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Multidimensional Infrared Signatures of Intramolecular Hydrogen Bonding in
Malonaldehyde
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The sixth-order anharmonic force field of malonaldehyde along the two proton-transfer double-well coordinates
and the four G-H and C=0 stretching modes is constructed at the MP2/6-31G(d,p) level. The vibrational
Hamiltonian is diagonalized using the Arnoldi method. Coherent infrared (IR) vibrational spectra are predicted
using the vibrational eigenstates. The three pulse IR signals, calculated in all possible phase matching directions,
show specific signatures of the intramolecular proton transfer.

1. Introduction

Hydrogen bonding and proton transfer are important in many
chemical and biophysical processes. 8300 cnt! O—H
infrared (IR) stretch band contains several easily recognizable
signatures of hydrogen bonding: a red shift, enhanced intensity,
and line broadening?

Malonaldehyde (MA) is one of the simplest model systems
for intramolecular proton transfer, and its structure and dynamics
have been the focus of many experimental and theoretical
investigations over the past two decade¥. Microwave
spectroscopy done by Wilson's groifiand other researchéfs
suggests that proton transfer occurs via tunneling between two
O atoms (Figure 1). Centroid transition state theory shows that >
the quantization of the H atom has a large effect on the transition Proton Transfer IRC Coordinate
barrier of the ab initio potential of mean force along the reaction Figure 1. One-dimensional (1-D) model of intramolecular proton
coordinate? The linear infrared (IR) spectrum has been transfer in malonaldehyde.
studied?~!* however, band assignments based on normal mode
calculations are not obvious, because of the tunneling and strongsingle proton-transfer reaction coordinate and the other coor-
anharmonicities. The tunneling splittings of the vibrational dinates are included. In this study, we construct a six-
ground state predicted from electronic structure calculations with dimensional vibrational Hamiltonian that is based on an ab initio
a one-dimensional (1-D) reaction path med#l76 x 1073 cmt anharmonic force field. Sixth-order anharmonicities in the
(Intrinsic Reaction Coordinate, IR&,24or 0.65 cnt? (shortest proton-transfer coordinates and quartic anharmonicities for other
pathy—which is obtained in this study, do not agree with the coordinates are calculated. We found that the sixth-order force
experimental value (21.6 cr),” because of the strong coupling ~ field is necessary to reproduce the anharmonic force constants
between the tunneling coordinate and other vibrational modes. between the double-well reaction coordinate and the other
Therefore, a multicoordinate vibrational Hamiltonian is required coordinates.
to represent the proton-transfer dynamics. Several semiclassical studies of the vibrational eigenstates

Accurate potential energy surfaces (PESs) have been con-of MA have been performed. The calculated ground-state
structed for smaller molecules. The seventh-order force field tunneling splitting from the action integrals of the classical
with the Morse-transformed coordinates was proposed for water, trajectories through the barrier (13.9 chhwas determined to

and the calculated vibrational eigenstates:a6 000 cm! are be in reasonable agreement with experiméAt.The splitting
reproduced to within a few inverse centimet&/ibrational of other fundamental modes has also been estimated using the
and rotational dynamics of water (HOD in liquid,D) were perturbative instanton approa#hThis semiclassical treatment
studied semiclassically on this surfa&é® and found to be in  can include all coordinates and was only applied to the low-
reasonable agreement with hole burnthghoton echéd®2*and lying states. Quantum mechanical calculations are limited to
IR pump-probe experiment®:23Quartic multicoordinate model  handle fewer coordinates and have been applied only to less-
potentials were proposed for the proton transfer ina¥and anharmonic systems. The vibrational self-consistent field (VSCF)

toropoloné?® in which only anharmonic couplings between a method” and its correlation correction version (E&'SCF)8
were applied to polyatomic systems, assuming a pairwise
* Author to whom correspondence should be addressed. Present ad-additive potential. However, the potential is limited to proton-
dress: Department of Chemlst(y, University of California, Irvine, CA 92697- transfer systems in which three coordinate couplings should be
2025. E-mail: smukamel@uci.edu. . ol . . .
* Department of Chemistry. included?* The discrete variable representation (D¥4pand

* Department of Physics and Astronomy. the multiconfigurational time-dependent Hartree (MCTDH)
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method’~33 have been applied to ultrafast laser-driven hydrogen- TABLE 1: Normal Modes of Malonaldehyde with Large

bonding dynamics in phthalic acid monomethylester (PMME- Infrlareld '”te”Sikt]ieS in the G1 and G2 Configurations,
D),3*3%which is less anharmonic than MA. Calculated at the MP2/6-31(d,p) Level

The present study extends the excitonic vibrational Hamil- mode description frequency (c) IR intensity
tonian3 which uses a harmonic oscillator basis set that 6 ring deformation 895.4 medium
corresponds to the local frequencies. We adopt a general 12 C-O stretch 1310.1 medium
harmonic oscillator basis set with an arbitrary frequencies and 16 H-O—C bend 1683.4 strong
displacements. With this basis, all matrix elements of the 1/ G=0 stretch 1736.8 strong

. . I . 18 C—H, stretch 3088.3 medium
vibrational Hamiltonian that have been expanded as polynomials 5 O—H stretch 3319.9 medium

of coordinates can be calculated analytically, and the excitonic
description is more accurate than the DVR method. The Implicit
Restated Arnoldi Method (IRAM) is used for the diagonalization z
of the large Hamiltonian matrix. The typical dimension size is A
~10°—10P.

The O-H stretch with a strong hydrogen bond has an
extremely broad (500 cm) bandwidth, which complicates the
microscopic analysis of the IR spectra. Three pulse nonlinear
IR spectroscopies provide detailed information on molecular
structures by spreading the spectroscopic information in two
dimensions, selectively eliminating certain static broadening
mechanisms, and providing ultrafast structural and dynamical
information unavailable from 1-D linear measuremeit4?
These techniques should provide a powerful tool for exploring
the structure and proton-transfer dynamics in hydrogen-bonded
systems.

We have simulated the three pulse nonlinear IR signals
generated at the four possible signal wavevectors. To identify
the signatures of proton transfer, the signals calculated for the
double-well (DW) potential are compared with a single-well _(l.‘) =y
(SW) model potential, where proton transfer is prohibited.

Several new off-diagonal cross peaks are found in the DW
potential. These peaks, which are induced by intramolecular
proton transfer, are assigned to the Liouville space paths which
include the transitions between the-8 stretch fundamental
and second-order or higher harmonics, which have much lower are expected to be markers for the energy surface along the
frequencies than expected in a harmonic system, because of th@roton-transfer coordinate.

a2 The normal modes are indexed with increasing frequency.

