been extensively studied using the Frenkel
exciton Hamiltonian,1,2,3,24-31 whose parameters may
be obtained from electronic structure calculations
performed on the individual chromophores;32 the
global electronic excitations of the system are com-
puted by diagonalizing the exciton Hamiltonian,
which is a much simpler task than the direct many-
electron simulation of the entire assembly. The
Wannier exciton model of semiconductors33-35 is an
extension of the Frenkel exciton model and shares
the same type of simplifications.

The exciton model may also be applied to vibra-
tional excitations of coupled localized vibrations of
oligomers or polymers made out of similar repeat
units,36-38 e.g. the amide bands of peptides.39-43 In
this case we need to examine the transition charge
densities: the derivatives of the charge density
distribution with respect to various localized vibra-
tions.43 When these charge densities do not overlap,
the coupling between local modes is electrostatic, and
the coupling coefficients become simple functions of
the atomic coordinates.44-46 Vibrational excitons are
also denoted vibrons.

The exciton model may also be used when the
charge (or transition charge density) distributions
weakly overlap. The calculation of electronic or
vibrational couplings then requires a higher level of
theory, which includes exchange. These are denoted
through-bond as opposed to through-space (electro-
static) couplings. Ab initio simulations suggest that
through-bond effects contribute to the nearest-
neighbor coupling of amide I modes.43,47,48

Optical spectroscopy is a powerful tool for the study
of vibrations and electronic excitations of molecules.
Linear spectra of excitonic systems often consist of a
few broadened features that result from the interplay
of numerous factors: intermolecular couplings, ex-
citon localization, disorder, and coupling to phonons.
It is impossible to pinpoint these various factors
unambiguously using the limited information pro-
vided by absorption line shapes. As an example, let
us consider the vibrational spectra of the 1600-1700
cm-1 amide I band in proteins which originates from
the stretching motion of the CdO peptide bond
(coupled to in-phase N-H bending and C-H stretch-
ing).49 This mode has a strong transition dipole
moment and is clearly distinguishable from other
vibrational modes of the amino acid side chains.
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Dependence of the amide I line position on a par-
ticular secondary structure is widely utilized in
polypeptide and protein structure determination.50-52

However, a protein usually folds into a complex three-
dimensional structure, which consists of several
polypeptide segments forming different types of
secondary structures.49,53 This folding results in
strong interactions between remote bonds39 which
affect the structure of exciton states. Linear infrared

absorption spectra of peptides such as globular
protein segments39,54,55 thus yield only limited infor-
mation about the structure.

Nonlinear optical techniques provide considerably
more detailed information on the structure and
dynamics of excitations in assemblies of coupled
molecular chromophores. Coherent nonlinear experi-
ments conducted by the application of sequences of
femtosecond optical pulses56-58 provide a multidi-
mensional view of molecular structure as well as
vibrational and electronic motions, interactions, and
relaxation processes. Recent advances in pulse-shap-
ing techniques which allow researchers to vary the
envelopes, polarization directions, durations, and
time delays, tune the frequencies, and control the
phases of optical pulses59-64 have made it possible to
extend concepts developed in NMR to the optical
regime.57,65,66 Both NMR and laser pulse sequences
may be designed to accomplish specific tasks:67,68 the
spectral resolution may be improved by narrowing
the line shapes in specific directions, and desired
features may be enhanced by the design of elaborate
pulse sequences, performing coherent superpositions
of various phase-locked heterodyne techniques, and
through polarization-sensitive measurements. By
displaying the signals as correlation plots of various
time delays,57,69-72 these techniques reveal detailed
information about the microscopic dynamics of coupled
localized excitations such as electronic excitations of
aggregates73 or vibrational spectra of peptides.74-77

Peak intensities provide direct signatures of dis-
tances between chromophores, and their profiles
probe fluctuations through the spectral density of the
dynamics of the environment.78-85 Multidimensional
techniques have the capacity to probe the entire
pathway for vibrational relaxation86 and conforma-
tional fluctuations87 in real time in a single measure-
ment.88,89 A broad arsenal of techniques, such as
pump-probe,90,91 fluorescence depolarization,92 photon-
echo,83-85,93 hole-burning94-96 and fluorescence inter-
ferometry97 applied to molecular aggregates, provide
an improved understanding of the exciton structure
and migration.98-101 Population transfer and relax-
ation in the excited state are directly measured by
the pump-probe102-104 and fluorescence-up conver-
sion105 techniques. The photon-echo can selectively
eliminate static inhomogeneous broadening57 in a
two-level system. However, this does not apply to
systems such as excitons in aggregates where mul-
tiple electronic states can be excited collectively.

Similar developments have taken place in infrared
vibrational techniques. Multidimensional signals carry
detailed information on the structure of proteins106,107

and molecular liquids.108-113 Femtosecond pump-
probe and dynamic hole-burning experiments have
been used to investigate the vibrational relaxation
and anharmonicity of the amide I vibrations in
N-methylacetamide (NMA) and three small globular
peptides, apamin, scyllatoxin, and bovine,81 where
strong coupling to slow vibrational motions leads to
exciton localization and self-trapping.

In this article we survey the theoretical approaches
and key concepts needed for the design and inter-
pretation of multidimensional spectroscopic tech-
niques in systems of localized electronic or vibrational
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chromophores.37,38 This complex many-body problem
requires an extensive numerical effort which grows
very rapidly with molecular size. In periodic systems
(e.g. molecular crystals), the computational effort
may be reduced to the size of the repeat unit; the
physical size of the system is no longer a factor.
However, molecular aggregates and biomolecules are
not usually periodic. The problem becomes much
more tractable by adopting an exciton Hamiltonian
that conserves the number of excitations; noncon-
serving processes are controlled by the ratio of
intermolecular couplings to the optical frequency,
which is typically small in both molecular aggregates
and coupled high-frequency vibrations. The energy
spectrum then consists of well-separated groups of
energy levels representing single excitations, double
excitations, etc., and only the radiation field can
change their number. By classifying the optical
techniques according to their dependence on the
power of the incoming fields, we find that very few
types of elementary excitations need to be considered
at each order. This provides a convenient computa-
tional strategy as well as a basis for an intuitive
physical picture.57 The manifolds with different num-
bers of excitons are shown in Figure 1. The lowest
(single-exciton) manifold is accessible by linear opti-
cal techniques (e.g. linear absorption), whereas
doubly excited (two-exciton) states can be monitored
by third-order spectroscopies. Successively higher
manifolds may be probed with higher order tech-
niques. The pattern of multiple excitations is sensi-
tive to the aggregate structure and connectivity of
the various chromophores. Femtosecond multidimen-
sional techniques then reveal the correlations be-
tween the various chromophores and vibrational
relaxation pathways,114 in complete analogy with
multidimensional NMR spectroscopies.67 Population
and phase relaxation processes, induced by fluctua-
tions caused by interactions with the environment
(bath), i.e. solvent or low-frequency intramolecular
modes, result in line-broadening and spectral shifts
and have direct signatures on multidimensional
signals.57,78,115-118 We shall model these fluctuations
using a multimode Brownian oscillator Hamilto-
nian,101,116,118,119 which can represent an arbitrary
distribution of bath time scales and interpolates
between the fast (homogeneous) and the slow (inho-
mogeneous) bath limits.120-122

We survey two approaches for computing the non-
linear optical response of excitons and relating it to
bath spectral densities. The first, denoted cumulant
expansion of Gaussian fluctuations (CGF), is based
on closed correlation function expressions derived by

coupling the dynamical exciton variables to a har-
monic bath. The resulting Gaussian fluctuations may
then be incorporated using the second-order cumu-
lant expansion. The second is based on the nonlinear
exciton equations (NEE), which provide a collective
oscillator, quasiparticle picture for exciton dynamics.
The quasiparticle approach is commonly adopted in
calculations of optical properties of the Wannier
excitons in semiconductors which are based on the
semiconductor Bloch equations (SBE).35,123 The NEE
share some conceptual similarities with the SBE but
extend them to a broader set of dynamical variables
in real space (rather than in momentum, k space).

The CGF and the NEE approaches make different
approximations, leading to different ranges of ap-
plicability. The CGF is formulated in the eigenstate
basis, and the optical response is described in terms
of transitions among states. The NEE, in contrast,
use a single-exciton basis and view the nonlinear
response in terms of scattering among excitons (qua-
siparticles). The expensive computation of multiple
exciton states is totally avoided. The NEE are limited
to a Hamiltonian that conserves the number of
excitons, whereas the CGF can accommodate any
exciton Hamiltonian with arbitrary couplings.124-127

The CGF incorporates the full bath spectral densities
with arbitrary distribution of time scales, whereas
the NEE are limited to fast bath fluctuations which
result in Markovian relaxation operators. The NEE
computational effort scales more favorably with mo-
lecular size: the multiple summations and interfer-
ence effects (cancellation of very large contributions)
in the CGF may limit its accuracy and may compli-
cate the analysis for extended systems.128,129

In section 2 we present a general expression for
the first- and third-order nonlinear polarization in
terms of nonlinear response functions and suscepti-
bilities. The various detection modes and their rela-
tions to the nonlinear polarization in the time domain
and in terms of Wigner spectrograms are reviewed
in section 3. The generalized Frenkel exciton Hamil-
tonian of molecular aggregates composed of multi-
level chromophores is presented in Appendix A. The
simplified Hamiltonian used in this review is intro-
duced in section 4. It retains only the essential
(resonant) exciton couplings and includes a coupling
to a bath with an arbitrary spectral density. The key
ingredients and the physical picture of the response
of excitons may be introduced and understood by
considering a more basic fluctuating Hamiltonian
model of a multilevel system coupled to a bath. The
exciton system can be mapped onto this generic
model by a suitable transformation, which is given
in Appendix B. In section 5 we present the CGF
approach for computing the optical response of a
fluctuating multilevel model with primary Brownian
oscillator coordinates linearly coupled to the exciton
system and to a harmonic bath. General expressions
are first derived for the first- and third-order polar-
izations of a simplified model of diagonal system-
bath couplings (energy fluctuations) responsible for
the line broadening. The nonlinear response function
is calculated using the second-order cumulant expan-
sion, which is exact for this model. Off-diagonal coupl-
ings cause exciton transport, which is subsequently
described by the doorway-window representation.

Figure 1. (a) Molecular aggregate made of three two-level
chromophores. J indicates intermolecular coupling and µag
is the transition dipole moment in the local basis. (b) The
exciton level scheme and the transition dipoles. The one-
exciton (|e1〉), two-exciton (|e2〉), and three-exciton (|e3〉)
manifolds may be observed in third-order measurements.
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The alternative, equation of motion, approach to
nonlinear response is presented in section 6. The
NEE for an aggregate of multilevel chromophores in
a local chromophore basis are presented in section
6.1, and the relaxation operators are derived in
section 6.2. In section 6.3 we show how to compute
signals generated in specific directions by selecting
the relevant components of the polarization in the
course of numerical integration of the NEE. General
discussion and comparison of the CGF and NEE
approaches are finally given in section 7.

Details of the master equation and the relaxation
kernel for exciton transport used in section 5 are
given in Appendix C; Appendix D gives the doorway
and window function expressions used in section 5.
Closed expressions for the NEE operators are given
in Appendix E. The relaxation operators derived in
Appendix F, and computed using the overdamped
Brownian oscillator spectral density for the bath are
given in Appendix G.

2. The Nonlinear Optical Response
The interaction of a molecule located at r with an

optical field E(r,t) is given by Ĥint ) -P̂‚E(r,t), where
P̂ is a polarization operator. We are using the dipole
approximation, which holds provided the molecule is
small compared with the wavelength of the relevant
optical transitions.

The molecular response to the optical field is
described by the induced polarization:57

where F̂(t) is the density matrix describing the state
of the molecule and Tr(...) denotes the trace. When
the optical field is much weaker than the Coulomb
fields between electrons and nuclei within the mol-
ecule, the interaction with the optical field may be
taken into account perturbatively, whereby the den-
sity matrix is expanded as57,130,131

where the superscript n denotes the order in the field,
and the nth-order polarization is then defined as

The density matrix is obtained by solving the
Liouville equation

where the total Hamiltonian is Ĥ ) Ĥ0 + Ĥint, Ĥ0
being the Hamiltonian of molecule and its environ-
ment. The polarization may generally be expanded
in the form57

Here, S(n)(tn,tn-1,...,t1) denotes the nth-order response
function and tn ≡ τn+1 - τn is the time delay between

two consecutive interactions with the optical field (see
Figure 2).

The response function is given by the following
expression in Liouville space:57

Here,

is the Green function of the Liouville equation
corresponding to molecular Hamiltonian H, where
the Liouville operator is defined by its action on an
arbitrary operator A, L A ≡ [Ĥ0,A], and θ(t) is the
Heavyside step function (θ(t) ) 0 for t < 0 and θ(t) )
1 for t g 0). The polarization superoperators are
defined as

The first-order polarization is expressed in terms
of the linear response function S(1):

where Greek subscripts R ) x, y, z denote cartesian
components and Sσ,R

(1) is a second-rank tensor.
Since the second-order response vanishes for cen-

trosymmetric systems,130,132 the lowest order nonlin-
ear response in solution is third order. The corre-
sponding response function is similarly given by a
fourth-rank tensor:

Figure 2. (Upper panel) Laser pulse sequence in a three-
pulse, four-wave mixing experiment. Three pulses, k1, k2,
and k3, create the nonlinear polarization in the sample,
which generates the new optical field in the direction ks )
(ks ( ks ( ks. k4 ) ks is the heterodyne field. (Lower panel)
The peak ordering and time variables.

