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The sixth-order anharmonic force field of malonaldehyde along the two proton-transfer double-well coordinates
and the four O-H and CdO stretching modes is constructed at the MP2/6-31G(d,p) level. The vibrational
Hamiltonian is diagonalized using the Arnoldi method. Coherent infrared (IR) vibrational spectra are predicted
using the vibrational eigenstates. The three pulse IR signals, calculated in all possible phase matching directions,
show specific signatures of the intramolecular proton transfer.

1. Introduction

Hydrogen bonding and proton transfer are important in many
chemical and biophysical processes. The∼3300 cm-1 O-H
infrared (IR) stretch band contains several easily recognizable
signatures of hydrogen bonding: a red shift, enhanced intensity,
and line broadening.1,2

Malonaldehyde (MA) is one of the simplest model systems
for intramolecular proton transfer, and its structure and dynamics
have been the focus of many experimental and theoretical
investigations over the past two decades.3-12 Microwave
spectroscopy done by Wilson’s group3,4 and other researchers5,6

suggests that proton transfer occurs via tunneling between two
O atoms (Figure 1). Centroid transition state theory shows that
the quantization of the H atom has a large effect on the transition
barrier of the ab initio potential of mean force along the reaction
coordinate.12 The linear infrared (IR) spectrum has been
studied;9-11 however, band assignments based on normal mode
calculations are not obvious, because of the tunneling and strong
anharmonicities. The tunneling splittings of the vibrational
ground state predicted from electronic structure calculations with
a one-dimensional (1-D) reaction path models1.76× 10-3 cm-1

(Intrinsic Reaction Coordinate, IRC13),14 or 0.65 cm-1 (shortest
path)swhich is obtained in this study, do not agree with the
experimental value (21.6 cm-1),7 because of the strong coupling
between the tunneling coordinate and other vibrational modes.
Therefore, a multicoordinate vibrational Hamiltonian is required
to represent the proton-transfer dynamics.

Accurate potential energy surfaces (PESs) have been con-
structed for smaller molecules. The seventh-order force field
with the Morse-transformed coordinates was proposed for water,
and the calculated vibrational eigenstates at<20 000 cm-1 are
reproduced to within a few inverse centimeters.15 Vibrational
and rotational dynamics of water (HOD in liquid D2O) were
studied semiclassically on this surface16-18 and found to be in
reasonable agreement with hole burning,19 photon echo,20,21and
IR pump-probe experiments.22,23Quartic multicoordinate model
potentials were proposed for the proton transfer in MA24 and
toropolone,25 in which only anharmonic couplings between a

single proton-transfer reaction coordinate and the other coor-
dinates are included. In this study, we construct a six-
dimensional vibrational Hamiltonian that is based on an ab initio
anharmonic force field. Sixth-order anharmonicities in the
proton-transfer coordinates and quartic anharmonicities for other
coordinates are calculated. We found that the sixth-order force
field is necessary to reproduce the anharmonic force constants
between the double-well reaction coordinate and the other
coordinates.

Several semiclassical studies of the vibrational eigenstates
of MA have been performed. The calculated ground-state
tunneling splitting from the action integrals of the classical
trajectories through the barrier (13.9 cm-1) was determined to
be in reasonable agreement with experiment.14,26 The splitting
of other fundamental modes has also been estimated using the
perturbative instanton approach.24 This semiclassical treatment
can include all coordinates and was only applied to the low-
lying states. Quantum mechanical calculations are limited to
handle fewer coordinates and have been applied only to less-
anharmonic systems. The vibrational self-consistent field (VSCF)
method27 and its correlation correction version (CC-VSCF)28

were applied to polyatomic systems, assuming a pairwise
additive potential. However, the potential is limited to proton-
transfer systems in which three coordinate couplings should be
included.24 The discrete variable representation (DVR)29,30and
the multiconfigurational time-dependent Hartree (MCTDH)
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Figure 1. One-dimensional (1-D) model of intramolecular proton
transfer in malonaldehyde.
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method31-33 have been applied to ultrafast laser-driven hydrogen-
bonding dynamics in phthalic acid monomethylester (PMME-
D),34,35 which is less anharmonic than MA.

The present study extends the excitonic vibrational Hamil-
tonian,36 which uses a harmonic oscillator basis set that
corresponds to the local frequencies. We adopt a general
harmonic oscillator basis set with an arbitrary frequencies and
displacements. With this basis, all matrix elements of the
vibrational Hamiltonian that have been expanded as polynomials
of coordinates can be calculated analytically, and the excitonic
description is more accurate than the DVR method. The Implicit
Restated Arnoldi Method (IRAM) is used for the diagonalization
of the large Hamiltonian matrix. The typical dimension size is
∼105-106.