Figure 2. Calculated structure of the reference geometry. ¥hg-,
andz-axes shown here will be used in Table 6. Malonaldehyde is on
they—z plane, and the-axis is in perpendicular.

strong mixing with the proton-transfer reaction coordinate. The IRC? path, which connects the two energy minima G1
) . - . and G2, is described by the path within the two-dimensional
2. Reaction Coordinates and the Ab Initio Force Field (2-D) configurational spaéé(which is referenced as a reaction

plane) that includes three configuratiohs, £g2, and&rs, with

two basis vectorss) = §g1 — gz andé, = E1s — &o, whereéa
denotes Bl mass-weighted Cartesian coordinates for the con-
figuration A (A = G1, G2, TS).£] is a least-motion path that

IR spectr&1®show that MA is planar. Proton transfer occurs
in two equivalentcis-enol isomers (G1 and G2) wit@s point
group symmetry, whereas the transition state (1), 6ym-

metry) connects the G1 and G2 isomers (see Figure 1). . .
i ) i connectstg and &gz, and&y is defined assy = (g1 + Ec2)/2.
B3LYP/6-31G(d,p), MP2/6-31G(d,p), QCISD/6-31G(d,p), The calculated structure of the reference geom&ilig shown

and CCD/6-31G(d,p) levels were used in the present study toin Fiqure 2
locate the structures of G1, G2, and TS, using Gaussi&h98. gure 2. . . . .

The barrier heights for proton transfex = Ers — Ea15) were Ou'r S|x-d|men5|onal configurational space is made of the two
determined to be 831 cr (B3LYP), 1199 cm® (MPZ) 2161 reaction basis vector§, and &), together with the following
cm-1 (QCISD), and 2382 cr (CCI:S) Compared to th,e upper symmetric and antisymmetric four basis vectors that represent
bound that has been determined fromtHeNMR studies (2134 the O-H and G=0 stretching modes of G1 and G2:

cm™1),2 the B3LYP and MP2 levels underestimate the barrier

and the QCISD and CCD levels overestimate it. The high 5'3=i(5(1371+5(1372) (1a)

CCSD(T) level provides a reasonable estimate of the barrier V2

height, 1504 cm'.#* The CCSD(T) or QCISD(T) level was also , 1,61 .o

required in the similar H-atom transfer system of formimitfol. &= 72(517 - 5172) (1b)

Triple excitations are crucial for reproducing the barrier height.

The basis-set dependence of the barrier at the MP2 level was £ = i(561+ £62) (2a)

investigated in ref 14, and no significant improvements were 5 J2 20 20

observed with the larger basis set. The MP2/6-31G(d,p) level

was used in all our subsequent calculations. = i(gel _ EGZ (2b)
Table 1 shows the normal modes of MA in the G1 and G2 6 J2 20 20

geometries. Both ©H and G=O stretch have strong IR
intensities. Because their bond lengths are affected by the protorHere,gﬁ represents the mass-weighted Cartesian displacement
transferl4 the nonlinear IR bands of these vibrational modes vector of moden in the geometry A. These six basis vectors
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Figure 3. Potential energy surfaces (PESs) projected onto two-dimensional (2-D) space spai@eaniyfive other coordinate€), the other
reaction coordinateQs, O—H stretch inB, symmetry;Q,, O—H stretch inA; symmetry;Qs, C=0 stretch inB; symmetry; andQs, C=0 stretch
in A; symmetry). The PES spanned @y and the coordinates iA; symmetry (panels a, ¢, and e) have line symmetry, and the PES & tred

the coordinates iB, symmetry (panels b and d) have point symmetry. Panel a shows the PES on the reaction plane, which corresponds to Figure

4 in ref 14. Anharmonic couplings betweén and the G-H stretch (panels b and c) are larger than that betwi@esnd the G=O stretch (panels

d and e).

were subject to normalization and Gratf8chmidt orthogonal-
izatiorf® (see Appendix A), resulting in our final orthonormal
basis vectorg;---£s and corresponding coordinat®s, -+, Qe.

&1 and & are the normalizeds], and &, parameters. We

merically by calculating up to fourth-order derivatives of
analytical quadratic force constarffﬁ), with respect to coor-

dinate Qy, using five-point central difference formulas (see
Appendix B). The other anharmonic force constants were

therefore denot®; andQ; as reaction coordinates 1 (RC1) and determined by calculating first and second derivatives of analytic

2 (RC2), respectivelyss is a combination o€} andé&s. &sis a
combination off}, &3, and&s. &4 is a combination of), and&).
&s is a linear combination of,, &, and&;.

The ab initio potential energy surfac®)(was expanded
around the reference geometéy to sixth order in our six
orthonormal coordinate®y:

6P2 6

6
= z— +yie+ Zf% Q-+ ;fi‘,i’QiQ,-Qk +

£

fljk| QIQJ QkQI + |]kImQ|QJ QkQI Qm

m
6

i,j,g

L,

ﬁaanl Qj QkQI Qan (3)

where

k 3“" ) @

AoV
iyl n!(aQil...aQin o

The small coefficient®, which depend on four different

quadratic force constants with three-point central difference
formulas?’ The two displacement steps @f for the five-point
difference formula are set iy = 0.2 A andd, = 0.375 A, and
the displaced geometries with, correspond to the two
equilibrium geometriess; and &g, The displacementd of
all the other coordinates for the three-point difference formula
are set as 0.01 A. The quadratic force constants in the
orthonormal coordinates were obtained from the analytic
quadratic force constants in Cartesian coordinates that have been
calculated with Gaussian98.

We estimated the numerical error by comparing the cubic
force constants with the permutation of the three |ndi’,‘]§s

£, andf{y. The force constants that included varied by
<10A) (300% if the quartic force field were applied, using the
three-point difference formula). The three values are within 1%
for all the other cubic force constants that exclu@e Thus,
the sixth-order force field is necessary to model the energy
surface. The force field was scaled on one parameter (the square
of the ratio of the distance between the G1 and G2 geometries
to the amplitude of zero-point vibrations of RC1 at G1) given
in ref 24 to reproduce the experimental tunneling splitting of
the ground state. The calculated anharmonic force constants with
Q1, Q2, and Q3 are shown in Table 2. Because of the two

coordinates, were neglected. In the fifth and sixth orders, we equivalent hydrogen-bonded structures (Figure 1), the 1-D

retained only the largest term{?,, andf{},,, The termsf{}
to f”ml, which include coordinat®;, were determined nu-

potential alongQ; is a symmetric double well, i.ef” = 0, &

3 4 5)
<0, f(11)1 0, f(11)11> 0, f11111_ 0, andf111111> 0.
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TABLE 3: Single-Degree-of-Freedom Harmonic Oscillator
Basis Functions Assigned to Each Coordinate of the DW and
SW Potentials