S(n)(tn,tn-1,...,t1) )

in Tr[P+G (tn)P-G (tn-1)P- ... G (t1)P-F̂(-∞)] (2.6)

G (t) ) θ(t) exp(-iL t) (2.7)

P-A ≡ P̂A - A P̂

P+A ≡ 1
2

(P̂A + A P̂) (2.8)

Pσ
(1)(r,t) ) ∑

R
∫0

∞
dt1Sσ,R

(1) (t1)ER(r,t - t1) (2.9)

Pσ
(3)(r,t) ) ∑

Râγ
∫∫∫0

∞
dt3 dt2 dt1 Sσ,γâR

(3) (t3,t2,t1) ×

Eγ(r,t - t3)Eâ(r,t - t3 - t2)
ER(r,t - t3 - t2 - t1) (2.10)

P(r,t) ≡ 〈P̂〉 ) Tr(P̂F̂(t)) (2.1)

F̂(t) ) F̂(0)(t) + F̂(1)(t) + F̂(2)(t) + F̂(3)(t) + ... (2.2)

P(n)(r,t) ) Tr(P̂F̂(n)(t)) (2.3)

dF̂
dt

) -i[Ĥ, F̂] (2.4)

P(n)(r,t) ) ∫0
∞

dtn ∫0
∞

dtn-1 ... ∫0
∞
dt1

S(n)(tn,tn-1,...,t1)E(r,t - tn)E(r,t - tn - tn-1) ...
E(r,t - tn - tn-1 ... - t1) (2.5)
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Alternatively, the polarization may be expressed
in the frequency domain using the linear and the
third-order susceptibility tensors, øσ,R

(1) (-ωa;ωa) ≡
øσ,R

(1) (ωa) and øσ,Râγ
(3) (-ωs;ωa,ωb,ωc):

ER(r,ωa) is the optical field in the frequency domain:

The response functions and the nonlinear suscep-
tibilities are related by a Fourier transform:

where ωs ≡ ωa + ωb + ωc and the sum ∑p runs over
all 3! ) 6 permutations of ωa,ωb,ωc.57 For clarity we
shall hereafter omit the tensor notation.

3. Coherent Multidimensional Signals
We consider the molecular response to a sequence

of laser pulses (Figure 2), whose electric field is given
by

Here, ẼjR(t) is the slowly varying complex envelope
function of pulse j with polarization R (R ) x,y,z)
centered at time thj, with carrier frequency ωj j and
wavevector kj. c.c. denotes the complex conjugate.
Most generally, a third-order process requires four
external fields: three (j ) 1, 2, 3) interact with the
system, and the fourth, heterodyne, field (j ) 4) is
used for the detection.

In the frequency domain (see eq 2.13), eq 3.1 reads

where ẼjR(ω) exp(iφjR(ω)) is a Fourier transform of the

envelope ẼjR(t). The envelope function, ẼjR(ω - ωj j),
and its phase, φjR, are taken to be real.

The nonlinear polarization is the most general
optical observable, since heterodyne detection can
measure separately the real and the imaginary parts
of the complex polarization. We next survey various
detection methods.

To connect the nonlinear polarization with experi-
ment, we first expand it in k space:

where the possible wavevectors of the induced po-
larization are ks ) ( k1 ( k2 ( k3. The signal
generally depends on many parameters, ωj j, τjj, kj, as
well as the entire amplitude, ẼjR(ω), and phase,
φjR(ω), profiles. Multidimensional correlation plots
can thus be made by numerous choices of parameters.
We shall focus on the parametric dependence of the
signal on time delays tj ≡ τjj+1 - τjj.

The simplest detection measures the time-integrat-
ed field intensity, and the signal is ∫-∞

+∞ |Es(t)|2 dt.
Within the slowly varying amplitude approximation,
the signal field is proportional to the polarization,
Es(t) ∝ iPs

(n)(t),57,133 and the third-order signal in the
ks direction, which depends parametrically on the two
time delays (Figure 2), is given by

This is known as the information homodyne detection
mode. Additional information may be obtained by
time gating: the signal is focused onto a nonlinear
crystal where it is mixed with an additional laser
pulse to perform up-conversion. The laser pulse
creates a time gate for the signal and the polarization
is measured within the duration of the laser pulse.
This measurement yields the absolute value of po-
larization Ihom(t1,t2,t3) ) |Ps

(3)(t)|2.
Heterodyne detection can select both the real and

the imaginary parts of the polarization. It involves
mixing the generated field Es(t) with the heterodyne
field E4(t) which has the same wavevector. The signal
is then given by I(t1,t2,t3) ) ∫-∞

+∞ |Es(t) + E4(t)|2 dt.
The heterodyne field is much stronger than the signal
field, and the |Es(t)|2 contribution can be neglected.
Subtracting the intensity of the heterodyne field, the
heterodyne signal is finally given by

The time resolution is now determined by the het-
erodyne field, and the signal depends linearly rather
than quadratically on Ps

(3)(t). By choosing different
phases of the heterodyne field, it is possible to
measure separately the real and the imaginary parts
of the polarization.

We shall also use a mixed time/frequency repre-
sentation of the signal:

Pσ
(1)(r,t) ) ∑

R
∫-∞

∞
dωa exp(-iωat)øσ,R

(1) (ωa)ER(r,ωa)

(2.11)

Pσ
(3)(r,t) ) ∑

Râγ
∫∫∫∫-∞

∞
dωs dωa dωb dωc exp(-

iωst)øσ,Râγ
(3) (-ωs;ωa,ωb,ωc)ER(r,ωa)Eâ(r,ωb)Eγ(r,ωc)

(2.12)

ER(r,ω) ≡ ∫-∞
∞

dτ ER(r,τ) exp(iωτ) (2.13)

øσ,R
(1) (ωa) ≡ ∫0

∞
dt1 Sσ,R

(1) (t1) exp(iωat1) (2.14)

øσ,Râγ
(3) (-ωs;ωa,ωb,ωc) ≡ 1

3!
∑
p
∫∫∫0

∞
dt3 dt2 dt1 ×

Sσ,Râγ
(3) (t3,t2,t1) exp(i(ωa + ωb + ωc)t3 + i(ωa + ωb)t2 +

iωat1) (2.15)

E(r,t) ) ∑
j)1

4

∑
R

ẼjR(t - τjj) exp[i(kjr) - iωj jτ] + c.c.

≡ ∑
j)1

4

∑
R

EjR(r,t) + c.c. (3.1)

E(r,ω) ) ∑
j)1

4

∑
R

ẼjR(ω - ωj j) exp{ikjr + i(ω - ωj j)τjj +

iφjR(ω - ωj j)} + c.c. (3.2)

P(3)(r,t) ) ∑
s

Ps
(3)(t) exp(iksr) (3.3)

Ihom(t1,t2) ) ∫-∞
+∞|Ps

(3)(t)|2 dt (3.4)

Ihet(t1,t2,t3) ) Im∫-∞
+∞

E4
/(t)Ps

(3)(t)dt (3.5)
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Alternaltivelly, the time- and frequency-resolved
signals and fields may be displayed using the Wigner
spectrogram:133-135

The spectrogram directly shows what fraction of the
field energy is contained in a given time and fre-
quency window. Integrating over the frequencies
gives the instantaneous field energy,

while integrating over the time gives the energy
density spectrum,

The one-dimensional projections of the spectrogram
(eqs 3.8 and 3.9) are known as marginals.

We next express the heterodyne signal in the
Wigner representation. Usually, the heterodyne field
is a replica of one of the incoming fields in a nonlinear
experiment. We expand the polarization to linear
order in this field:

Defining the mixed time/frequency response func-
tion

the heterodyne signal assumes the form133,134

where W4(t,ω) is the heterodyne field spectrogram,
given by eq 3.7.

Equation 3.12 is exact and holds for arbitrary field
envelopes. For impulsive (very short) pulses, the
Wigner distribution is narrowly peaked at the time
of heterodyne field τj4, and eq 3.12 reduces to

In the other extreme of ideal frequency domain
experiments, the spectrogram is narrowly peaked
around its carrier frequency ωj 4, and

where

In the pump-probe technique, the third-order
polarization originates from two interactions with the
pump and one with the probe. The probe serves as
the heterodyne field since the signal is measured in
the probe direction. The pump-probe technique may
thus be viewed as self-heterodyne detection. Using
Wigner spectrograms, the pump probe signal is given
by133,134

The signal is thus expressed as an overlap integral
of three functions: the pump spectrogram W1(t′,ω′),
the third-order response function S(3)(t′′,ω′′,t′,ω′), and
the probe spectrogram W2(t′′,w′′).

In the following sections we outline methods and
models for computing the polarization and the non-
linear signals of electronic and vibrational excitons.

4. The Fluctuating Exciton Hamiltonian for
Molecular Aggregates

We consider a molecular aggregate made out of N
interacting chromophores, each having (M + 1) levels
(the ground state + M excited states). The total
Hamiltonian is given by

Here the three terms represent the isolated ag-
gregate, the interaction with the optical field, and the
interaction with the environment (bath). We denote
the a excited state of molecule m by |ma〉 and the
ground state by |m0〉 and introduce exciton creation
B̂ma

† ≡ |ma〉〈m0| and annihilation B̂ma ≡ |m0〉〈ma|
operators, where a and b ) 1, ..., M.

The most general Frenkel exciton Hamiltonian for
molecular aggregates is presented in Appendix A. We
shall consider the following approximate form where
we neglect all nonresonant terms in eqs A3-A7:

where Ωma is excitation energy of state a of chro-
mophore m, Jma,nb is the resonant exciton coupling,
and K m,n

aa,bb is the quartic coupling. This Hamiltonian
conserves the number of excitons (Heitler-London
approximation) since it contains only interactions
between states with the same number of excitons.136

In NMR, J and K are known as strong and weak
couplings, respectively.67

The dipole interaction with the optical field is

where the polarization operator P is given by

The first term describes the creation (annihilation)

Ihet(ω1,t2,ω3) )

∫0
+∞∫0

+∞
dt1 dt3 Ihet(t1,t2,t3) exp(iω1t1 + iω3t3) (3.6)

Ws(t,ω) ) ∫-∞
+∞

Es
/(t - τ/2)Es(t + τ/2) exp(iωτ) dτ

(3.7)

∫-∞
+∞

Ws(t,ω) dω ) 2π|Es(t)|2 (3.8)

∫-∞
+∞

Ws(t,ω) dt ) |Es(ω)|2 (3.9)

Ps(t) ) ∫-∞
+∞

dτ S̃(1)(t,τ)E4(τ) (3.10)

S̃(1)(t,ω) ) ∫-∞
+∞

S̃(1)(t + τ/2,t - τ/2) exp(iωτ) dτ
(3.11)

Ihet(t1,t2,t3) ) ∫-∞
+∞

dt ∫-∞
+∞ dω

2π
W4(t,ω)S̃(1)(t,ω)

(3.12)

Ihet(t1,t2,t3) ) S̃(1)(τj4,τj4) ∝ Im{Eh
/(τj4)Ps(τj4)} (3.13)

Ihet(t1,t2,t3) ) S̃(1)(ωj 4,ωj 4) ∝ Im{Eh
/(ωj 4)Ps(ωj 4)} (3.14)

S̃(1)(ω1,ω2) )

∫-∞
+∞

dτ1 dτ2S̃
(1)(τ1,τ2) exp(iω1τ1 + iω2τ2) (3.15)

IPP(ωj 1,τj1,ωj 2,τj2,) ) ∫∫∫∫ dt′ dt′′ dω′ dω′′

W2(t′′,w′′)S(3)(t′′,ω′′,t′,ω′)W1(t′,ω′) (3.16)

Ĥ ) ĤS + ĤSF + ĤSB (4.1)

ĤS ) ∑
ma

ΩmaB̂ma
† B̂ma + ∑

manb

m*n

(Jma,nbB̂ma
† B̂nb +

K m,n
aa,bbB̂ma

† B̂nb
† B̂maB̂nb) (4.2)

ĤSF ) -P̂·E(t) (4.3)

P̂ ) ∑
m,a

µma(B̂ma
† + B̂ma) + ∑

m,ab
µm,abB̂ma

† B̂mb (4.4)
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of excitation from (to) the ground state, while the
second represents transitions between excited states.
µma is the transition dipole moment connecting the
ground state with excited state a of molecule m, and
µm,ab is the transition dipole connecting the excited
states b and a of molecule m. Dipole elements
involving two molecules are negligible since the
molecular wave functions do not overlap.

The third term in eq 4.1, ĤSB, represents a bath
and its coupling with the exciton system. In general,
the bath induces fluctuations in all the Hamiltonian
matrix elements, which result in decay of coherences
and population redistributions. We shall adopt the
displaced multimode Brownian harmonic oscillator
model and assume the following form for ĤSB:57,137,138

The first term represents a set of harmonic Brownian
oscillator degrees of freedom j with the momentum
Pj, coordinate Qj, reduced mass Mj, and frequency Ωh j.
These primary Brownian oscillator coordinates are
linearly coupled to the system; i.e., their equilibrium
is linearly displaced between excited states with the
displacements given by dmanb,j. In addition, they are
linearly coupled to the bath coordinates qν (with
momenta pν) as described by the second term in eq
4.5, where mν is the reduced mass of the bath
oscillator, ωj ν is its frequency, and zνj is the coupling
strength between the primary oscillator and bath
coordinates.

We shall denote the key part of ĤSB, which is
responsible for the system coupling to the Brownian
oscillators, by

where

and hhmanb,j ) Mj Ωh j
2dmanb,j. The bath introduces fluc-

tuations into the system Hamiltonian through the
collective coordinates Qmanb

(c) . Diagonal interactions
with the bath (Qmama

(c) ) cause fluctuations of energies,
whereas off-diagonal interactions (Qmanb

(c) with a * b)
modulate the couplings among excited states.

The fluctuations of the collective coordinates can
be characterized by the matrix of spectral densities:

where the expectation value and the time evolution
are taken with respect to the bath Hamiltonian.