The O-H stretch with a strong hydrogen bond has an
extremely broad (500 cm-1) bandwidth, which complicates the
microscopic analysis of the IR spectra. Three pulse nonlinear
IR spectroscopies provide detailed information on molecular
structures by spreading the spectroscopic information in two
dimensions, selectively eliminating certain static broadening
mechanisms, and providing ultrafast structural and dynamical
information unavailable from 1-D linear measurements.37-42

These techniques should provide a powerful tool for exploring
the structure and proton-transfer dynamics in hydrogen-bonded
systems.

We have simulated the three pulse nonlinear IR signals
generated at the four possible signal wavevectors. To identify
the signatures of proton transfer, the signals calculated for the
double-well (DW) potential are compared with a single-well
(SW) model potential, where proton transfer is prohibited.
Several new off-diagonal cross peaks are found in the DW
potential. These peaks, which are induced by intramolecular
proton transfer, are assigned to the Liouville space paths which
include the transitions between the O-H stretch fundamental
and second-order or higher harmonics, which have much lower
frequencies than expected in a harmonic system, because of the
strong mixing with the proton-transfer reaction coordinate.

2. Reaction Coordinates and the Ab Initio Force Field

IR spectra9,10 show that MA is planar. Proton transfer occurs
in two equivalentcis-enol isomers (G1 and G2) withCs point
group symmetry, whereas the transition state (TS) (C2V sym-
metry) connects the G1 and G2 isomers (see Figure 1).

B3LYP/6-31G(d,p), MP2/6-31G(d,p), QCISD/6-31G(d,p),
and CCD/6-31G(d,p) levels were used in the present study to
locate the structures of G1, G2, and TS, using Gaussian98.43

The barrier heights for proton transfer (∆E ≡ ETS - EG1,2) were
determined to be 831 cm-1 (B3LYP), 1199 cm-1 (MP2), 2161
cm-1 (QCISD), and 2382 cm-1 (CCD). Compared to the upper
bound that has been determined from the1H NMR studies (2134
cm-1),8 the B3LYP and MP2 levels underestimate the barrier
and the QCISD and CCD levels overestimate it. The high
CCSD(T) level provides a reasonable estimate of the barrier
height, 1504 cm-1.44 The CCSD(T) or QCISD(T) level was also
required in the similar H-atom transfer system of formimidol.45

Triple excitations are crucial for reproducing the barrier height.
The basis-set dependence of the barrier at the MP2 level was
investigated in ref 14, and no significant improvements were
observed with the larger basis set. The MP2/6-31G(d,p) level
was used in all our subsequent calculations.

Table 1 shows the normal modes of MA in the G1 and G2
geometries. Both O-H and CdO stretch have strong IR
intensities. Because their bond lengths are affected by the proton
transfer,14 the nonlinear IR bands of these vibrational modes

are expected to be markers for the energy surface along the
proton-transfer coordinate.

The IRC13 path, which connects the two energy minima G1
and G2, is described by the path within the two-dimensional
(2-D) configurational space14 (which is referenced as a reaction
plane) that includes three configurationsêG1, êG2, andêTS, with
two basis vectors,ê′1 ≡ êG1 - êG2 andê′2 ≡ êTS - ê0, whereêA

denotes 3N mass-weighted Cartesian coordinates for the con-
figuration A (A ) G1, G2, TS).ê′1 is a least-motion path that
connectsêG1 andêG2, andê0 is defined asê0 ≡ (êG1 + êG2)/2.
The calculated structure of the reference geometryê0 is shown
in Figure 2.

Our six-dimensional configurational space is made of the two
reaction basis vectorsê′1 and ê′2, together with the following
symmetric and antisymmetric four basis vectors that represent
the O-H and CdO stretching modes of G1 and G2:

Here,ên
A represents the mass-weighted Cartesian displacement

vector of moden in the geometry A. These six basis vectors

TABLE 1: Normal Modes of Malonaldehyde with Large
Infrared Intensities in the G1 and G2 Configurations,
Calculated at the MP2/6-31(d,p) Levela

mode description frequency (cm-1) IR intensity

6 ring deformation 895.4 medium
12 C-O stretch 1310.1 medium
16 H-O-C bend 1683.4 strong
17 CdO stretch 1736.8 strong
18 C-Hγ stretch 3088.3 medium
20 O-H stretch 3319.9 medium

a The normal modes are indexed with increasing frequency.