a frequency mass  numberof  center position
o mode (cm™) (a.u.) basis (bohr)
QA 1748.9 1.44 16 0.0
Q2 499.8 9.13 8 0.1
Qh Qs 1830.3 1.66 6 0.0
1 Q4 2995.2 1.06 6 0.0
Figure 4. Plot showing that the double-well (DW) potential energy Qs 1535.5 5.95 4 0.0
curve along theQ; (red line) is replaced by the single-well (SW) Qs 1716.4 5.13 4 0.0

harmonic potential (blue line) in the SW model potential; the SW
potential curve has the same frequency as the DW potential curve atTABLE 4: Calculated Vibrational Eigenstates with Strong

geometry G1. IR Intensities to the Split Two Ground States
TABLE 2: Calculated Anharmonic Force Constantst with eigenstates IR intensitya.u.)
Q1, Q2 and Qs index  frequency (crm) description 1 2
parameter calculation parameter calculation 1 0.0 S, ground state
2 25.6 A, ground state 4.03
) 0.0000 4, 0.0757 9 1511.9 g 0.73 0.15
£ —0.0557 9, 0.0000 10 1537.7 0.13 0.46
f(31) 0.0000 f<141)13 0.0342 11 1642.6 0.18 0.03
i ~0.0830 iz 00138 3 17359 S,e0( =1) oor  om
3 0.0000 1% 0.0000 14 1750.0 AGOWw=1) 023 1.00
2 —0.0409 0 0.0158 15 1916.1 0.04 0.37
f(222) 0.0432 f(142)22 0.0000 22 2339.6 S,GH(v=1) 0.00 0.86
f(223) 0.0000 f(142)23 0.0088 25 2491.8 AG-H(v=1) 1.00 0.00
f(323) 0.1049 9., 0.0000 2|R intensities from the two ground states G1 and G2.
i) 0.0000 9., 0.0091
£, 0.0149 1, 0.0098 where the proton transfer is blocked and the MA is always
£, 0.0000 £, 0.0000 in G1 geometryf{),, andf(%,,,, are set as zero arf§’ andf{?)
£, 0.0000 . 0.0039 have the same harmonic frequency as that of the original
9, 0.0087 9., 0.0000 potential at the Gllgeometry (Figure 4). All other force constants
), 0.0000 £@) 0.0118 are unchanged. Figure 5 :_;hows the 2-D surche spannéd by
£6) 0.0257 £O) 0.0000 and the two other coordinateQ4, Qs) for this SW model
"E) 0.0000 () 0.0132 potential. Compared to Figure 3, the local structure of the PES
f(232)3 0.0047 f(lsl)m 0.0000 around G1 is preserved, but the second minimum G2 is
233 as11 eliminated. We shall denote these potentials as double-well
G 00000 %, 0.0000 (DW) and single-well (SW), respectivel
f(152)311 0.0080 ’ , P g
f(153)311 0.0000
O 0.0051 3. The Vibrational Eigenstates
f(161)2111 0.0000
O 0.0061 Moran et aP® used the Hartree product of the single-degree-
., 0.0080 of-freedom harmonic. oscillator eigenfunction as a basis set. The
9, 1 0.0000 frequency of the ba_s_ls was equal to the fr_equency of that mode,
1O 0.0045 and the center position is equal to the origin of the coordinate.

However, for a double well, the intrinsic frequency of that mode
becomes negative. Therefore, we have extended the approach
. to use arbitrarily chosen single harmonic oscillator eigenfunc-
The PESs projected onto the 2-D space spanneQ:snd tions with arbitrary center positions and eigenfrequencies that

each of the five other coordinates are displayed in Figure 3. 5re not related to the intrinsic frequencies. The vibrational wave
(Qu, Q) is the reaction plane, and the PESs projected onto this f,nctions were expanded as

space are identical to those obtained with the modified Shepard
interpolation method by Hirao et &. Qs and Qs have B;
symmetry, and the PESs spanned by them togetheiQyigihow WDZHZ nX Mo nAsv%Alvwl’ ’nAe,wsWD ®)
the antisymmetric mode coupling (ASMC) sha&Bevhich has fron T
point symmetry, whereaQ-,, Q4, and Qs have A; symmetry . i
and the PESs spanned by them together \@ihshow the ~ 1N€ Dasis Selna,.,*, Nagwellis @ Hartree product of the
symmetric mode coupling (SMC) shafewhich has line harmonic oscillator potential with an arbitrary center position
symmetry. The anharmonic couplings betwé&grand the G-H A and an arbitrary frequenay;:
stretch modes(; and Q) are larger than those with=60
stretches@s andQg). This ab initio force field was used in our LUNPRRSLR NP I NPT NP L [P (6)
calculations.

To identify signatures of proton transfer in multidimensional where n denotes the number of vibrational quanta in each
IR signals, we constructed a single-well (SW) model potential mode.

aExpressed in terms of hartrehr ™.
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andQs, the O-H stretch inB, symmetry); the shape of the PES around geometry G1 is well preserved, compared to the corresponding PESs in
Figure 3.
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Figure 6. Calculated and observed linear infrared (IR) spectra of MA: (a) double well (DW) and (b) single well (SW). The room-temperature
(297 K) Boltzman distribution was assumed for eigenstates 1 and 2 in the DW calculation. The experimental IR spectra isolated in a xéhon matrix
are superimposed on the DW calculation. Energy-level scheme and peak assignments are shown on the right-hand side.

The coordinate®; and moment#®; were replaced by bosonic  only weakly affect the energy levels of lower-lying eigenstates.

creation B) and annihilation B) operators: Therefore, basis states with > 36 were neglected. The total
number of basis states is 73 728 (DW), and IRAM was used to
h N solve the large-scale eigenvalue problem. The Arnoldi subrou-
Q= M(Bi +B) Q) tine was taken from the public domain ARPACK packagé®
' All 245 DW states that lie below 6000 crhwere included in
_ /mhw; N the simulation. The transition dipole moment between the
P =i T(Bi —B) 8 eigenstates was calculated from the dipole moment derivative,

with respect to the mass-weighted normal coordinétes.