Equation 4.8 contains all the relevant information
about the fluctuations necessary for computing the
optical response of the system.137

Assuming that the primary coordinates Qj are
uncorrelated, the total spectral density (eq 4.8) can
be recast in the form

where

is the spectral density of the jth Brownian oscillator.
The relevant bath information is contained in the

spectral density:

which is given by

We shall use the Brownian oscillator spectral
density57,137-139

where

is the friction parameter and σj is a spectral shift.
The two are connected by the Kramers-Kronig
relation:

Assuming that γj is independent of frequency,57

we note two limiting forms of the spectral density.
For small friction (γj , Ωj) the oscillator is under-
damped,

and in the opposite overdamped limit (γj . Ωj),

with λ′j ) (2Mj Ωh j
2)-1 and Λj ) Ωh j

2/γj. For intermedi-
ate friction, the correlation function shows damped
temporal oscillations and the spectral density has
broad peaks. Nuclear solvent fluctuations are typi-
cally overdamped.

Assuming a single primary coordinate (j ) 1)
and substituting eq 4.17 into eq 4.9, the spectral

C′′manb,m′a′n′b′(ω) ) ∑
j

hhmanb,j hhm′a′n′b′,j C′′j (ω) (4.9)

C′′j (ω) ) - 1
2∫-∞

+∞
dt exp(iωt)〈[Qj(t),Qj(0)]〉 (4.10)

K′′ν(ω) ≡ - 1
2∫-∞

+∞
dt exp(iωt)〈[qν(t),qν(0)]〉 (4.11)

K′′ν(ω) ) 1
2mνωj ν

2π[δ(ω - ωj ν) - δ(ω + ωj ν)] (4.12)

C′′j(ω) ) 1
2Mj

ωγj(ω)

(ω2 - ωσj(ω) - Ωj
2)2 + ω2γj

2(ω)
(4.13)

γj(ω) )
1

Mjω
∑

ν
zνj

2 K′′ν(ω) (4.14)

σj(ω) ) - 1
π

PP∫-∞
+∞

dω′
γj(ω′)

ω′ - ω
(4.15)

C′′j (ω) ) 1
2Mj Ωj

2π[δ(ω - Ωj) - δ(ω + Ωj)] (4.16)

C′′j (ω) ) 2λ′j
ωΛj

ω2 + Λj
2

(4.17)

ĤSB ) ∑
manb

∑
j [ P j

2

2Mj

+
Mj Ωh j

2

2
(Qj - dmanb,j)

2]B̂ma
† B̂nb +

∑
ν [ pν

2

2mν

+
mνωj ν

2

2 (qν - ∑
j

zνjQj

mνωj ν
2)2] (4.5)

Ĥ′SB ≡ ∑
manb

Qmanb
(c) B̂ma

† B̂nb (4.6)

Qmanb
(c) ) ∑

j
hhmanb,jQj (4.7)

C′′manb,m′a′n′b′(ω) ≡
- 1

2∫-∞
+∞

dt exp(iωt)〈[Qmanb
(c) (t),Qm′a′n′b′

(c) (0)]〉 (4.8)
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density assumes the form

Here, λmanb,m′a′n′b′ ≡ M1
2Ω1

4dmanb,1dm′a′n′b′,1λ′1 is the bath
reorganization energy associated with the collective
coordinates Qmanb

(c) and Qm′a′n′b′
(c) , and Λmanb,m′a′n′b′ rep-

resents the inverse time scale of its fluctuations.
This Hamiltonian constitutes the starting point for

both the CGF and the NEE approaches which will
be developed in the coming sections.

5. The Cumulant Expansion for Gaussian
Fluctuations (CGF)

The molecular aggregate Hamiltonian introduced
in section 4 can be mapped into a more general model
of a multilevel system with Brownian oscillator
fluctuations. This is done by diagonalization and a
suitable transformation which is introduced in Ap-
pendix B. In this section we compute the nonlinear
response of a fluctuating multilevel system. This
calculation is not limited to the specific form of the
Hamiltonian eqs 4.2 and B7. The model includes
diagonal and off-diagonal fluctuations of the Hamil-
tonian matrix elements, which cause decay of coher-
ences and redistribution of populations.

We start by introducing the multilevel chro-
mophore model with (M + 1) eigenstates (the ground
state g and excited states a, b, ...) with energies
Ωa, Ω.... Setting the ground-state energy to 0, the
molecular Hamiltonian reads

The first term represents the isolated multilevel
system, and the second describes the interaction with
the optical field E(r,t), through the polarization
operator

µag is the transition dipole moment between the
ground state and state a, and µab is the transition
dipole moment between excited states a and b. This
Hamiltonian is identical to the exciton eigenstate
representation given in eqs B7 and B8, provided we
set g ≡ 0, a ≡ R, Rj ....

The system-bath interaction is given by

where the sum runs over all states, including the
ground state. The fluctuations of the collective coor-
dinates will be described by the matrix of spectral
densities:

where the expectation value and the time evolution
are taken with respect to the bath Hamiltonian.
Equation 4.8 contains all relevant information about
the fluctuations necessary for computing the optical
response of the system.

We adopt the model of eq 4.5 for the bath with the
single overdamped Brownian oscillator (j ) 1) spec-
tral density:

Here, λab,a′b′ and Λab,a′b′ are analogous to eq 4.18. We
further define the line width parameter ∆ab,a′b′

2 ≡
2kBT/λab,a′b′. λaa,aa represents the magnitude of fluc-
tuations of the energy of state a, while λab,ab repre-
sents the fluctuations of the coupling between states
a and b. This is a convenient parameter for classify-
ing different regimes of energy fluctuations.

We shall introduce two types of dimensionless
parameters, η and κ, to characterize the model. η are
defined by118

where ηab controls the correlation of fluctuation
amplitudes. It follows from the Cauchy-Schwartz
inequality that ∆aa,bb

2 e ∆aa,aa∆bb,bb. We thus have
-1 e ηab e 1. The fluctuations are anticorrelated for
ηab ) -1, uncorrelated for ηab ) 0, and fully cor-
related for ηab ) 1. The second type of dimensionless
parameter, κab ) Λaa,bb/∆aa,bb, denotes the ratio of the
inverse time scale of the bath to the amplitude of the
fluctuations. It controls the line shape; in the slow
bath limit (κab < 1) the line shape is a Gaussian and
gradually turns into a Lorentzian as κab is in-
creased.57,140

5.1. Diagonal (Energy) Fluctuations

By setting Qab
(c) ) Qaa

(c)δab in eq 5.3, the model
represents diagonal fluctuations. The optical re-
sponse functions can then be calculated using the
second-order cumulant expansion, which is exact for
this model.57,116 For the linear response it yields57

where J(t1) ) 〈P̂(t1)P̂(0)〉 is a two-point correlation
function of the polarization and the polarization
operator is given in the Heisenberg representa-
tion:

where Ĥ0 is the material part of the total Hamilto-
nian (setting E(r,t) ) 0 in eq 5.1). θ(t) is the
Heavyside function (θ(t) ) 0 for t < 0, θ(t) ) 1 for t g
0). The angular brackets 〈‚‚‚〉 denote the trace over
the equilibrium density matrix,

C′′manb,m′a′n′b′(ω) ) 2λmanb,m′a′n′b′

ωΛmanb,m′a′n′b′

ω2 + Λmanb,m′a′n′b′
2

(4.18)

Ĥ ) ∑
a

Ωa|a〉〈a| - P̂E(r,t) + ĤSB (5.1)

P̂ ) ∑
a

(µag|a〉〈g| + µga|g〉〈a|) + ∑
a,b

µab| b〉〈a| (5.2)

ĤSB ) ∑
a,b

Qab
(c)|a〉〈b| (5.3)

C′′ab,a′b′(ω) ≡ - 1
2∫-∞

+∞
dt exp(iωt)〈[Qab

(c)(t),Qa′b′
(c) (0)]〉

(5.4)

C′′ab,a′b′(ω) ) 2λab,a′b′

ωΛab,a′b′

ω2 + Λab,a′b′
2

(5.5)

∆aa,bb
2 ≡ ηab∆aa,aa∆bb,bb (5.6)

S(1)(t1) ) iθ(t1)[J(t1) - J*(t1)] (5.7)

P̂(t1) ) exp(iĤ0t1)P̂ exp(-iĤ0t1) (5.8)

Fjg ) ∑
a

Faa|a〉〈a| (5.9)
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and Faa is the equilibrium population of the state a.
Expanding the two-point correlation function in the
system basis set, we get

where 〈‚‚‚〉B denotes an average with respect to the
equilibrium distribution of the bath. Assuming the
Condon approximation, i.e., that the transition dipole
operator does not depend on the bath coordinates, we
obtain

where Ωνν′ ) Ων - Ων′ and g̃ab(t1) are the frequency
and the line-broadening function for the a-b transi-
tion, which is related to correlation functions of bath
fluctuations,

and Uba(t) ≡ Qbb
(c)(t) - Qaa

(c)(t) represents the fluctua-
tions of the a-b transition frequency.

An (M + 1)-level system has M (M + 1)/2 distinct
transitions represented by different Uab functions and
the corresponding gab(t) functions. We can reduce the
number of line-broadening functions, we define the
line-broadening function associated with fluctuations
of individual energy levels (rather than the transi-
tions):

We now have (M + 1) independent variables Qaa
(c)(τ)

with (M + 1)2 distinct correlation functions. Compar-
ing eqs 69 and 70, we obtain

where g′ab(t) are directly related to the diagonal
spectral densities of the bath, C′′aa,bb(ω):57

Substituting the overdamped Brownian oscillator
spectral density (eq 4.18), we get in the high-
temperature limit

Introducing the symmetrized g function,

the two-point polarization correlation function finally
becomes

The third-order response function is similarly given
by a sum of eight terms, each representing a distinct
Liouville-space pathway:57

where57

and the four-point correlation function is given by

The subscript D in eq 5.19 stands for diagonal
fluctuations. Expanding eq 5.21 in the system eigen-
states, we get

The four-point correlation function may also be
expressed using the line-broadening functions intro-
duced earlier, again, by using second-order cumulant
expansion:116

where

where tij ) ti - tj and i, j ) 1, 2, 3, 4. Substituting
eq 5.14 into eq 5.24 and using the symmetric g

J(t1) ) ∑
ab

Faa|µba|2 ×

exp[-iΩbat1 -
1

2
(gaa(t1) + gbb(t1)) + gba(t1)] (5.18)

SD(t3,t2,t1) ) i3θ(t3)θ(t2)θ(t1)∑
p)1

4

{Rp(t3,t2,t1) -

Rp
/(t3,t2,t1)} (5.19)

R1(t3,t2,t1) ) F(t1,t1 + t2,t1 + t2 + t3,0)

R2(t3,t2,t1) ) F(0,t1 + t2,t1 + t2 + t3,t1)

R3(t3,t2,t1) ) F(0,t1,t1 + t2 + t3,t1 + t2)

R4(t3,t2,t1) ) F(t1 + t2 + t3,t1 + t2,t1,0) (5.20)

F(t4,t3,t2,t1) ) 〈P̂(t4)P̂(t3)P̂(t2)P̂(t1)〉 (5.21)

F(t4,t3,t2,t1) ) ∑
abcd

Faa〈Pad(t4)Pdc(t3)Pcb(t2)Pba(t1)〉B

(5.22)

F(t4,t3, t2, t1) ) ∑
abcd

Faa µad µdc µcb µba ×

exp(i(Ωadt4 + Ωdct3 + Ωcbt2 + Ωbat1)

- 1
2

f(t4,t3,t2,t1)) (5.23)

f(t4,t3,t2,t1) ) g̃ad(t43) + g̃ad(t41) - g̃ad(t31) -

g̃ac(t43) - g̃ac(t21) + g̃ac(t42) + g̃ac(t31) + g̃ab(t21) +

g̃ab(t41) - g̃ab(t42) + g̃dc(t43) + g̃dc(t32) -g̃dc(t42) -

g̃db(t32) - g̃db(t41) + g̃db(t42) + g̃db(t31) + g̃cb(t32) +

g̃cb(t21) - g̃cb(t31) (5.24)

〈P̂(t1)P̂(0)〉 ) ∑
ab

〈Pab(t1)Pba(0)〉BFaa (5.10)

J(t1) ) ∑
ab

Faa|µba|2 exp[-iΩbat1 - g̃ba(t1)] (5.11)

gjab(t) ) ∫0
t
dτ1 ∫0

τ1 dτ2 〈Uab(τ1)Uab(τ2)〉 (5.12)

g′ab(t) ≡ ∫0
t
dτ1∫0

τ1 dτ2〈Qaa
(c)(τ1)Qbb

(c)(τ2)〉 (5.13)

g̃ab(t) ) g′aa(t) + g′bb(t) - g′ab(t) - g′ba(t) (5.14)

g′ab(t) ) ∫-∞
∞ dω

2π
1 - cos(ωt)

ω2
coth( pω

2kBT)C′′aa,bb(ω) +

i∫-∞
∞ dω

2π
sin(ωt) - ωt

ω2
C′′aa,bb(ω) (5.15)

g′ab(t) ) (2Tλab

Λab
2

- i
λab

Λab)(exp(-Λab|t|) + Λabt - 1)

(5.16)

gab(t) ≡ g′ab(t) + g′ba(t) (5.17)
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function (eq 5.17), we obtain

Equation 5.25 depends on (M + 1)2 independent
correlation functions gab(t). This number may be
reduced for high-frequency (optical) transitions where
only the ground state is thermally populated. By
choosing this state as a reference, we can express all
the energies with respect to it. We can then set Qgg

(c)

) 0 and separate the total correlation function into
two terms:118,119

Here,

and

f1 contains only transitions to and from the ground
state g f a f g f b f g, whereas f2 also includes
transitions among the excited states g f a f b f c
f g and the number of independent line-broadening
functions is reduced to M 2.