Figure 2. Calculated structure of the reference geometry. Thex-, y-,
andz-axes shown here will be used in Table 6. Malonaldehyde is on
the y-z plane, and thex-axis is in perpendicular.
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were subject to normalization and Gram-Schmidt orthogonal-
ization46 (see Appendix A), resulting in our final orthonormal
basis vectorsê1‚‚‚ê6 and corresponding coordinatesQ1, ‚‚‚, Q6.
ê1 and ê2 are the normalizedê′1 and ê′2 parameters. We
therefore denoteQ1 andQ2 as reaction coordinates 1 (RC1) and
2 (RC2), respectively.ê3 is a combination ofê′1 andê′3. ê5 is a
combination ofê′1, ê′3, andê′5. ê4 is a combination ofê′2 andê′4.
ê6 is a linear combination ofê′2, ê′4, andê′6.

The ab initio potential energy surface (V) was expanded
around the reference geometryê0 to sixth order in our six
orthonormal coordinatesQk:

where

The small coefficientsf(4), which depend on four different
coordinates, were neglected. In the fifth and sixth orders, we
retained only the largest terms:f ij111

(5) and f ij1111
(6) . The termsf ij1

(3)

to f ij1111
(6) , which include coordinateQ1, were determined nu-

merically by calculating up to fourth-order derivatives of
analytical quadratic force constantsf ij

(2), with respect to coor-
dinate Q1, using five-point central difference formulas (see
Appendix B). The other anharmonic force constants were
determined by calculating first and second derivatives of analytic
quadratic force constants with three-point central difference
formulas.47 The two displacement steps ofQ1 for the five-point
difference formula are set toδ1 ) 0.2 Å andδ2 ) 0.375 Å, and
the displaced geometries withδ2 correspond to the two
equilibrium geometriesêG1 and êG2. The displacementsδ of
all the other coordinates for the three-point difference formula
are set as 0.01 Å. The quadratic force constants in the
orthonormal coordinates were obtained from the analytic
quadratic force constants in Cartesian coordinates that have been
calculated with Gaussian98.

We estimated the numerical error by comparing the cubic
force constants with the permutation of the three indicesf ijk

(3),
f jki

(3), and f kij
(3). The force constants that includedQ1 varied by

<10% (300% if the quartic force field were applied, using the
three-point difference formula). The three values are within 1%
for all the other cubic force constants that excludeQ1. Thus,
the sixth-order force field is necessary to model the energy
surface. The force field was scaled on one parameter (the square
of the ratio of the distance between the G1 and G2 geometries
to the amplitude of zero-point vibrations of RC1 at G1) given
in ref 24 to reproduce the experimental tunneling splitting of
the ground state. The calculated anharmonic force constants with
Q1, Q2, and Q3 are shown in Table 2. Because of the two
equivalent hydrogen-bonded structures (Figure 1), the 1-D
potential alongQ1 is a symmetric double well, i.e.,f1

(1) ) 0, f11
(2)

< 0, f111
(3) ) 0, f1111

(4) > 0, f11111
(5) ) 0, andf111111

(6) > 0.

Figure 3. Potential energy surfaces (PESs) projected onto two-dimensional (2-D) space spanned byQ1 and five other coordinates (Q2, the other
reaction coordinate;Q3, O-H stretch inB2 symmetry;Q4, O-H stretch inA1 symmetry;Q5, CdO stretch inB2 symmetry; andQ6, CdO stretch
in A1 symmetry). The PES spanned byQ1 and the coordinates inA1 symmetry (panels a, c, and e) have line symmetry, and the PES on theQ1 and
the coordinates inB2 symmetry (panels b and d) have point symmetry. Panel a shows the PES on the reaction plane, which corresponds to Figure
4 in ref 14. Anharmonic couplings betweenQ1 and the O-H stretch (panels b and c) are larger than that betweenQ1 and the CdO stretch (panels
d and e).
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The PESs projected onto the 2-D space spanned byQ1 and
each of the five other coordinates are displayed in Figure 3.
(Q1, Q2) is the reaction plane, and the PESs projected onto this
space are identical to those obtained with the modified Shepard
interpolation method by Hirao et al.14 Q3 and Q6 have B2

symmetry, and the PESs spanned by them together withQ1 show
the antisymmetric mode coupling (ASMC) shape,25 which has
point symmetry, whereasQ2, Q4, and Q5 haveA1 symmetry
and the PESs spanned by them together withQ1 show the
symmetric mode coupling (SMC) shape,25 which has line
symmetry. The anharmonic couplings betweenQ1 and the O-H
stretch modes (Q3 and Q4) are larger than those with CdO
stretches (Q5 andQ6). This ab initio force field was used in our
calculations.