Using the Bose commutation relation betweih andB;, and
neglecting constant terms, the vibrational Hamiltonian in a
normally ordered form is given in Appendix C. The calculated room-temperature (297 K) linear IR spectra
The harmonic oscillator basis functions used for each for the DW and SW potentials are displayed in Figure 6 and
coordinate are summarized in Table 3. High-energy basis statescompared with experimedt. A homogeneous line width of 10
where the total number of excitationsr(= Yinae,) is large, cm~1was assumed for all transitions. The calculated vibrational

4. Linear Infrared Spectra
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Figure 7. Double-sided Feynman diagrams describing the third-order response in four possible directions as indicated; the resonant diagrams with
RWA approximation in this calculation are shown.

eigenstates with strong IR intensities to the split two ground  The calculated DW spectra capture the qualitative characters
states are summarized in Table 4. The states are ordered byf the O—H and G=0 stretch peaks. In the 275@950 cnr?!
increasing frequency. Each vibrational state for the double well region, experiments show a medium peak-2860 cn* and

is split into two components, symmetric and antisymmetric, one smaller peak at 2777 ¢ neither of which were assigned
which represent the tunneling. The calculated ground-statein the previous study* The DW calculation reproduces these
splitting (25.7 cnl) is in excellent agreement with micro-  two peaks. The calculated peak at 2491.8 tiis assigned to
wave measurements (21.6 thh We also calculated the the transition from the symmetric (S) ground state to antisym-
splitting that included only one reaction coordin@e (RC1), metric (A),O-H(v = 1), or AJO-H/RC1@p = 1), which
with nr = 36, which resulted in a value of 0.65 cf The explicitly indicates the mixing of the ©H stretch and RC1.
increase of the splitting with the extra coordina@s -+, Qs is The 2314.0 cm! peak corresponds to the transition from the
attributed to the strong coupling between RC1 and the other antisymmetric (A) ground state to symmetric (S)B/RC1(
coordinates. = 1). The calculated tunneling splitting of 152.2 cthfor the
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Figure 8. Three-pulsek; signal (absolute value &(—w1, tz = 0, ws) in eq 13) of MA. The three incident pulses (10 fs) are tuned to 2200'cm

and have a bandwidth af700 cnt? ((left) DW model data and (right) SW model data). Top figures are the signals, and bottom figures highlight
the main peaks with colored circles and denotations. Peaks with red and blue circles in the DW signal are originating from the Liouville space paths
that involve transitions from the A;€O/RC1 = 1) and S,E=O/RC1{ = 1) states to higher excited states, respectively. Remaining peaks are
marked with green circles. The Liouville space paths of the peaks are shown in Figures 9 and 10.

O—H stretch agrees reasonably well with the estimated experi- very sensitive to the proton-transfer barrier, and this difference
mental tunneling splitting, which was 105 c#(2860 cnt! — may attributed to the limited accuracy of the ab initio calculation.
2777 cntl 4+ 21.6 cnt! = 105 cnTl). Note that the calculated  The calculated spectra reproduce the peaks related to=t@ C
relative intensities of the two peaks are different from experi- and O-H normal modes, which are responsible for the most
mental values because the assumed room temperature is muchrominent signatures of proton transfer in linear and 2-D IR
higher than the experimental temperature (10 K). The 35 K spectra. Other spectral regions may be calculated in the same
simulation is in good agreement with experiment. Room way. This goes beyond the scope of the present study.
temperature was used to study the pe_aks that involye transition%. Three Pulse Nonlinear Infrared Signals
from the second ground state. The intense experimental peak .

at 1650 cm? is assigned to the €0 stretch fundamental. We have calculated the three pulse IR signals of MA
According to the DW calculation, this is comprised of two 9enerated in the four possible directioris:= —ki + k2 + ks,

degenerate peaks: one is assigned to the transition from the ¢ = K1 = K2 4 Ks, ki = ki + k2 = ks, andky = ki + ko
ground state to symmetric=€0(v = 1), and the other is + k3 with ZZZZ polarization using the sum-over-states expres-

assigned to the transition from the A ground state to antisym- siorP! and orientational factors taken from eq 13 in the work of
metric G=O/RC1¢ = 1). The calculated splitting of €0 Hochstrasse® Signals were calculated for both the DW and

stretch is 17.1 o, which also agrees well with the experiment SV Potentials, to reveal the effect of proton transfer on the
(1650 cntt — 1650 cnrt + 21.6 cnl = 22 cntd). signals. _ -

Comparison of the SW and DW calculations shows that the Us_lng the rotating wave approximation (RWA), the response
O—H stretch fundamental is red-shifted from 2828 értSW) fqnctlpn for each signal is given by the sum of the following
to 2491 cnt (DW). In contrast, the €0 stretch fundamental ~ Liouville space pathways:
is hardly affected: 1743 cm (SW) and 1750 cmt (DW). The
red shift of the G-H stretch is typical in hydrogen bonding. Rt to ) = Ry(ts, T, t)) + Re(ts, o, 1)) — Ri(ts 1, ) (9)

r calculation hat the red shift is rel he proton
t?:ngfzf 3L?ttaciostﬁggciiztrtpzién%a??nisnirﬁusme(??;d ofheproto Ri(ts t 1) = Ry(t, t, 1)) + Ry(ts, 1, 1)) — Ry(ts, 1, ty) (10)

Quantitatively, the calculated peak position of the=@ = —
stretch is satisfactory; however, the calculatedHDstretch is Rulls to t) = Rylly o ) = Rell & ) (11)
359 cnt! less than the experimental value. This frequency is Ry(ts to 1) = Ry(ts, 5, ty) (12)
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Figure 9. Feynman diagrams and energy-level schemes of the main peéiksignals of the DW potential. (l)

The Liouville space paths are represented by the double-sidedWe also calculated amwg,w3) signal:
Feynman diagrams given in Figure 7, whexeb, c, andd

correspond to one of the vibrational eigenstaRs(with S =

I, Il, I, 1V) are proportional to the product of the transition
dipole moments related to four optical transitiomgyngtcditda >

Using a 2-D Fourier transform with respect tpand ts, the

(w1,03) signal is

Sy, tywy) =

|7 dty [ dtyR(ts, t, 1) expl-i(wsty + wst))]| (13)

Stywymy) =
|7 dty [ dtyR(ts, 1, t;) expl-i(wsty + @ b)]| (14)