5.2. Off-Diagonal Fluctuations and Exciton
Transport

The exact expressions for the third-order optical
response function obtained above include only diago-
nal couplings to the bath representing energy fluc-
tuations. Fluctuations of off-diagonal elements are
responsible for exciton transport. Once off-diagonal
fluctuations are included, the model is no longer
exactly solvable. However, useful approximate ex-
pressions may be derived using projection operator
techniques in the doorway-window representa-
tion.101 The time-resolved signal is represented as a
convolution of three terms: a doorway function, an
evolution term, and a window function. This picture
holds as long as the excitation and detection are

temporally well separated. The doorway function
describes the changes in the system after the primary
interaction with the optical field, which creates a
nonstationary state. The subsequent evolution of the
system takes place in the absence of the optical field,
and the window function represents the response of
the new state to additional interactions with the field.

The total response function to lowest order in the
system-bath coupling then becomes

SD, which contains the contribution of diagonal
fluctuations, was given by eq 5.19. The additional
contribution, SOD, due to off-diagonal fluctuations is
given by

We shall refer to the first two terms in eq 5.30 as
the hopping and the bleaching terms, respectively.
They represent sequential (incoherent) contributions.
The first term describes incoherent excitation trans-
port. The doorway function Dh a represents the popula-
tion of the excited state a created by two interactions
with the radiation field. Wh b is the window function
which gives the contribution of the excited state b
population to the signal. Exciton hopping is described
by the master equation:78

where Kab is the exciton transfer rate matrix and
Gba(t′′ - t′) is the Green function of the master equa-
tion, defined by Fbb(t′′ - t′) ) ∑aGba(t′′ - t′)Faa(0). It
represents the conditional hopping probability from
state a to b during the t′′ - t′ time interval.

The second term in eq 5.30 represents a Raman-
type contribution whereby the system is back in the
ground state (g) during t2. Dg(t) and Wg(t) are the
corresponding doorway and window functions. This
term gives the limiting contribution for long t2 and
is independent of t2. For short t2, exciton transport
is negligible and SOD(t3,0,t1) must vanish. This is
guaranteed by the third term in eq 5.30, since only
population contributions are left in SD(t1,τ2,t3) at long
τ2, which cancels the first two terms in eq 5.30 for t2
) 0.

To lowest order in the system-bath interaction, we
have Dh a(t′,t1) ) Da(t1)δ(t′) and Wh b(t3,t2 - t′′) ) Wb(t3)
δ(t2 - t′′), and eq 5.30 is simplified to101

The Green function in this limit is given in Ap-
pendix C, and the corresponding doorway and win-
dow functions are presented in Appendix D.

f(t4,t3,t2,t1) ) gaa(t41) + gbb(t21) + gcc(t32) +
gdd(t43) - gab(t21) - gab(t41) + gab(t42) + gac(t21) +
gac(t43) - gac(t31) - gac(t42) - gad(t43) - gad(t41) +
gad(t31) - gbc(t21) - gbc(t32) + gbc(t31) + gbd(t32) +
gbd(t41) - gbd(t31) - gbd(t42) - gcd(t32) - gcd(t43) +

gcd(t42) (5.25)

F(t4,t3,t2,t1) ) ∑
ab

µgb µbg µga µag ×

exp[i(-Ωbgt4 + Ωbgt3 - Ωagt2 + Ωagt1) -

1
2

f1(t4,t3,t2,t1)] +

∑
abc

µgcµcbµbaµag ×

exp[i(-Ωcgt4 - Ωbct3 + Ωbat2 + Ωagt1) -

1
2

f2(t4,t3,t2,t1)] (5.26)

f1(t1,t2,t3,t4) ) gaa(t21) + gbb(t43) + gab(t32) +
gab(t41) - gab(t31) - gab(t42) (5.27)

f2(t1,t2,t3,t4) ) gaa(t21) + gbb(t32) + gcc(t43) -
gab(t21) - gab(t32) + gab(t31) + gac(t32) + gac(t41) -

gac(t31) - gac(t42) - gbc(t32) - gbc(t43) + gbc(t42) (5.28)

S(t3,t2,t1) ) SD(t3,t2,t1) + SOD(t3,t2,t1) (5.29)

SOD(t3,t2,t1) ) ∑
ab
∫0

t2 dt′′∫0

t′′
dt′ Wh b(t3,t2 - t′′) ×

Gba(t′′ - t′)Dh a(t′,t1) + Wg(t3)Dg(t1) - SD(t3,∞,t1) (5.30)

d

dt
Fbb(t) )∑

c
[KbcFcc(t) - KcbFbb(t)] (5.31)

SOD(t3,t2,t1) ) ∑
ab

Wb(t3)Gba(t2)Da(t1) +

Wg(t3)Dg(t1) - SD(t3,∞,t1) (5.32)
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5.3. Numerical Simulations

Given the exciton Hamiltonian and the matrix of
spectral densities, we can now compute the third-
order response of aggregates. The eigenstate param-
eters are defined by comparing eqs 5.1 and 5.2 with
eqs B7 and B8. The exciton states R,Rj now correspond
to molecular excited states a, and the transition
dipole moments µR and µR,âh correspond to molecular
transition dipole moments µag and µab.

The correlation functions f1 and f2 represent terms
which do not (f1) and do (f2) involve the two-exciton
states in the sum-over-states expansion. The re-
sponse and the line-broadening functions are ob-
tained using the transformed spectral densities in the
exciton representation. The same considerations ap-
ply to the exciton transport induced by off-diagonal
couplings with the bath. The third-order nonlinear
response can probe incoherent hopping of exciton
populations in the local basis set. Thus, the sequen-
tial component of the response function is calculated
in terms of the one-exciton states.

Aggregates made of two-level molecules in the
exciton basis have distinct one-, two-, three-, ...,
exciton manifolds (see Figure 1). There are four
possible third-order techniques, with signal wavevec-
tors kI ) -k1 + k2 + k3, kII ) k1 - k2 + k3, kIII ) k1
+ k2 - k3, and kIV ) k1 + k2 + k3. The Feynman
diagrams57 given in Figure 3 show the processes
which contribute to each of these signals.

The capacity of third-order techniques to resolve
various secondary structural motifs of peptides is
demonstrated in Figure 4.141 Shown is the kI signal
I(ω1,t2 ) 0,ω3) (eq 3.6) around the amide I transition
energy for three different structures: R-helix, 310-
helix, and antiparalel â-sheet. Ideal structures were
used, and the couplings between different amide I
modes were computed using the dipole-dipole cou-
pling model,142 yielding a distinct coupling pattern
for each structure.

Each peptide bond is modeled as an anharmonic
three-level system. The two-exciton manifold consists
of doubly excited states (overtones) mixed with pairs
of singly excited states (combination band). There are

Figure 3. Double-sided Feynman diagrams representing the Liouville-space pathways contributing to the third-order
response of an aggregate in the rotating wave approximation. Each box shows the diagrams contributing to a four-wave
mixing signal generated in the various possible directions: kI ) -k1 + k2 + k3, kII ) k1 - k2 + k3, kIII ) k1 + k2 - k3, and
kIV ) k1 + k2 + k3. Diagrams (a), (b), (d), and (e) include only one-exciton states. Diagrams (c), (f), (g), and (h) also include
two-exciton states, and diagram (i) includes three-exciton states. The level scheme is given in Figure 1.
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two distinct peaks for R-helix and 310-helix: longi-
tudinal (polarized along the axis of the helix) and
transverse (perpendicular). The splitting is much
larger in the 310-helix. The 310-helix signal shows
clear cross-peaks between the longitudinal and trans-
verse transitions, suggesting strong correlation be-
tween these states. The signal for the antiparalel
â-sheet has two diagonal transitions. The strongest
transition is in-plane. The transition which is per-
pendicular to the plane is the second strongest
transition in the system. The clearly visible cross-
peaks show correlations between the different transi-
tions and indicate strong couplings among vibrations,
characteristic to each structure.

Figure 4 focused on the peak pattern and used
simple Lorentzian line shapes. In general, the line
shapes carry useful dynamical information about
bath fluctuations. Typically fast and slow fluctuations
result in Lorentzian and Gaussian profiles, respec-
tively, whereas arbitrary bath time scales may yield
more complex line shapes. The kI, kII, and kIII signals
for a model of two anharmonic vibrations with
overdamped bath fluctuations with arbitrary correla-
tions and time scales are presented in Figure 5.118

In this model, the two vibrations have identical
anharmonicities. Only the fundamental frequencies

are fluctuating, and the anharmonicities are fixed.
The correlations of these fluctuations are measured
by the parameter η, which represents correlated (η
) 1), uncorrelated (η ) 0), and anticorrelated (η )
-1) fluctuations. The peak positions in the 2D plots
indicate different transition energies. Diagonal peaks
correspond to fundamental transitions (observed in

Figure 4. kI signal of the amide I band for various second-
ary structure motifs of peptides:141 (top) R-helix, (middle)
310-helix, and (bottom) antiparalel â-sheet. Shown is
|I(ω1,t2 ) 0,ω3)| (eq 3.6) on a logarithmic scale for the
polarization ZZYY. The zero frequency corresponds to (ω1
) Ω0, ω3 ) Ω0), with the fundamental frequency Ω0 )1675
cm-1 and the anharmonicities 16 cm-1.

Figure 5. Signals of various wave-mixing techniques for
a model dimer of two interacting vibrations calculated
using the CGF method.118 Shown is I(ω3,t2 ) 0,ω1) (eq 3.6).
The parameters of the model are given in ref 118. Slow,
intermediate, and fast bath limits of the overdamped
Brownian oscillator model show a different peak pattern.
The different peaks in the signals kI, kII, and kIII reflect
the different transitions involved in the nonlinear experi-
ment. The parameter η defines the correlation type of
fluctuations of different chromophores: η ) -1 (anticor-
related), η ) 0 (uncorrelated), and η ) 1 (positively
correlated).
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linear absorption), while cross-peak intensities indi-
cate the coupling strength between vibrations. The
separation of the overtone from the diagonal peaks
reflects the anharmonicity. Fast bath fluctuations
lead to circular peaks in (ω1,ω3) correlation plots (eq
3.6), while slow static fluctuations give elliptical
peaks, which represent homogeneous (along the off-
diagonal direction) and inhomogeneous (along the
diagonal direction) line broadenings. Positively and
negatively correlated transitions show different ori-
entations of the elliptical shapes.

6. The Nonlinear Exciton Equations (NEE)
In this section we present an alternative, equations

of motion approach for computing the nonlinear
response.143-145 These equations, written in the local
basis, avoid the computation of eigestates, which is
an expensive task for large aggregates. The approach
is restricted to a Hamiltonian which conserves the
number of excitons. Like the CGF, this method
includes diagonal and off-diagonal fluctuations of the
Hamiltonian matrix elements. However, the Mark-
ovian approximation for the bath limits the method
to Lorentzian line shapes.

6.1. Closing the Many-Body Hierarchy
To derive the NEE, we start with the aggregate

Hamiltonian (eq 4.2), where the polarization operator
is given by eq 4.4. The optical signal is expressed in
terms of the expectation value of the polarization
operator, P(t) ≡ 〈P〉, which depends on 〈B̂ma〉, 〈B̂ma

† 〉
) 〈B̂ma〉*, and 〈B̂ma

† B̂mb〉 (see eq 4.4). We start with
the Heisenberg equation of motion for an arbitrary
operator Â:

The equation of motion for the exciton annihilation
operator B̂ contains higher order products of the
creation and annihilation operators generated by the
commutator with the Hamiltonian:

where we have neglected the bath and hma,nb )
Ωmaδmnδab + Jma,nb(1 - δmnδab). Once we take expec-
tation values, this equation is not closed, since 〈B̂ma〉
is coupled to higher dynamical variables 〈B̂ma

† B̂nb〉,
etc. We can supplement eq 6.2 by the Heisenberg

equation of these higher variables. Thus, the direct
application of the Heisenberg equation yields an
infinite many-body hierarchy of equations for prod-
ucts of operators.146 Fortunately, for the present
model the hierarchy may be rigorously truncated
order by order in the radiation field, allowing an
exact calculation of the nonlinear response functions.
Because only the radiation field can change the
number of excitons, only a limited number of elec-
tronic excitations need to be considered at each order.
For example, the third-order optical response de-
pends only on products of up to three operators, and
higher products can be neglected since they only show
up at higher orders in the optical field. The hierarchy
can thus be rigorously truncated by retaining the
following variables:78

where the indices m, n, and k correspond to different
chromophores and a, b, and c represent various
excited states of each chromophore. Overall we have
(NM ) Bma variables, (NM )2 Yma,nb and Nma,nb vari-
ables, and (NM )3 Zma,nb,kc variables. Bma describe one-
exciton dynamics, and the nonlocal variables Yma,nb
represent the coherent two-exciton motion and the
interaction between them. The variables Nma,nb con-
stitute the exciton density matrix, which represents
populations and coherences of one-exciton states, and
Zma,nb,kc are three-point variables.

The NEE equations read

LB, LY, LN, and LZ are linear terms describing the
free evolution of non-interacting excitons. The terms
KB, K Y, and K Z are responsible for the two-exciton
motion and interactions between excitons in the
isolated system. In particular, KB is responsible for
the two-exciton contribution to the optical polariza-
tion and K Y and K Z represent the exciton-exciton
scattering. Linear interaction with the optical field
comes from EB, and the nonlinear interaction is
represented by FB, FY, FN, and FZ. Closed expressions
for the terms L, K, E, and F are given in Appendix
E. The relaxation terms ΓB, ΓY, ΓN, and ΓZ will be
introduced in the next subsection.

-i ∂Â
∂t

) [Ĥ, Â] (6.1)

-i
∂B̂ma

∂t
) ∑

ld
-hma,ldB̂ld +

∑
ldd′

(hma,ld′B̂md
† B̂mdB̂ld′ +

hmd,ld′B̂md
† B̂maB̂ld′) -

∑
ld

(K l,m
dd,aa + K m,l

aa,dd)B̂ld
† B̂ldB̂ma -

µmaE(t) -

∑
d

(µmaB̂md
† B̂md + µmdB̂md

† B̂ma -

µm,adB̂md)E(t) (6.2)

Bma ≡ 〈B̂ma〉 (6.3)

Yma,nb ≡ 〈B̂maB̂nb〉 (6.4)

Nma,nb ≡ 〈B̂ma
† B̂nb〉 (6.5)

Zma,nb,kc ≡ 〈B̂ma
† B̂nbB̂kc〉 (6.6)

-i ∂B
∂t

) LB + K B + E B + F B + i Γ B (6.7)

-i ∂Y
∂t

) LY + KY + FY + i ΓY (6.8)

-i ∂N
∂t

) LN + F N + i Γ N (6.9)

-i ∂Z
∂t

) LZ + K Z + F Z + i Γ Z (6.10)
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Substituting the linear terms (eqs E1-E4) and
writing explicitly the matrix elements of eqs 6.7-
6.10, we obtain

The response to short pulses can be viewed as a
sequence of impulsive couplings with the fields fol-
lowed by periods of free evolution. The latter can be
described by the following Green functions, which are
the formal solutions of the NEE when the field is
turned off (E(t) ) 0). After the first interaction the
system evolution is described by

with KB ) 0 since higher order variables have not
yet been created. The second interaction creates the
second-order variables, and their evolution is de-
scribed by

The third interaction creates the third-order vari-
ables Zma,nb,kc and

Neglecting the relaxation terms ΓB, the one-exciton
evolution in eq 6.15 is described by the one-exciton
eigenfunctions æR(ma) and eigenvalues, obtained by
solving the eigenvalue equation:

We then have

Here, the time dependence represents the free evolu-
tion of eigenstates, while the sum over eigenfunctions
reflects transformation to the local chromophore basis

set. The evolution of two- and three-point exciton
variables includes exciton-exciton scattering terms,
which can be expressed using the exciton scattering
matrix related to the Bethe-Salpeter equation.57,78

The NEE have been gradually developed over the
past few years.147-149 Spano and Mukamel first
showed how theories based on the local field ap-
proximation can be extended by adding two-exciton
(Y) variables to properly account for two-exciton
resonances.144 Equations of motion for one- and two-
exciton variables avoid the explicit calculation of two-
exciton states, tracing the origin of the third-order
nonlinear optical response to exciton-exciton scatter-
ing.149-151 Extensions were then made to molecular
aggregates made of three-level molecules152 and to
semiconductors.153,154

Other relevant variables have subsequently been
identified.150,151 The simplest way to include the
coupling with phonon degrees of freedom is to elimi-
nate the nuclear variables and incorporate their
effects through relaxation rates. This results in the
Redfield equation for the reduced exciton density
matrix.115-156 Phonon-induced dephasing has been
incorporated into the theories of ø(3) in two-level
molecular aggregates by including the N variables
and applying certain factorization schemes for closing
the equations.157,158 This level of theory is equivalent
to the SBE with dephasing used for semiconductors.
The resulting expressions for ø(3) describe adequately
transient-grating experiments; however, they do not
apply when both exciton transport and two-exciton
resonances are important, which is the case in
pump-probe and photon-echo spectroscopies.

In their latest form (eqs 6.7-6.10),143,147 the NEE
provide closed form Green function expressions for
the optical response that maintain the complete
bookkeeping of time ordering. Applications were
made to a broad range of spectroscopies of J-ag-
gregates,147 pump-probe spectroscopy of light-har-
vesting antenna complexes,159 photon-echoes,160 and
four-wave mixing.161 Additional effects of strong
coupling to phonons can be incorporated in equations
of motion describing polaron transport101,156,162 or by
solving equations of motion for reduced wave packets
which involve the dynamics of a few important
collective nuclear coordinates.137 These extensions go
beyond the scope of this review.

6.1.1. The Local Field Factorization
Several factorization schemes may be used in some

cases to further simplify the NEE. The linear terms
LB, LY, LN, and LZ describe the dynamics of excitons
in the absence of exciton-exciton interaction and
relaxation. Neglecting the exciton interaction terms
KY and KZ, the higher order variables can be factor-
ized as

where Bma(t) is given by eq 6.15. In this approxima-

Yma,nb(t) ≡ Bma(t)Bnb(t) (6.21)

Nma,nb(t) ≡ Bma
/ (t)Bnb(t) (6.22)

Zma,nb,kc(t) ≡ Bma
/ (t)Bnb(t)Bkc(t) (6.23)

-i
∂Bma

∂t
) ∑

ld
(-hma,ldBld) + (K B)ma + (E B)ma +

(F B)ma + i(Γ B)ma (6.11)

-i
∂Yma,nb

∂t
) ∑

ld
(-hma,ldYld,nb - hnb,ldYma,ld) +

(KY)ma,nb + (FY)ma,nb + i(ΓY)ma,nb (6.12)

-i
∂Nma,nb

∂t
) ∑

ld
(hld,maNld,nb - hnb,ldNma,ld) +

(F N)ma,nb + i(Γ N)ma,nb (6.13)

-i
∂Zma,nb,kc

∂t
) ∑

ld
(hld,maZld,nb,kc - hnb,ldZma,ld,kc -

hkc,ldZma,nb,ld) + (K Z)ma,nb,kc + (F Z)ma,nb,kc +

i(Γ Z)ma,nb,kc (6.14)

Bma(t) ) Gma,m′a′
B (t)Bm′a′(0) (6.15)

Yma,nb(t) ) Gmanb,m′a′n′b′
Y (t)Ym′a′,n′b′(0) (6.16)

Nma,nb(t) ) Gmanb,m′a′n′b′
N (t)Nm′a′,n′b′(0) (6.17)

Zma,nb,kc(t) ) Gmanbkc,m′a′n′b′k′c′
Z (t)Zm′a′,n′b′,k′c′(0) (6.18)

-∑
ld

hma,ldæR(ld ) ) εRæR(ma) (6.19)

Gma,nb
B (t) ) ∑

R
æR(ma)æR(nb) eiεRt (6.20)
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tion, each molecule described by Bma is decoupled
from the others, except for the presence of local
electric field, Ema

B + ∑nb Jma,nbBnb + ∑nb(K m,n
aa,bb +

K n,m
bb,aa)Bnb

/ Bnb.

6.1.2. Pure State Factorization
Due to exciton-exciton scattering, the Y variables

may not be factorized. If the system has a weak
relaxation and pure dephasing can be neglected, the
system remains in a pure state; i.e., the bra and ket
components of the density matrix evolve indepen-
dently. The N and Z variables then can be factorized
as Nmanb ) Bma

/ Bnb and Zma,nb,kc ) Bma
/ Ynb,kc. We are

then left with two equations for B and Y. Here the
decay of coherences is ignored while exciton-exciton
scattering is properly accounted for. This approxima-
tion, thus, holds in some ultrafast experiments when
relaxation may be neglected.

6.1.3. Exciton Population Factorization
Assuming fast pure dephasing, all correlations

among chromophores can be neglected. In this case,
Zma,nb,kc ) Nma,mbBkcδmn. We now have closed equa-
tions only for B and N. The dynamics of the Nma,mb
variables may be described by the Bloch equations.

6.2. The Relaxation Terms
In general, all elements of the system Hamiltonian

may fluctuate; however, we restrict the discussion to
the quadratic diagonal and off-diagonal fluctuations
given in eq 4.6. Each state of the system is linearly
coupled to the bath oscillators. The relaxation terms
were calculated to second order in the system-bath
coupling.

We expand the terms in the following form:

The relaxation terms can be calculated using the
linear coupled variables, defined in Appendix F:

These terms appear in the NEE when the bath
Hamiltonian and the system-bath coupling are

included in the Heisenberg equations. Equations of
motion of the linear coupled variables are also given
in Appendix F.

To calculate RB, we first write the solution of
coupled variable Bh ma,j

q , which follows from eq F23:

where

where C′′j (ω) is a spectral density of j coordinate (eq
4.10). Then the relaxation rate follows by substituting
eq 6.32 in eq 6.28 and using eq 6.24:

where we have used Bld(t - τ) ) Gld,m′a′
B† (τ)Bm′a′(t),

and Gma,m′a′
B is given by eq 6.15.

The relaxation term RN is obtained by following the
same procedure. We write the solution of the coupled
N manb,j

q variable:

Substituting eq 6.35 in eq 6.30 and using eq 6.26,
we get

where we have used factorized Green functions inside
the integral, Gmanb,m′a′n′b′

N (τ) ) Gma,m′a′
B† (τ)Gnb,n′b′

B (τ), and
Nma,nb(t - τ) ) Gmanb,m′a′n′b′

N† (τ)Nm′a′,n′b′(t). Rmanb,m′a′n′b′
N

is known as the Redfield relaxation operator.115

(ΓB)ma ≡ ∑
m′a′

Rma,m′a′
B Bm′a′ (6.24)

(ΓY)ma,nb ≡ ∑
m′a′n′b′

Rmanb,m′a′n′b′
Y Ym′a′,n′b′ (6.25)

(ΓN)ma,nb ≡ ∑
m′a′n′b′

Rmanb,m′a′n′b′
N Nm′a′,n′b′ (6.26)

(ΓZ)ma,nb,kc ≡ ∑
m′a′n′b′k′c′

Rmanbkc,m′a′n′b′k′c′
Z Zm′a′,n′b′,k′c′

(6.27)

(iΓB)ma ) ∑
ldj

(-hhmald,jBh ld,j
q ) (6.28)

(iΓY)manb ) ∑
ldj

(-hhmald,jYh ldnb,j
q - hhnbld,jYh mald,j

q ) (6.29)

(iΓN)manb ) ∑
ldj

(hhmald,jNh ldnb,j
q - hhnbld,jNh mald,j

q ) (6.30)

(iΓZ)manbkc ) ∑
ldj

(hhmald,jZh ldnbkc,j
q - hhnbld,jZh maldkc,j

q -

hhkcld,jZh manbld,j
q ) (6.31)

Bh ma,j
q (t) )

-i∫0
∞

dτ ∑
ldl′d′

Gma,ld
B (τ)hh ldl′d′,jMj(τ)Bl′d′(t - τ) (6.32)

Mj(τ) ) 1
2∫-∞

+∞ dω
2π

Ch ′′j (ω)[coth( pω
2kBT) cos(ωτ) -

i sin(ωτ)] (6.33)

Rma,m′a′
B ) ∫0

∞
dτ ∑

ld,l′d′,l′′d′′

Gl′d′,l′′d′′
B (τ)∑

j
hhmal′d′,j hh l′′d′′ld,j Mj(τ)Gld,m′a′

B† (τ) (6.34)

Nh manb,j
q (t) ) -i∫0

∞
dτ ∑

ld,m′a′n′b′

[Gmanb,m′a′n′b′
N (τ)hhm′a′ld,j Mj(-τ)Nld,n′b′(t - τ) -

Gmanb,m′a′n′b′
N (τ)hhn′b′ld,j Mj(τ)Nm′a′,ld(t - τ)] (6.35)

Rmanb,m′a′n′b′
N ) ∫0

∞
dτ ∑

m′′a′′n′′b′′ld,l′d′

[Gl′d′,ld
B† (τ)Gnb,n′′b′′

B (τ) ∑
j

hh l′d′ma,j hhm′′a′′ld,j Mj(-τ) -

Gld,m′′a′′
B† (τ)Gnb,ld

B (τ) ∑
j

hh l′d′ma, j hh ldn′′b′′,j Mj(τ) -

Gma,ld
B† (τ)Gl′d′,n′′b′′

B (τ) ∑
j

hhnbl′d′,j hhm′′a′′ld,j Mj(-τ) +

Gma,m′′,a′′
B† (τ)Gl′d′,ld

B (τ) ∑
j

hhnbl′d′,j hh ldn′′b′′,j Mj(τ)] ×

Gm′′a′′,m′a′
B (τ)Gn′′b′′,n′b′

B† (τ) (6.36)
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The relaxation terms RY and RZ calculated by
neglecting exciton-exciton scattering assume the
form:

Closed expressions for these relaxation terms,
using the overdamped Brownian oscillator spectral
density for the bath, are given in Appendix G.

6.3. Numerical Integration of the NEE; Selecting
the Desired Signal

The NEE may be solved perturbatively in the
fields, resulting in closed Green function expressions
for the response functions. These expressions have
been reviewed recently78 and will not be repeated
here. The Green function expressions are most useful
for either very short or very long optical pulses, where
the signal is directly related to the response function
in the time domain or in the frequency domain,
respectively. For arbitrary pulse shapes it may be
more convenient to compute the polarization directly
by integrating the equations of motion which contain
the field envelopes.163-166

The nonlinear polarization induced by three optical
fields with wavevectors k1, k2, and k3 and carrier
frequencies ωj 1, ωj 2, and ωj 3 (see eq 22) can be expanded
as

with u, v, and w ) 0, (1, (2, .... The different
contributions may be distinguished experimentally
through the wavevector ks ) uk1 + vk2 + wk3 of the
signal. In a perturbative solution it is straightforward
to select the desired contribution. A nonperturbative,
finite field, numerical solution, however, yields the
entire polarization, which is a sum of all contribu-
tions. To extract the desired component of the polar-
ization, we use the following expansion of the optical
field:

where Eu,v,w(t) is the slowly varying amplitude for
mode (u,v,w), and êj ≡ kjr - ωj jt (with j ) 1, 2, 3) is
the phase of mode j (see eq 3.1). Comparing eq 6.40
with eq 3.1, we note that the incoming field has only
six modes (u,v,w) ) ((1, 0, 0), (0, (1, 0), (0, 0, (1),
where the sign “+” (“-”) reflects forward (backward)
propagation.