5.1. The k Signal. The three incident pulses (10 fs) are tuned

to 2200 cnTl. To obtain the global pattern of 2-D signals at
one time, a very broad rectangular bandwidth00 cnt?t is
assumed for each of the three pulses; thus, all energy levels

within @, &= 700 cnT? are resonant with the carrier frequency
@n. This resulted in a total of 55 347 terms contributing to the
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Figure 10. Feynman diagrams and energy-level schemes of the main peéksignals of the DW potential. (II)
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TABLE 5: Vibrational Eigenstates Involved in the Liouville Space Paths that Contribute to the Main Peaks of the Nonlinear
Infrared Signals

eigenstate frequency (cr) descriptiod contributing basis states
1 0.0 S, ground state (0),41(24), (2), (211y), (4), (2122), (411y), -
2 25.7 A, ground state —(11), —(1112), —(31), —(1122), —(3112), —(51),°**
22 2339.6 S,GH/RCl(z/ = 1) —(O), _(12), _(21), (111213), (3113), (311213),“‘
25 2491.8 A,G-H/RC1p=1) (1), (L112), —(1215), —(2113), —(4113), —(511p),"**
80 4004.0 S,6H/RC1l{Ep =2) (26), —(111s), —(11121s), (21131s), (4115ls), -
82 4065.4 S,G‘H/Rcl(ll = l)C=O(U = 1) _(le.), —(1115), (221315), (11121316)1 (1122]316),"'
92 4257.3 A,G-H/RC1=2) —(11), —(13), (30), (L123), (3123), (311223), (5123),"**
112 4596.6 S,OH/RC1p =2)RC2p = 1) —(511:15),*
118 4665.8 S,©0H/RC1Ep = 2) (12), —(1113), (123), (2123), (211223), (4123), (312:13),°+*
134 4836.9 A,G-H/RC1{ = 3) (1), (L11225), (112223), (113223), —(5123), —(7132),***
245 5939.6 A,G-H/RC1@p = 3)C=0(w=1) (L116), (131s), —(312316), —(31122316), —(512316),**

aThe term ¢ = n) representy vibrational quanta on mode.

signal. A homogeneous line width of 10 cthwas assumed 1 to v = 2 of each mod& However, the DW signal shows

for all transitions. several off-diagonal peaks, with no corresponding diagonal
The calculated, signals are displayed in Figure 8. The DW peaks, which is very unique to this system.

and SW signals have very different cross-peak patterns. The Figures 9 and 10 show the Liouville space pathways, depicted

SW signal consists of the diagonal peaksui,ws) = (—1743, as double-sided Feynman diagrams that contribute to the main

1743) and {2828, 2828) and their cross peaks. This is common peaks in thek; signal of the DW potential. The corresponding

for harmonic and moderately anharmonic systems. In general,energy-level schemes are shown to the right of the respective

in moderately anharmonic systems, the sidebands appear neadiagrams. The frequency and the eigenvector of the vibrational

the diagonal peaks, because of the energy difference betweereigenstates involved in the signals kaf---, ky direction are

the transition fromv = 0 to » = 1 and the transition from = given in Table 5. The calculated transition dipole moments that
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Figure 11. Three-pulsek; signal §wi, t = 0, ws) in eq 13) of MA. The three incident pulses (10 fs) are tuned to 2200'@nd have a
bandwidth of+700 cnt? ((left) DW model data and (right) SW model data). Top figures are the signals, and bottom figures highlight the main
peaks with colored circles and denotations. Peaks with red and blue circles in the DW signal are originating from the Liouville space paths that
involve transitions from the A,€0/RC1{p = 1) and S,E&=O/RC1{ = 1) states to higher excited states, respectively. Remaining peaks are marked

with green circles. The Liouville space paths of the peaks are shown

in Figures 12 and 13.

are responsible for the major features in these signals areThere are three basis states with two quanta+Hand RC1

displayed in Table 6.

Figure 9 shows that the two strong diagonal al and a3 peaks,

located at {wiy,w3) = (—1732, 1732) and-2491, 2491) in

modes at one potential minimum (M (v = 2), O—H(v = 1)-
RC( = 1), RC{ = 2)), which results in three eigenstates with
two nodes in the ©H/RC1 plane at that geometry. Two of

Figure 8, correspond to the transition between the ground statethem (states 82 and 118) are optically allowed from state 25

and state 13 (S;€0(v = 1)) and state 25 (A,©H/RC1@ = 1)),
respectively. The intensity is proportional td ;3 and u? ,5
Peaks a4{1732, 2491) and a52491, 1732) correspond to

(A,O—H(v = 1)). The anharmonic frequency shifA@ =
2ws,o_H/Rc1(U:1) - a)s,o_H/R(u(U:z)) iS676 CITTl, which is much
larger than that of moderate anharmonic systems2@cnT?!

the diagrams that include the two transitions between the groundin DABCODO®). Because of this strong anharmonicity, no

state and state 13 (S5O = 1)) and the two transitions
between the ground state and state 25 (AHORC1{ = 1)).
Therefore, the IR intensity is proportional i ;% ,; Peak
a2 (—2314, 2314) comes from the transition between the second
ground state (A, ground state) and state 23 (v = 1)).
Peaks aland a3---, a5 of the SW signal come from the same
pathways as the corresponding peaks in the DW signal.
Other peaks listed in Figure 10 carry information about higher
excited states. All off-diagonal peaks (b1, b4) located at
(w2, —w3z) = (—2491,x) come from the transition between the
ground state and state 25 (A;®I(v = 1)) and the transition
from state 25 to higher excited state¢n = 80, 82, 112, 118).
States 80 and 82 are mixtures of symmetricKIRC1@ = 2)
and symmetric ©H/RC1{ = 1)C=0(v = 1) that are due to
the Fermi resonance. State 112 is symmetreHIRC1({ = 2)-
RC2(@ = 1), and state 118 is symmetric-®I/RC1l{p = 2').
The term 2represents the two nodes in an potential minimum,
which are different from those of state 82 (S;8/RC1{ = 2)).

diagonal peaks related to these off-diagonal peaks are observed.

Peaks cl1 and c2 located atd,,w3) = (—2314,x) come
from the transition from the ground state to state 22-tD
stretch) and the transition from the state 22 to the higher
excited states (n = 92, 134). States 92 and 134 are the
second and antisymmetric third overtone of the mixture of
O—H stretch and the reaction coordinate, antisymmetridiD
RC1@ = 2) and antisymmetric ©H/RC1({ = 3). The anhar-
monic frequency ShiMa) = ZCUA,OfH/RC1(u=1) - wA,O*H/RCl(zFZ))
is also quite large (727 cm). The value of the expressiakw
= 3a)A,o_H/Rc1(U:1) — WA 0-H/RC1p=3) is 2639 cntl. The intense
(—2314, 4837) peak comes from the allowed transition from
antisymmetric -H/RC1({ = 1) to antisymmetric ©H/RC1-

(v = 3) and is also attributed to the extraordinarily strong
anharmonicity.

5.2. The k; Signal. The three incident pulses (10 fs) were
tuned to 2200 cm! with a rectangular bandwidth f700 cnt.
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Figure 12. Feynman diagrams and energy-level schemes of the main peakskn 8ignals of the DW potential. (1)

This resulted in a total of 51 752 terms contributing to the sequentially, which is directly related to the observed direction

signal.
The calculatedk signals are displ

ayed in Figure 11. Figures

(k| = _kl + k2 + k3 andk” = k1 + k2 - k3)
5.3. The k;; Signal. The three incident pulses (10 fs) were

12 and 13 show the Liouville space pathways that contribute tuned to 2200 cmt with a rectangular bandwidth ef700 cnt™.
to the main peaks ik, of the DW potential.