Due to nonlinearities of the system, additional
modes are generated in the polarization and in all
NEE variables, i.e.,

Substitution of these Fourier expansions into the
NEE results in the following equations for the
various Fourier components:

where the mixing of different Fourier amplitudes is
caused by the nonlinear terms. In a three-pulse
experiment the optical field has six components (two

Rmanb,m′a′n′b′
Y ) Rma,m′a′

B δnb,n′b′ + Rnb,n′b′
B δma,m′a′ (6.37)

Rmanbkc,m′a′n′b′k′c′
Z ) (Rma,m′a′

B )*δnb,n′b′δkc,k′c′ +

Rnb,n′b′
B δma,m′a′δkc,k′c′ + Rkc,k′c′

B δma,m′a′δnb,n′b′ (6.38)

P(t) ) ∑
u,v,w

Pu,v,w(t) exp[i(uk1 + vk2 + wk3)r -

(uωj 1 + vωj 2 + wωj 3)t] (6.39)

E(r,t) ) ∑
u,v,w

Eu,v,w(t) exp(iuê1 + ivê2 + iwê3)

(6.40)

Bma(t) ) ∑
u,v,w

Bma(u,v,w) exp(iuê1t + ivê2t + iwê3t)

(6.41)

Yma,nb(t) )

∑
u,v,w

Yma,nb(u,v,w) exp(iuê1t + ivê2t + iwê3t) (6.42)

Nma,nb(t) )

∑
u,v,w

Nma,nb(u,v,w) exp(iuê1t + ivê2t + iwê3t) (6.43)

Zma,nb,kc(t) )

∑
u,v,w

Zma,nb,kc(u,v,w) exp(iuê1t + ivê2t + iwê3t) (6.44)

-i
∂Bma(u,v,w)

∂t
) (uωj 1 + vωj 2 + wωj 3)Bma(u,v,w) +

∑
ld

(-hma,ld + iRma,ld
B )Bld(u,v,w) + (KB)ma(u,v,w) +

(EB)ma(u,v,w) + (FB)ma(u,v,w) (6.45)

-i
∂Yma,nb(u,v,w)

∂t
) (uωj 1 + vωj 2 + wωj 3)Yma,nb(u,v,w) +

∑
ld

[(-hma,ld + iRma,ld
B )Yld,nb(u,v,w) +

(-hnb,ld + iRnb,ld
B )Yma,ld(u,v,w)] +

(KY)manb(u,v,w) + (FY)manb(u,v,w) (6.46)

-i
∂Nma,nb(u,v,w)

∂t
)

(uωj 1 + vωj 2 + wωj 3)Nma,nb(u,v,w) +

∑
ld

[hma,ldNld,nb(u,v,w) - hnb,ldNma,ld(u,v,w)] +

i ∑
m′a′n′b′

Rmanb,m′a′n′b′
N Nm′a′n′b′(u,v,w) +

(FN)manb(u,v,w) (6.47)

-i
∂Zma,nb,kc(u,v,w)

∂t
)

(uωj 1 + vωj 2 + wωj 3)Zma,nb,kc(u,v,w) +

∑
ld

[(-hma,ld + iRma,ld
B )Zld,nb,kc(u,v,w) +

(-hnb,ld + iRnb,ld
B )Zma,ld,kc(u,v,w) +

(-hkc,ld + iRkc,ld
B)Zma,nb,ld(u,v,w)] +

(KZ)manbkc(u,v,w) + (FZ)manbkc(u,v,w) (6.48)
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for each field). For instance,

where Ema(p) is associated with the pulse envelope
of field j ) 1, 2, 3.

The rotating-wave approximation (RWA) is easily
implemented in eqs 6.45-6.48. Since the Fourier
amplitudes are slowly varying, the slow terms are
selected only when uωj 1 + vωj 2 + wωj 3 are close to a
frequency associated with the dynamic variables.
Only, the following modes survive the RWA:

The actual number of important components is, thus,
much smaller than the entire three-dimensional
space of Fourier components, and the NEE can be
solved numerically for the various Fourier compo-
nents. For instance, (u,v,w), corresponding to the four
independent third-order techniques, are

For a two-pulse experiment, a two-dimensional Fou-
rier transform is required to extract a particular
optical signal, which simplifies the computations
considerably.

As an application of the NEE, we show simulation
of the pump-probe spectrum of the bacterial light-
harvesting complex LH2.167 This is a key biological
unit of photosynthesis responsible for primary solar
energy absorption, which is later funneled into the
reaction center (via LH1 complex) where charge
separation converts sunlight into chemical energy.9
The photosynthetic antenna consists of two rings of
chromophores: the B800 complex absorbs at 800 nm,
while B850 absorbs at 850 nm. The structures of
these are very similar. Both consist of 18 bacterio-
chlorophylls (BCls) placed in the ring, while the
distances between BCls of the B800 complex is larger
than in the B850 complex.

The B850 excitons are delocalized due to intermo-
lecular interactions, as indicated by the red-shifted
absorption band. Due to larger distances in the B800
ring, the interactions between BCls in B800 are
weak, and different BCls respond independently.

Interactions with the vibrations and structural dis-
order of the system are also key factors in the exciton
dynamics.

Carotenoid (Car) molecules, which are part of the
photosynthetic antenna, have a much higher absorp-
tion band (at 450 nm). Recently, Herek et al. observed
shifting of Car absorption bands depending on the
electronic state of the LH2 system.102 This effect can
be accounted for by the quartic interactions Kmn (eq
4.2).

The NEE parameters may be obtained using ad-
ditional data obtained from various experiments.
Linear absorption provides information about ener-
gies of eigenstates. We assume that the BChls
composing the B800 and B850 rings are identical.
The different absorption energies of the rings come
from different coupling between the molecules. Cou-
plings between chromophores may be obtained by
fitting the B850 absorption spectra. The line widths
may be tuned by varying the interaction strength
with the bath. The quartic coupling was obtained by
comparing experimental nonlinear spectra with simu-
lations. Using these parameters, we have developed
a simple model of the LH2 complex which mimics the
results of ref 102.

The B800 and B850 complexes were represented
as two two-level dimers, A and B (see Figure 6a). To
represent the B850 complex, we added a strong
coupling between the chromophores inside the B
dimer. Car is represented as an additional (C) two-
level chromophore. We assumed different fourth-
order couplings between A-C and B-C. Thus, in the
Hamiltonian in eq 4.2 the indices a, b, ... may be
omitted since we have only one excited state per
chromophore and m, n, ... now correspond to chro-
mophores A1, A2, B1, B2, and C.

The relaxation operators were computed by assum-
ing a Brownian oscillator model for diagonal and off-
diagonal fluctuations of the Hamiltonian.167

The simulated linear absorption and pump-probe
spectra in the regions of BCls and Car are presented
in Figure 6. The linear absorption consist of three
bands at 11 900 (B850), 12 500 (B800), and 22 000
cm-1 (Car). We have further simulated the pump-
probe spectrum, where the pump excited B dimer and
probing was done in the regions 11 000-14 000 and
21 000-23 000 cm-1. The spectrum reveals excitonic
effects of B dimer and energy flow A f B. The C
absorption band shifts to higher energies (since Umn
is positive) immediately following the excitation. The
shift decreases as population is transferred to the B
dimer since the quartic B-C coupling is smaller than
that of A-C.

7. Discussion

The fluctuating multilevel Hamiltonian116,118,168

captures the essential features and trends of the
optical response of chromophore aggregates coupled
to a bath. The CGF correlation function expressions
presented in section 5 for the linear and the third-
order optical response of multilevel chromophores are
based on the Condon approximation, where the
transition dipole is assumed to be independent of

(EB)ma(u,v,w) ) -{δu,-1δv,0δw,0Ema(1) +

δu,1δv,0δw,0Ema
/ (1) + δu,0δv,-1δw,0Ema(2) +

δu,0δv,1δw,0Ema
/ (2) + δu,0δv,0δw,-1Ema(3) +

δu,0δv,0δw,1Ema
/ (3)} (6.49)

Bma(u,v,w) S uωj 1 + vωj 2 + wωj 3 ≈ Ωma (6.50)

Yma,nb(u,v,w) S uωj 1 + vωj 2 + wωj 3 ≈ Ωma + Ωnb

(6.51)
Nma,nb(u,v,w) S uωj 1 + vωj 2 + wωj 3 ≈ -Ωma + Ωnb

(6.52)
Zma,nb,kc(u,v,w) S uωj 1 + vωj 2 + wωj 3 ≈ -Ωma +

Ωnb + Ωkc (6.53)

-k1 + k2 + k3 S (-1,+1,+1);
k1 - k2 + k3 S (+1,-1,+1)

k1 + k2 - k3 S (+1,+1,-1);
k1 + k2 + k3 S (+1,+1,+1)
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nuclear coordinates. Diagonal fluctuations induced
by the bath, which determine the line shape, are
computed using the second-order cumulant expan-
sion which is exact for a harmonic Gaussian bath.
The relevant bath information is contained in the
collective Brownian oscillator spectral densities which
determine the spectral broadening functions. Off-
diagonal fluctuations lead to relaxation processes of
coherences and of populations. Exciton transport
induced by off-diagonal fluctuations was calculated
perturbatively using projection operator tech-
niques.101,169,170 Computing the response involves
several steps: (i) finding the one- and two-exciton
eigenstates, (ii) computing the transition dipole mo-
ments in the exciton basis, and (iii) computing the
transformation matrices of the spectral densities to
the exciton basis. The line-broadening functions

define the line shapes which can take an arbitrary
form, and off-diagonal bath fluctuations lead to
various relaxation processes of coherences and popu-
lations. Thus, the CGF formalism can describe vari-
ous fluctuations with an arbitrary distribution of time
scales.

Single-exciton states can be found by diagonalizing
the single-exciton Hamiltonian. Calculation of higher
(double-, triple-, ...) exciton states and of their cor-
relation functions becomes numerically expensive for
large aggregates. These difficulties are avoided by
using a second, dynamical method for computing the
nonlinear response. Using the nonlinear exciton
equations78,143,171 given in section 6, the number of
variables in the NEE scales as (NM)3, where N is the
number of chromophores and M is the number of
excited states in each chromophore.

Figure 6. Pump-probe signal of a five-chromophore aggregate representing photosynthetic antenna and a carotenoid
molecule.167 (a) The B800 complex is represented by a dimer A, the B850 complex is represented by a dimer B, and the
carotenoid system is represented by a chromophore C. The energies of the chromophores composing A and B dimers are
identical: ΩA1 ) ΩA2 ) ΩB1 ) ΩB2 ) 12 500 cm-1. The second-order coupling between chromophores B1 and B2, JB1,B2 ) 600
cm-1. The excited-state energy of chromophore C represents Car absorption: ΩC ) 22 000 cm-1. C is quartically coupled
to A and B: KA1,C ) KA2,C ) 300 cm-1 and KB1,C ) KB2,C ) 100 cm-1. The A dimer is pumped in the pump-probe experiment.
(b) The linear absorption showing three lines: A dimer (12 500 cm-1), B dimer (11 900 cm-1), and C (22 000 cm-1). (c)
Pump-probe signal showing exciton transfer between A and B in the 11 000-14 000cm-1 region. (d) The time-dependent
line shift in the absorption of the C chromophore is solely induced by the quartic coupling and vanishes if we set K ) 0 in
the Hamiltonian eq 4.2.
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Since the NEE avoid the computation of the eigen-
states of the system, they can be used for larger
molecular aggregates than the CGF. However, the
simplified Redfield description of the bath can de-
scribe only fast bath motions, which yields Lorentzian
line shapes. Slow bath fluctuations can be readily
incorporated by performing an ensemble average of
the response functions. Thus, only slow and fast
baths can be accounted for by the NEE, whereas the
CGF expressions can describe coupling to a bath with
an arbitrary distribution of time scales.

The solution of the NEE yields expressions for the
optical response in terms of Green functions repre-
senting the free dynamics of the various variables
when the external field is switched off. The single-
exciton variables are described by GB. Similarly, we
can introduce a Green function for the 〈B̂maB̂nb〉
variables that describes the motion of two-exciton and
exciton-exciton scattering, and a third Green func-
tion for the exciton density matrix 〈B̂ma

† B̂nb〉 that
describes incoherent exciton motion induced by ex-
citon-phonon scattering. By representing the re-
sponse in terms of these three Green functions,143 we
obtain a collective quasiparticle picture for exciton
dynamics and the nonlinear response.

If the energy levels of the aggregate form a har-
monic ladder, the system becomes linear; i.e., the
induced polarization will always be linear in the
applied field, and all nonlinear response functions
R(2), R(3), etc. must vanish identically. This is the
celebrated Lorentz oscillator model for the linear
response.172 In the CGF picture, the vanishing of the
nonlinear response is a result of a delicate interfer-
ence among many Liouville-space pathways. Only
when all the terms are carefully added, they exactly
cancel, reflecting a destructive interference of various
nonlinear paths. In contrast, in the NEE this inter-
ference is naturally built-in from the start, avoiding
the computation of spurious almost-canceling quanti-
ties. This point may be highlighted by expressing the
Green functions in terms of zero-order Green func-
tions of non-interacting excitons and exciton scatter-
ing matrix. Bozonization schemes may then be
used173-176 to express the optical response through
scattering of quasiparticles (rather than the more
traditional picture of transitions among global eigen-
states). Optical nonlinearities are generated by de-
viations from the linearly driven harmonic model
which enter through anharmonicities, nonlinearities
in the expansion of the polarization operator in
powers of the primary variables, and the non-boson
nature of the primary variables (deviations from
boson statistics). These induce exciton scattering
processes which in turn give rise to optical nonlin-
earities.

The dynamical NEE approach immediately cures
many problems associated with the sum-over-states
approach and provides an extremely useful physical
insight with greatly reduced computational effort.
Moreover, by describing the optical response in real
space, it provides an intuitive picture, which is
particularly suitable for the interpretation of femto-
second spectroscopies.

The NEE extend the semiconductor Bloch equa-
tions (SBE) which were successfully used to describe
the optical response of semiconductor systems (bulk,
quantum dots, quantum wells, and superlattices).
The two share several important fundamental sim-
ilarities.17,35,153,177-183 Femtosecond techniques probe
the interplay of coherent and incoherent dynamics,
elastic and inelastic scattering, and self-trapping of
excitons. The Wannier-type excitons in semiconduc-
tors are formed by an electron in the conduction band
and a hole in the valence band. Molecular excitations
moving coherently across the system (Frenkel exci-
tons) can be also considered as electron-hole pairs
with the constraint that the electron and the hole
must reside on the same molecule at all times. Due
to the absence of intermolecular charge transfer in
molecular assemblies, the number of Frenkel one-
exciton states scales, ∼ N, with the number of mol-
ecules N, whereas the number of Wannier excitons
(we refer to all electron-hole pair states as excitons
regardless of whether their relative motion is bound
or not) scales ∼ N 2. Similarly, the number of two-
exciton states scales ∼ N 2 and ∼ N 4, respectively. Due
to this difference,184 the higher level NEE which,
unlike the SBE, properly account for the structure
of two-exciton resonances can be more easily utilized
in the modeling of molecular nanostructures.
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9. Appendix A. The Generalized Frenkel Exciton
Hamiltonian

The Hamiltonian of an aggregate made of mol-
ecules with non-overlapping charge distributions, ĤS
(the first term in eq 4.1), may be expanded in the
basis set of individual chromophores:143

where Fm
ab ≡ |ma〉〈mb| is a complete set of operators

of the mth molecule, a,b,c,d ) 0 ..., M run over the
molecular states, 0 being the ground state, and Hma

and H mn
ab,cd are matrix elements. The first term

describes the isolated molecules and the second
represents intermolecular interactions.

The operators Fm
ab can be recast using exciton

creation, B̂ma
† ≡ |ma〉〈m0|, and annihilation opera-

tors, B̂ma ≡ |m0〉〈ma|, where a and b ) 1, ..., M. These
satisfy the Pauli commutation relations:

Using these definitions we get Fm
ab ) B̂ma

† B̂mb, Fm
a0 )

ĤS ) ∑
m

∑
a

HmaFm
aa + ∑

mn

m*n

∑
abcd

H mn
ab,cdFm

abFn
cd (A1)

[B̂ma,B̂nb
† ] ) δm,nδa,b(1 - ∑

c
B̂mc

† B̂mc) - δm,nB̂mb
† B̂ma

(A2)
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B̂ma
† , Fm

0a ) B̂ma, and Fm
00 ) 1 - ∑aB̂ma

† B̂ma. Substitut-
ing these in eq A1, we get32

where

Equations A3-A7 constitute the most general form
of the exciton Hamiltonian.1-3,32 All coefficients Ωma,
V′ma, V′′ma, V′′′m,ab, Jma,nb, Km,n

ab,cd, U′ma,nb, U′′ma,nb, W′a,bc
m,n,

and W′′ab,c
m,n are linear combinations of Hma and H mn

ab,cd.
Ĥ1 represents the isolated molecule and Ĥ3 repre-
sents the contribution of the electric field on each
chromophore created by other molecules of the ag-
gregate. The local field shifts the energy of the state
(Ωma * Hma) and couples the various energy levels
through the terms V′ma, V′′ma, and V′′′m,ab. Ĥ3 is a
single-molecule coupling term which can be elimi-
nated by rediagonalizing the single-chromophore
Hamiltonians. The coupling between chromophores
is represented by Ĥ2 and Ĥ4. Ĥ2 has quadratic Jma,nb

and quartic Km,n
ab,cd resonant couplings which con-

serve the number of excitons. Ĥ4 couples states with
different number of excitons. All parameters can be
obtained using, e.g., time-dependent density func-
tional theory (TDDFT) computations of excited states
of individual chromophores.32

When the intermolecular coupling Hmn
ab,cd (typically

smaller than 500 cm-1 in molecular aggregates) is
much smaller than the transition energies Hma
(∼20 000 cm-1), the off-resonant terms given by Ĥ3
and Ĥ4 make negligible contributions to the optical
response and may be neglected. This results in the
Hamiltonian, eq 4.2. This approximation also typi-
cally holds for coupled vibrational chromophores.

10. Appendix B. Mapping Molecular Aggregates
onto the Fluctuating Multilevel Model

We consider a molecular aggregate made of N
interacting two-level chromophores (M ) 1), as

shown in Figure 1. Setting a ) b ) 1 in eq 4.2, we
get

with the polarization operator

With this Hamiltonian, only the optical field can
change the number of excitons and only two groups
of resonant excited states (one- and two-exciton
states) contribute to the third-order optical signals
(see Figures 1 and 3). The third-order response
depends on the ground state of the aggregate (where
all chromophores are in their ground states), N one-
exciton states, and N(N - 1)/2 two-exciton states.
These eigenstates can be obtained by diagonalizing
the relevant blocks of the Hamiltonian. The one- and
two-exciton energies will be denoted as εR and εR̂,
respectively, with the corresponding wave func-
tions:

and

Equation B3 defines the one-exciton creation, b̂R
†,

and annihilation operators, b̂R, whereas eq B4 defines
the two-exciton creation, ĉRj

†, and annihilation op-
erators, ĉRj. The two-exciton states are obtained by
acting with two-exciton creation operators ĉ† which
are bilinear combinations of the one-exciton creation
operators B̂†.

All parameters of the fluctuating exciton Hamil-
tonian (eqs 5.1 and 5.2) may be obtained from the
aggregate Hamiltonian (eq B1) by applying transfor-
mations involving the exciton eigenstates, æR(m) and
ψRj(mn). We define the transformation matrices:

and

Using these operators, the exciton Hamiltonian
(eqs B1 with B2) can be recast in the form

with the polarization operator

ĤS ) ∑
m

ΩmB̂m
† B̂m + ∑

mn

m*n

(Jm,n B̂m
† B̂n +

Km,n B̂m
† B̂n

†B̂mB̂n) (B1)

P̂ )∑
m

µm(B̂m
† + B̂m) (B2)

b̂R
† |0〉 ≡ ∑

m
æR(m)B̂m

† |0〉 (B3)

ĉRj
† |0〉 ≡ ∑

m,n;m<n
ψRj(mn)B̂m

+B̂n
+|0〉 (B4)

T R,â;mn
(1) ≡ æR(m)æâ(n) (B5)

T Rj ,âh;mn
(2) ≡ ∑

k
(ψRj(mk) + ψRj(km))(ψâh(nk) + ψâh(kn))

(B6)

Ĥ ) ∑
R

εRb̂R
† b̂R + ∑

Rj
εRjĉRj

† ĉRj - P̂‚E(r,t) + ĤSB (B7)

P̂ ) ∑
R

µR(b̂R + b̂R
†) + ∑

R
∑

âh
µR,âh(b̂R

† ĉâh + ĉâh
†b̂R) (B8)

ĤS ) Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4 (A3)

Ĥ1 ) ∑
m

∑
a

ΩmaB̂ma
† B̂ma (A4)

Ĥ2 ) ∑
mn

m*n{∑
ab

Jma,nbB̂ma
† B̂nb +

∑
abcd

K m,n
ab,cdB̂ma

† B̂nc
† B̂mbB̂nd} (A5)

Ĥ3 ) ∑
m

{∑
a

(V ′maB̂ma
† + V ′′maB̂ma) +

∑
ab

a*b

V ′′′m,abB̂ma
† B̂mb} (A6)

Ĥ4 ) ∑
mn

m*n{∑
ab

(U′ma,nb B̂ma
† B̂nb

† + U′′ma,nb B̂maB̂nb) +

∑
abc

(W′a,bc
m,n B̂ma

† B̂nb
† B̂nc + W′′ab,c

m,n B̂ma
† B̂mbB̂nc)} (A7)
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The excitonic transition dipole moments µR and µR,â̂
reflect optical transitions to the exciton state R and
among exciton states (belonging to different mani-
folds) R and âh, respectively. The transition dipole
moments are given by

The coupling of the system with the bath is now
given by

Here, QR,â
(c) are collective bath coordinates in the

exciton basis set. Since our Hamiltonian conserves
the number of excitons, exciton hopping can take
place only within the one-exciton or the two-exciton
manifolds; bath-induced relaxation between these
manifolds is not allowed. The collective bath coordi-
nates are then simply given by

The spectral densities in the exciton basis set are
similarly obtained from their local basis set counter-
parts:

where the molecular spectral densities were defined
by eq 4.8.

Equtions B7 and B8 are identical to eqs 5.1 and
5.2. Thus, the molecular aggregate Hamiltonian (eq
B1) has been reduced to a fluctuating multilevel
system. Correlations among fluctuations in the eigen-
state basis may arise either from delocalized primary
coordinates, which induce correlated fluctuations in
different molecules, or from through-space couplings
in the system, which connect different locally uncor-
related modes.

11. Appendix C: The Master Equation for
Incoherent Exciton Hopping

The Green function of eq 87 satisfies the master
equation (eq 88):101

Invoking the Markovian approximation, Kab reads

where Kh ab is given by a sum of two correlation
functions related to off-diagonal fluctuations of the
Hamiltonian,

where

The density matrix Fjb represents a bath-equilibrated
excited state, which is given by

and Fjg is the equilibrium ground state.
Kh ab depends on the off-diagonal spectral broadening

functions:

We then have

Here a “dot” stands for a time derivative, and

where we have also defined

12. Appendix D: The Doorway and the Window
Functions

The incoherent doorway and window terms in eq
5.30 may be expressed using the line-broadening
functions.101 SD(t3,∞,t1) accounts for part of the total
response function (related to the system without the
off-diagonal system-bath interactions) associated

µa ) ∑
m

µmæR(m) (B9)

µR,âh ) ∑
m,n

ψâh(mn)(æR(m)µn + æR(n)µm) (B10)

ĤSB ) ∑
R,â

QRâ
(c)b̂R

† b̂â + ∑
Rj ,âh

QRjâh
(c)ĉRj

† ĉâh (B11)

QR,â
(c) ) ∑

m,n
Qmn

(c) T Râ,mn
(1) (B12)

QRj ,âh
(c) ) ∑

m,n
Qmn

(c) T Rjâh,mn
(2) (B13)

C′′′eRâ,R′â′(ω) ) ∑
mnm′n′

T Râ,mn
(1) T R′â′,m′n′

(1) C′′mn,m′n′(ω)

(B14)

C′′′eRâ,Rjâh′(ω) ) ∑
mnm′n′

T Râ,mn
(1) T Rj ′âh′,m′n′

(2) C′′mn,m′n′(ω) (B15)

C′′′eRjâh,R′â′(ω) ) ∑
mnm′n′

T Rjâh,mn
(2) T R′â′,m′n′

(1) C′′mn,m′n′(ω) (B16)

C′′′eR̂âh,R̂′âh′(ω) ) ∑
mnm′n′

T Rjâh,mn
(2) T Rj ′âh′,m′n′

(2) C′′mn,m′n′(ω) (B17)

d

dt
Gba(t) )∑

c
[KbcGca(t) - KcbGba(t)] (C1)

Kab ) ∫0
∞

dt Kh ab(t) (C2)

Kh ab(t) ) K ab
L (t) + (K ab

L (t))* (C3)

Kh ab(t) ) 〈Bb
†(t)Ba(t)Qba

(C)(t)Ba
†(0)Bb(0)Qab

(C)(0)Fjb〉 (C4)

Fjb ) lim
tf∞

exp(-iL0t)Bb
†FjgBb (C5)

gab,cd(t)∫-∞
∞ dω

2π
1 - cos(ωt)

ω2
coth( pω

2kBT)C′′ab,cd(ω) +

i∫-∞
∞ dω

2π
sin(ωt) - ωt

ω2
C′′ab,cd(ω) (C6)

K ba
L (t) ) K ba

F (t){g̈b,a,a,b(t) - [ğa,b,a,a(t) - ğa,b,b,b(t) +

2iλa,b,a,a][ğa,a,b,a(t) - ğb,b,b,a(t) +

2iλb,a,a,a]} for t > 0 (C7)

K ba
F (t) ) exp[-i(Ωb - Ωa)t - gb,b,b,b(t) - ga,a,a,a(t) +

ga,a,b,b(t) + gb,b,a,a(t) - 2i(λa,a,a,a - λb,b,a,a)t] (C8)

λb,a,b′,a′ ) -lim
tf∞

Im(dgb,a,b′,a′(t)
dt ) (C9)
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with excited-state populations. This function may in
turn be expressed in terms of the doorway and
windows functions, Da(t) and Wa(t):

where

Here,

and

Using the second-order cumulant expansion, the
correlation functions are expressed in terms of the
line-broadening functions:

The ground-state doorway and window functions are
given by

13. Appendix E: The NEE Matrix
In this appendix we define the matrices appearing

in eqs 6.7-6.10 (L, K, E, and F). The L terms are
defined as follows:

where hma,ld ) Ωmaδma,ld + Jmald(1 - δml) and δma,ld ≡
δm,lδa,d.