In the DW signal, off-diagonal peaks bb4, cl, and c2
involve the same optical transitions as the corresponding peaks The calculated, signals for both the original DW potential

in thek, signal (see Figure 13), but in a different combination and the SW model potential are displayed in Figure 14. Figures
of bra and ket as well as in different time orderirgj. paths

contribute to the off-diagonal peaks in the signal, butR;

paths are the cause of the off-diag
In R}, the ket first interacts with-w

onal peaks irkthsignal.
1, then the bra interacts

with w, andws. In R;, the bra interacts witlv1, w2, and—ws

This resulted in a total of 116 706 terms contributing to the
signal.

15 and 16 show the Liouville space pathways that contribute
to the main peaks in thiey, signal of the DW potential.

In the DW signals, peak bl (4004, 2491) and b2 (4004, 1512)
involve the same optical transitions (two times of the transitions
between the S ground state and antisymmetrtHIRC1(@p =
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Figure 13. Feynman diagrams and energy-level schemes of the main peakskn #ignals of the DW potential. (Il)
1) and two times of the transitions between antisymmetrid4D ki signals for both the original DW potential and the SW model
RC1@ = 1) and antisymmetric ©H/RC1l = 2)) but in potential are displayed in Figure 17. Figure 18 shows the
different time ordering Ry and R;). Peak pairs of b3 and b4, Liouville space pathways that correspond to the main peaks in
b5 and b6, b7 and b8, cl1 and c2, and c3 and c4 also have th&ky of the DW potential.
same optical transition in a different combination of bra and  In Figure 18, the Liouville pathways have different transitions
ket, as well as in different time ordering. Two pathwafgs, fromk; to ky; . Every pathway involved is the transition to state
andR; that involve the transition between the S ground state 245 (A,O-H/RC1p = 3)C=0O(v = 1)). In the SW signal, there
and symmetric &O0(» = 1) and the transition between are no peaks thatinvolve the transition te (v > 3), because
symmetric G=O(v = 1) and symmetric &0(v = 2) contribute these states lie above 6000 chand are not included in our
to a degenerate peak al at (3465, 1732), because of thecalculations.
harmonicity of the &0 stretch. The blpeak in the SW signal To identify the origin of the unusual large anharmonic
involves the transitions between-®i(v = 1) and O-H(v = frequency shift, the vibrational eigenfunctions projected onto
2), which correspond to the bl peak in the DW signal but is the two coordinate®; and Qs are plotted in Figure 19. The
located in a region of much higher frequency. Thé &3d b4 eigenfunctions of states 1 and 2 have two maxima at the
peaks in the SW signal also correspond to the b3 and b4 peaksquilibrium geometries G1 and G2. State 1 has the same sign
in the DW signal, which involve the transitions between (v (symmetric), but state 2 has an opposite sign (antisymmetric).
= 1) and G-H(v = 1)C=0(v = 1). In contrast, the symmetric  The eigenfunctions other than the split ground states are
O—H/RC1{ = 2) and symmetric ©H/RC1{p = 1)C=0(v = complicated and different from the eigenfunctions that are
1) states of the DW signal are almost degenerate and, in Fermiexpected for harmonic systems. There are no clearly defined
resonance, ©H(v = 2) and O-H(v = 1)C=0O(v = 1) of the nodes that can be assigned to each coordinate. Therefore, our
SW signal are 1076 cni apart. study was based on the total number of nodes in the plane at
5.4. The ky Signal. The three incident pulses (10 fs) were each potential minimum. The strongly distorted shape of the
tuned to 2200, 2200, and 1500 chwith a rectangular eigenfunctions could be the primary cause of the exceptionally
bandwidth of+700 cntl. This tuning resulted in a total of large anharmonic shift. States 92 and 134 are antisymmetric
122 891 pathways being involved in the signal. The calculated and optically allowed from state 22. The eigenfunction of state
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Figure 14. Three-pulseky; signal §t; = 0, w2, ws) in eq 14) of malonaldehyde (MA). The three incident pulses (10 fs) are tuned to 2260 cm

and have a bandwidth af700 cnt? ((left) DW model data and (right) SW model data). Top figures are the signals, and bottom figures highlight
the main peaks with colored circles and denotations. Peaks with red and blue circles in the DW signal are coming from the Liouville space paths
that involve transitions from the A}€O/RC1 = 1) and S,E=O/RC1{ = 1) states to higher excited states, respectively. Remaining peaks are
marked with green circles. Liouville space paths of the peaks are shown in Figures 15 and 16.

TABLE 6: Transition Dipole Moments Responsible for
Major Features in Two-Dimensional Infrared Spectra?

states transition dipole moment (normalized:to.s|)
a b (,Mab)x (/lab)y (/lab)z |,uab‘
1 13 0.000 0.000 —0.985 0.985
1 25 0.000 1.000 0.000 1.000
1 92 0.000 0.075 0.000 0.075
2 22 0.000 0.927 0.000 0.927
13 54 0.000 0.000 1.321 1.321
22 25 0.000 0.927 0.000 0.927
22 80 0.000 0.000 —0.594 0.594
22 82 0.000 0.000 0.829 0.829
22 92 0.000 —1.135 0.000 1.135
22 134 0.000 —0.444 0.000 0.444
25 80 0.000 —0.617 0.000 0.617
25 82 0.000 —0.549 0.000 0.549
25 92 0.000 0.000 0.071 0.071
25 112 0.000 —0.768 0.000 0.768
25 118 0.000 0.966 0.000 0.966
80 92 0.000 —0.290 0.000 0.290
80 245 0.000 —1.369 0.000 1.369
82 92 0.000 0.200 0.000 0.200
82 245 0.000 1.123 0.000 1.123
92 112 0.000 0.322 0.000 0.322
92 118 0.000 —0.744 0.000 0.744
92 245 0.000 0.000 —1.697 1.697
112 134 0.000 0.251 0.000 0.251
118 134 0.000 0.422 0.000 0.422
118 245 0.000 0.182 0.000 0.182

aThe x-, y-, andz-axes are defined in Figure 2.

92 has two nodes in each equilibrium geometry. Therefore, this
state is the second excited state ofi stretch. The eigen-
function of state 134 has three nodes in each equilibrium
geometry, and, thus, this state is the third excited state of
the O—H stretch mode. Therefore, the peaks at (2312917)

and (2314,—2497) respectively represent the second and
third harmonics of the ©H stretch mode. States 80, 82,
112, and 118 are all symmetric and optically allowed from
state 25. States 80 and 82 are the mixed states obtained from
the second harmonics of the—® stretch mode and the
combination band of the ©H stretch and the €0 stretch
with the Fermi resonance. State 112 is the combination band
of C=0/RC1{p = 2) and RC2¢ = 1). State 118 also has two
nodes in each potential minimum.

6. Discussion

We have conducted an ab initio simulation of three pulse
nonlinear IR signals of an intramolecular hydrogen-bonded
system. The signals were calculated using a six-coordinate DW
vibrational potential of MA. To pinpoint the effect of proton
transfer on the 2-D peak pattern, the signals calculated for the
DW potential are compared with those of the SW model
potential, where proton transfer is prohibited. We found some
clear signatures of intramolecular proton transfer. Several new
off-diagonal peaks in the signals of the DW potential, which
are absent in the SW signals, are clear markers for the proton
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Figure 15. Feynman diagrams and energy-level schemes of the main peakskp tignals of the DW potential. (1)

transfer. Many signatures of proton transfer in experimental vectors; one connects the two minima in the shortest path, the
linear spectra are hidden under a large broadening envelopeother connects the transition state and the midpoint of two
where the peak shift of the-€H stretch is noticeable. However, minima. Therefore, we constructed the six coordinates that were
in 2-D signals, the new peaks due to proton transfer should be generated from these two reaction basis vectors and four other
resolved, even in solution. The IR peak positions are very vectors that correspond to the=© stretch and ©H stretch
sensitive to the PES along the transfer coordinates and to thenormal modes at G1 and G2 local minima, using Gram
solvent environment. Therefore, nonlinear IR signals could be Schmidt orthogonalization. The MP2 level predicts the proton-
useful for investigating proton transfer and its coupling to the transfer barrier that is the most similar to that of the experiment,
solvent dynamics. and we have adopted this level of theory to calculate an
The proton-transfer reaction path has been deschitycthe anharmonic force field for these six coordinates. A sixth-order
path in the 2-D configuration space spanned by two basis force field was necessary to reach convergence of the numerical
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Figure 16. Feynman diagrams and energy-level schemes of the main peakskp teignals of the DW potential. (II)

differentiation and is used in our calculations, even though frequency. This unusually large anharmonic frequency shift
quartic force fields were used in previous studies of proton- may be attributed to the very strong coupling betw&grand
transfer system&!2> Qs and the highly distorted wave functions that are plotted in
To compute the eigenstates of the DW anharmonic Hamil- Figure 19.
tonian, we used a harmonic oscillator basis set with arbitrary  The highly excited vibrational eigenstates in the region of
frequencies and center positions. We calculated the eigen-4000-5000 cntL, which may be reached by the transition from
states and energies, keeping 36 total excitations among thesgne o-H fundamental, are delocalized along the reaction
six coordinates, which resulted in 73 728 states (DW). IRAM plane and, therefore, are very sensitive to the PES along the

;N?Sl ufszisto ts;)lve I;r\xls Ilgrgbe-lscalgoggir;(\]/all;]g ﬁroﬁlﬁm' A proton-transfer coordinates. Three pulse nonlinear IR spectros-
otal 0 states (DW) lie below 1 which 1S the copy shows the peaks obtained from such transitions simulta-

ILZ?u;rgcyrer:gr?tz dcr?t\a/ge$'hE%Urr?eli?lpegtrlﬁf}Eop;i tthe;h%quunedsneously. The spectra change quantitatively with the different
P - . g spiting -9 levels of ab initio calculation or by the selection of different
state was 25.6 cm, which was in good agreement with the coordinates

experimental value (21.6 crh). . . . .
Three pulse nonlinear IR signals for the DW and SW The inclusion of additional coordinates may be the next

potentials along the four phase-matching directions were Step to improve the modeling of proton-transfer systéns.
simulated. In all cases, we found new off-diagonal peaks in the However, the required numerical effort rapidly grows with the
DW potential that are absent in the SW potential and may humber of coordinates. The dynamics of MA in solution is
be attributed to the strong anharmonic coupling between the another possible focus of future study. In that case, solvent
O—H stretch and the two reaction coordinates. The transition dynamics can be treated classically, and the Columbic inter-
between antisymmetric-OH/RC1({ = 1) and symmetric ©H/ action between MA and solvent may be included to calculate
RC1{ = 2) and the transition between symmetrie-B/RC1- the vibrational eigenstate of MA. The present approach is
(v = 1) and antisymmetric ©H/RC1({ = 2) and antisymmetric  directly applicable to other DW hydrogen-bonded systems,
O—H/RC1( = 3) contributed to these peaks, and the transition such as DNA base pasand peptide® with hydrogen
frequencies have a much lower frequency than the fundamentalbondings.



9128 J. Phys. Chem. A, Vol. 107, No.

43, 2003

Hayashi and Mukamel

6000
6000

= 5500 i
5 §
g $ 5500

5000

5000
4500
3000 3500 4000 4500 3000 3500 4000 4500
oy / cm-1 o / cm-1
6000
b ®c3
cT ¢c2

5500
S
[&]
»
g i

5000

4500

3000 3500 4000 4500
wy / cm-1

Figure 17. Three-pulsek,, signal §t; = 0, w2, ws) in eq 14) of malonaldehyde (MA). The three incident pulses (10 fs) are tuned to 2200, 2200,
and 1500 cm! and have a bandwidth a£700 cn? ((left) DW model data and (right) SW model data). Top figures are the signals, and bottom
figure highlights the main peaks with colored circles and denotations. Peaks with red and blue circles are originating from the Liouville space paths
that involve transitions from A;€0/RC1@ = 1) and S,E=O/RC1{ = 1) state to higher excited states, respectively. The Liouville space paths of

the peaks are shown in Figure 18.

b1 (w2,03)=(4004,5939)

o, Re  —I—=
A :::::EZE_

L

c2 (02,03)=(4039,5913)

el (wp.03)=(3978,5913)

245 A, O-H/RC1(v=3)C=0(v=1)
134 A, O-H/IRCA(v=3)
118 S, O-H/RC1(v=2")
112 S, O-H/RC1(v=2)RC2(v=1)
92 A, O-HIRC1(v=2)
82[S, O-HIRCA{v=1)C=0(v=1)

R,

L]

S

245 A, O-HRC1(v=3)C=0(v=1)
134 A, O-HIRC1(v=3)

118 S, O-HRC1(v=2)

112 S, O-H/RC1{v=2)RC2(v=1)
92 A, O-HRC1(v=2

82[S, O-H/RC1{v=1)C=0(v=1)

80 1S, O-H/IRC1(v=2)
25 A, O-H/RC1(v=1)