The two-exciton terms are given by

Note that Yma,mb ) 0 and Zma,nb,nc ) 0.
The linear interaction with the optical field is

For the nonlinear part of the interaction we have

where Em,ad ) -µm,adE(t).

14. Appendix F: Derivation of the Relaxation
Matrices

The relaxation terms in the NEE are calculated
using the first-order coupled variables:143

SOD(t3,∞,t1) ) ∑
a

Wa(t3)Da(t1) + Wg(t3)Dg(t1) (D1)

Da(t) ) Da
L(t) + Da

L(-t) (D2)

Wa(t) ) Wa
L(t) - Wa

L(-t) (D3)

Da
L(t) ) -µa

2〈Ba(t)Ba
†(0)Fjg〉 (D4)

Wa
L(t) ) iµa

2〈Ba
†(0)Ba(t)Fja〉 -

iµab
2 〈Ba

†(t)Bb(t)Bb
†(0)Ba(0)Fa〉 (D5)

Da
L(t) ) -µa

2 exp[-iΩat - gaa(t)] (D6)

Wa
L(t) ) iµa

2 exp(-iΩat - gaa
/ (t) + 2iλaat) -

i∑
b

µab
2 exp(-i(Ωb - Ωa)t - gaa(t) - gbb(t) +

2gab(t) + 2i(λab - λaa)t) (D6)

Dg(t) ) -∑
a

Da(t) (D7)

Wg(t) ) i∑
a

(Da
L(t) - Da

L(-t)) (D9)

(LB)ma ) ∑
ld

-hma,ldBld (E1)

(LY)ma,nb ) ∑
ld

-hma,ldYld,nb - hnb,ldYma,ld (E2)

(LN)ma,nb ) ∑
ld

hld,maNld,nb - hnb,ldNma,ld (E3)

(LZ)ma,nb,kc ) ∑
ld

hld,maZld,nb,kc - hnb,ldZma,ld,kc -

hkc,ldZma,nb,ld (E4)

(KB)ma ) ∑
ldd′

(hma,ld′Zmd,md,ld′ + hmd,ld′Zmd,ma,ld′) -

∑
ld

(Kl,m
dd,aa + Km,l

aa,dd)Zld,ld,ma (E5)

(KY)ma,nb )δm,n[∑
ld

(hma,ldYld,ma + hmb,ldYma,ld) +

(EmaBmb + EmbBma) +

∑
d

(Em,adYmd,mb + Em,bdYma,md)] (E6)

(KZ)ma,nb,kc ) δn,k[∑
ld

(-hld,maZld,nb,nc +

hnb,ldZma,ld,nc) + hnc,ldZma,nb,ld - EmaYnb,nc +

EnbNma,nc + EncNma,nb] (E7)

(EB)ma ≡ Ema ) -µmaE(t) (E8)

(F B)ma ) ∑
d

(EmaNmd,md + EmdNmd,ma - Em,adBmd)

(E9)

(F Y)ma,nb ) -(EmaBnb + EnbBma) -

∑
d

(Em,adYmd,nb + En,bdYma,nd) (E10)

(F N)ma,nb ) (EmaBnb - EnbBma
/ ) + ∑

d
(Em,adNmd,nb -

En,bdNma,nd) (E11)

(F Z)ma,nb,kc ) (EmaYnb,kc - EnbNma,kc - EkcNma,nb)
(E12)

〈B̂maQj〉 ≡ Bh ma,j
q (F1)

〈B̂maB̂nbQj〉 ≡ Yh manb,j
q (F2)

〈B̂ma
† B̂nbQj〉 ≡ Nh manb,j

q (F3)

〈B̂ma
† B̂nbB̂kcQj〉 ≡ Zh manbkc,j

q (F4)
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and

To find the evolution of the coupled variables, we
write their Heisenberg equations. We assume that
the bath oscillators are independent. We also neglect
nonlinear terms and terms in the equations for the
coupled variables which depend on the optical field.
We can then factorize the second-order coupled
terms:

The resulting equations for the first-order coupled
variables are

Similarly:

and finally:

Here we used uj ) Mj
-1, vj ) -Mj Ωh 2, and wj )

〈QsQs〉, and [Ps,Qs] ) -i, 〈PsQs〉 ) -i/2, and 〈QsQs〉 )
1/(2Mj Ωh j) coth(p Ωh j/(2kBT)). The equations are solved
to second order in the system-bath interaction.

We next construct a general form of the solution
of the equations for the coupled system-bath. For
arbitrary variables Aq and Ap satisfying the equa-
tions

the general solution reads

〈B̂maPj〉 ≡ Bh ma,j
p (F5)

〈B̂maB̂nbPj〉 ≡ Yh manb,j
p (F6)

〈B̂ma
† B̂nbPj〉 ≡ Nh manb,j

p (F7)

〈B̂ma
† B̂nbB̂kcPj〉 ≡ Zh manbkc,j

p (F8)

〈B̂ma
† ...B̂nb

† B̂kc...B̂ldQjQj〉 ) 〈B̂ma
† ...B̂nb

† B̂kc...B̂ld〉〈QjQj〉

(F9)

〈B̂ma
† ...B̂nb

† B̂kc...B̂ldPjQj〉 ) 〈B̂ma
† ...B̂nb

† B̂kc...B̂ld〉〈PjQj〉

(F10)

-i
∂Bh ma,j

q

∂t
) -∑

ld
hma,ldBh ld,j

q - iujBh ma,j
p -

wj∑
ld

hhmald,jBld (F11)

-i
∂Yh manb,j

q

∂t
) ∑

ld
(-hma,ld Yh ldnb,j

q - hnb,ld Yh mald,j
q ) -

iujYh manb,j
p + wj∑

ld
(-hhmald,jYld,nb - hhnbld,jYma,ld)

(F12)

-i
∂Nh manb,j

q

∂t
) ∑

ld
(hma,ld Nh ldnb,j

q - hnb,ld Nh mald,j
q ) -

iujNh manb,j
p + wj∑

m′a′
(hhmald,jNld,nb - hhnbld,jNma,ld)

(F13)

-i
∂Zh manbkc,j

q

∂t
) ∑

ld
(hma,ldZh ldnbkc,j

q - hnb,ldZh maldkc,j
q -

hkc,ld Zh manbld,j
q ) - iuj Zh manbkc,j

p +
wj∑

ld
(hhmald,jZld,nb,kc - hhnbld,jZma,ld,kc -

hhkcld,j Zma,nb,ld) (F14)

-i
∂Bh ma,j

p

∂t
) -∑

ld
hma,ld Bh ld,j

p - ivj Bh ma,j
q -

i

2
∑
ld

hhmald,jBld (F15)

-i
∂Yh manb,j

p

∂t
) ∑

ld

(-hma,ld Yh ldnb,j
p - hnb,ld Yh mald,j

p ) -

ivjYh manb,j
q -

i

2
∑
ld

(-hhmald,jYld,nb - hhnbld,jYma,ld) (F16)

-i
∂Nh manb,j

p

∂t
) ∑

ld

(hma,ld Nh ldnb,j
p - hnb,ld Nh mald,j

p ) -

ivj Nh manb,j
q +

i

2
∑
ld

(hhmald,jNld,nb + hhnbld,jNma,ld) (F17)

-i
∂Zh manbkc,j

p

∂t
) ∑

ld

(hma,ld Zh ldnbkc,j
p - hnb,ld Zh maldkc,j

p -

hkc,ld Zh manbld,j
p ) - ivj Zh manbkc,j

q +
i

2
∑
ld

(hhmald,j Zld,nb,kc +

hhnbld,jZma,ld,kc + hhkcld,jZma,nb,ld) (F18)

-i
∂Qj

∂t
) -iMj

-1Pj (F19)

-i
∂Pj

∂t
) iMj Ωh 2Qj + i ∑

manb
hhmanb,jNma,nb (F20)

i∂Aq

∂t
- hAAq - i

M
Ap ) W q(t) (F21)

i∂Ap

∂t
- hAAp - iM Ωh 2Aq ) W p(t) (F22)

Aq(t) ) -i∫0
∞

dτ[cos(Ωh τ)GA(τ)W q(t - τ) +
1

MΩh
sin(Ωh τ)GA(τ)Wp(t - τ)] (F23)

Ap(t) ) -i∫0
∞

dτ[cos(Ωh τ)GA(τ)W p(t - τ) -

M Ωh sin(Ωh τ)GA(τ)W q(t - τ)] (F24)
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where GA(τ) ) exp(ihAτ) is a Green function of the
equation

Using eq F23, we can obtain all four relaxation
terms in the NEE. Since we are using a simplified
form of the relaxation terms for the Y and the
Z variables, we need the solutions for Bh ma,j

q and
Nh manb,j

q , which are given in eqs 6.32 and 6.35.

15. Appendix G: Relaxation Rates for the
Overdamped Brownian Oscillator Spectral
Density

The four-point spectral density similar to eqs 4.9
and 4.16 contains all relevant information on the
bath:143

We define the matrix of phonon Green function
corresponding to extension of eq 6.33:143

Using eqs G1, G2, and 6.34, RB can be rewritten:
RN can be also expressed using eqs G1, G2, and

6.36:

In the following we will use the overdamped
Brownian oscillator spectral density (eq 4.18) for the
bath:57,169

The relaxation terms are then expressed using a
Fourier transform of the phonon Green function
withthe Lorentzian spectral density. Thus, we define
the functions:

leading to169

Here, vq ) 2πqkBT are the Matsubara frequencies.
Using the Green function expressions (eq 6.20), RB

becomes

where Ah manb,kcld ≡ λ hhmanb hhkcld and ωR1,R2 ) εR1 - εR2.
RN can also be rewritten in terms of the function

Φ((ω) using the same Green function (eq 6.20):
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Aartsma, T. J.; Schmidt, J. Biophys. J. 2001, 80, 1604.

(29) Sumi, H. J. Phys. Chem. B 1999, 103, 252.
(30) Scholes, G.; Fleming, G. R. J. Phys. Chem. B 2000, 104, 1854.
(31) Juzeliunas, G.; Andrews, D. L. In Quantum Electrodynamics of

Resonance Energy Transfer; Prigogine, I., Rice, S. A., Eds.;
Advances in Chemical Physics 112; Wiley: New York, 2000.

(32) Mukamel, S.; Berman, O. J. Chem. Phys. 2003, 119, 12194.
(33) Wannier, G. H. Phys. Rev. 1937, 52, 191. Mott, N. F. Trans.

Faraday Soc. 1938, 34, 500.
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(152) Kühn, O.; Chernyak, V.; Mukamel, S. J. Chem. Phys. 1996, 105,

8586.
(153) Chernyak, V.; Mukamel, S. J. Opt. Soc. Am. B 1996, 13, 1302.
(154) Victor, K.; Axt, V. M.; Stahl, A. Phys. Rev. B 1995, 51, 14164.

Axt, V. M.; Stahl, A. Z. Phys. B 1994, 93, 4195.
(155) Redfield, A. G. Adv. Magn. Reson. 1965, 1, 1.
(156) Pollard, W. T.; Felts, A. K.; Friesner, R. A. Adv. Chem. Phys.

1996, 93, 77.
(157) Knoester, J.; Mukamel, S. Phys. Rep. 1991, 205, 1.
(158) Dubovsky, O.; Mukamel, S. J. Chem. Phys. 1991, 95, 7828.
(159) Meier, T.; Chernyak, V.; Mukamel, S. J. Phys. Chem. B 1997,

101, 7332.
(160) Chernyak, V.; Mukamel, S. Phys. Rev. Lett. 1995, 74, 4895.
(161) Chernyak, V.; Mukamel, S. Phys. Status Solidi 1995, 189, 67.
(162) Silbey, R.; Munn, R. W. J. Chem. Phys. 1980, 72, 2763. Munn,

R. W.; Silbey, R. J. Chem. Phys. 1985, 83, 1843. Munn, R. W.;
Silbey, R. J. Chem. Phys. 1985, 83, 1854.

(163) Abramavicius, D.; Mukamel, S. J. Chem. Phys. 2004, 120, in
press.

(164) Domcke, W.; Stock, G. Adv. Chem. Phys. 1997, 100, 1.
(165) Seidner, L.; Stock, G.; Domcke, W. J. Chem. Phys. 1995, 103,

3998.
(166) Lindberg, M.; Binder, R.; Koch, S. W. Phys. Rev. A 1992, 45,

1865.
(167) Abramavicius, D.; Mukamel, S. J. Phys. Chem. B 2004, 108, in

press.
(168) Sung, J.; Silbey, R. J. J. Chem. Phys. 2001, 115, 9266.
(169) Chernyak, V.; Minami, T.; Mukamel, S. J. Chem. Phys. 2000,

112, 7953.
(170) Zwanzig, R. Lect. Theor. Phys. 1961, 3, 106. Zwanzig, R. Physica

1964, 30, 1109.
(171) Piryatinski, A.; Chernyak, V.; Mukamel, S. Chem. Phys. 2001,

266, 285.
(172) Kuhn, O.; Rupasov, V.; Mukamel, S. J. Chem. Phys. 1996, 104,

5821.
(173) Holstein, T.; Primakoff, H. Phys. Rev. 1940, 58, 1098.
(174) Dyson, F. J. Phys. Rev. 1956, 102, 1217.
(175) Wentzel, G. Phys. Rev. 1957, 108, 1593. Usui, T. Prog. Theor.

Phys. 1960, 23, 787.
(176) Agranovich, V. M.; Toshich, B. S. Sov. Phys. JETP 1968, 26,

104.
(177) Perakis, I. E. Chem. Phys. 1996, 210, 259.
(178) Kner, P.; Bar-Ad, S.; Marquezini, M. V.; Chemla, D. S.; Schäfer,
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K. Phys. Rev. B 1995, 51, 11217. Bartels, G.; Cho, G. C.; Dekorsy,
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