801ls, O-H/RC1(v=2)
25 A, O-H/IRC1(v=1)

22§ O-HIRCA(v=1)

Ground State
Ground State

2 A
1 s

c3 (wp,03)=(4231,5913)

5

Ry

————— 245 A, O-H/RC1(v=3)C=0(v=1)
- 134 A, O-H/RC1(v=3)

118 S, O-HRC1(v=2)

112 8, O-H/RC1(v=2)RC2(v=1)

—a— 92 A, O-H/RC1(v=2)

— ! 82[S, O-H/RC1(v=1)C=0(v=1)

8018, O-HRC1(v=2)
25 A, O-HRC1(v=1)
22 3 O-HRC1(v=1)

I

2 A, Ground State
1 5, Ground State

(08

v

R,

e

22 3, O-HIRC1(v=1)

2 Ground State
1 Ground State

A,
S,

245 A, O-H/RC1(v=3)C=0(v=1)

2

134 A, O-H/IRCA(v=3)
118 S. O-H/RC1(v=2")
112 S, O-H/RC1{v=2)RC2(v=1)

L

<

i

<

92 A, O-HIRC1(v=2)
§2[S, O-HIRCA{v=1)C=0(v=1)
801s, O-H/IRC1(v=2)

25 A, O-HIRG1(v=1)

22 5, O-HRCA{v=1)

Ground State

— 2 A
1 8, Ground State

Figure 18. Feynman diagrams and energy-level schemes of the main peaksky thignals of the DW potential.



Intramolecular Hydrogen Bonding in Malonaldehyde

(b) State 2
A,Ground State

(a) S
S

tate 1
,Ground State

5
0“ |
o 05 00 05 10
Q, / Bohr
(d) State 25
A,O-H/RCl1(v=1)
3
Oﬂ

(g) State 112

S,0—H/RC1(v=2)C=0(v=1)

Q. / Bohr

3

Q, / Bohr

(e

0.0 0.5

Q, /Bohr

) State 80
S,0-H/RC1(v=2)

0.0
Q, / Bohr

(h) State 118
S,0-H/RC1(v=2')

OalBohr

Negative 1] Posit

J. Phys. Chem. A, Vol. 107, No. 43, 2003129

ive

(c) State 23

S,0—H/RC1(v=1)

stBohr

(f) State 92
A,O0-H/RC1(v=2)

Q_/Bohr

Y
Q, / Bohr

0.5

(i) State 134
A,O-H/RCl1(v=3)

Q_/Bohr

0.5

0.0
Q, / Bohr

Figure 19. Vibrational eigenfunctions of the DW potential projected to the two reaction coordiqataad Qs.



9130 J. Phys. Chem. A, Vol. 107, No. 43, 2003
Appendix A: Gram —Schmidt Orthogonalization

Normalizations and GramSchmidt orthogonalizatioA% of
the six basis vectorg,,:-+, & were performed in the following
order:

&

SaTEN (A1)
52 = ||Z|| (A2)
A ey aant (3)
o e (a%)
e e
=g, - iiﬁi - iﬁgﬁiﬁim (A9)

whereé;, &, and&; haveB, symmetry, and, &,, and&g have
A; symmetry. The vectors in a different symmetry do not mix
with each other in this orthogonalization.

Appendix B: Numerical Differentiations

We calculated the five-point central difference formulas in
the same way as the three-point formulas given in ref 47 to
obtain the anharmonic force constafff%to fIJ1111 Third-order
to sixth-order derivativesf), f{, T4y, andf{l),,) are calcu-
lated from the numerical differentiation of the quadratic deriva-
tives ¢{”), with respect to the single coordina@, as

o 0303 [P0y —10(-0) 12(s) — 12~ (32))

02— 0 263 203
(B1)
o _ 0% [(P0) + 120 - 220)
62— 67 20°
£(0,) + £7(=0,) — 2f?(0)
204 (B2)
2
o __ 1 [[P10)— 100 176, — -0y
M52 52| 20, 20,
(B3)
w0 _ 1 (P00 +iP-o) - 2MP0)
ijkkkk — 61—63 2(5%
£(0,) + £7(=0,) — 2f?(0)
252 (B4)
2

whered; andd, are the two displacement steps@f.

Hayashi and Mukamel

Appendix C: Excitonic Vibrational Hamiltonian

The vibrational Hamiltonian was recast in a normally ordered
field operator form® to sixth order. In ref 36, the frequency
and center position of the harmonic oscillator basis set was fixed,
and the Hamiltonian was expanded to fourth order. In this study,
these formulas are extended to adopt any harmonic oscillator
basis set with arbitrarily chosen frequencies and center positions.
The diagonal matrix elements of the quadratic field-operator
portion associated withy; andU? contain theB;'B;” andBiB;
field-operator terms, which will vanish in the limit where the
frequency of the basis set for tith degree of freedom is equal

to that of the potential thwi%/2)/\/2mw/h)?> = UP). The
fifth- and sixth-order derivatives are also included in the lower
field-operator terms. The Hamiltonian is given by

+ Z(U§2>+ GZU

i)=1

6
(U(l) + 3ZU|(”3) + 152 uf;,zk)(sr +B)
j}=1

4

(o + 452 ugﬁ’k“)(zs B + BB/

mao, 2
(2B'B, —

(2m )’

+BB) + 9, BB —BB)

(3)

+ ijk

(P

6
(u + 1oZu§j5k{|)(Bi+Bj+B; +3B/B;'B,

+3B,BB,+ BBB)
6

)

+ (u ijkI

ijKkI=1

+4BB/B;B, + 6B/B,B,B,

6
+ 1SZU i(ji{mn)(BﬁBj*B;Bﬁ
m=

+ 4B BB,B, + BBB,B)
6

u®
+ uklm

i,j,kKm=1

+10BB/'B; BB, + 108,'B,'B,BB,,

(B/B,B/B/B," +5B/B,B/BB,

+ 5B,"B,B,BB,, + BBB,BB,)

6
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uklmn

+
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4 r
ijkl

5)r

f2)1 f(3)r f |J|<| 1

The termsf®, e

follows:

andf,]kI are defined as

.I: i(l)l

=f — 22 fOA + 32 FOAA — 4; FEAAA +
5 ; f.‘,i%mA\AAAm —6 % fRnAAAAA, (C3)

j,KTmn

f& =12 — 32 fOA GZ AN
103 fiimAdAn + 15k;nfﬁi%mnAkAAmAn (C4)
fi =T =43 TioA + 103 fiimAn
2
zq;nf.ﬁi?mm (C5)
fi' =fid — 53 f.Jk.mAmHsz Ay (C6)
fid’ =it~ 63 iy (€7
i = i (C8)
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