To identify signatures of proton transfer in multidimensional
IR signals, we constructed a single-well (SW) model potential

where the proton transfer is blocked and the MA is always
in G1 geometry.f1111

(4) andf111111
(6) are set as zero andf1

(1) andf11
(2)

have the same harmonic frequency as that of the original
potential at the G1 geometry (Figure 4). All other force constants
are unchanged. Figure 5 shows the 2-D surface spanned byQ1

and the two other coordinates (Q2, Q3) for this SW model
potential. Compared to Figure 3, the local structure of the PES
around G1 is preserved, but the second minimum G2 is
eliminated. We shall denote these potentials as double-well
(DW) and single-well (SW), respectively.

3. The Vibrational Eigenstates

Moran et al.36 used the Hartree product of the single-degree-
of-freedom harmonic oscillator eigenfunction as a basis set. The
frequency of the basis was equal to the frequency of that mode,
and the center position is equal to the origin of the coordinate.
However, for a double well, the intrinsic frequency of that mode
becomes negative. Therefore, we have extended the approach
to use arbitrarily chosen single harmonic oscillator eigenfunc-
tions with arbitrary center positions and eigenfrequencies that
are not related to the intrinsic frequencies. The vibrational wave
functions were expanded as

The basis set|nA1,ω1,‚‚‚, nA6,ω6〉 is a Hartree product of the
harmonic oscillator potential with an arbitrary center position
Ai and an arbitrary frequencyωi:

where n denotes the number of vibrational quanta in each
mode.

Figure 4. Plot showing that the double-well (DW) potential energy
curve along theQ1 (red line) is replaced by the single-well (SW)
harmonic potential (blue line) in the SW model potential; the SW
potential curve has the same frequency as the DW potential curve at
geometry G1.

TABLE 2: Calculated Anharmonic Force Constantsa with
Q1, Q2, and Q3

parameter calculation parameter calculation

f 1
(1) 0.0000 f 1111

(4) 0.0757

f 2
(1) -0.0557 f 1112

(4) 0.0000

f 3
(1) 0.0000 f 1113

(4) 0.0342

f 11
(2) -0.0830 f 1122

(4) 0.0138

f 12
(2) 0.0000 f 1123

(4) 0.0000

f 13
(2) -0.0409 f 1133

(4) 0.0158

f 22
(2) 0.0432 f 1222

(4) 0.0000

f 23
(2) 0.0000 f 1223

(4) 0.0088

f 33
(2) 0.1049 f 1233

(4) 0.0000

f 111
(3) 0.0000 f 1333

(4) 0.0091

f 112
(3) 0.0149 f 2222

(4) 0.0098

f 113
(3) 0.0000 f 2223

(4) 0.0000

f 122
(3) 0.0000 f 2233

(4) 0.0039

f 123
(3) 0.0087 f 2333

(4) 0.0000

f 133
(3) 0.0000 f 3333

(4) 0.0118

f 222
(3) 0.0257 f 11111

(5) 0.0000

f 223
(3) 0.0000 f 11211

(5) 0.0132

f 233
(3) 0.0047 f 11311

(5) 0.0000

f 333
(3) 0.0000 f 12211

(5) 0.0000

f 12311
(5) 0.0080

f 13311
(5) 0.0000

f 111111
(6) 0.0051

f 112111
(6) 0.0000

f 113111
(6) 0.0061

f 122111
(6) 0.0080

f 123111
(6) 0.0000

f 133111
(6) 0.0045

a Expressed in terms of hartree‚bohr-n.

TABLE 3: Single-Degree-of-Freedom Harmonic Oscillator
Basis Functions Assigned to Each Coordinate of the DW and
SW Potentials

mode
frequency

(cm-1)
mass
(a.u.)

number of
basis

center position
(bohr)

Q1 1748.9 1.44 16 0.0
Q2 499.8 9.13 8 0.1
Q3 1830.3 1.66 6 0.0
Q4 2995.2 1.06 6 0.0
Q5 1535.5 5.95 4 0.0
Q6 1716.4 5.13 4 0.0

TABLE 4: Calculated Vibrational Eigenstates with Strong
IR Intensities to the Split Two Ground States

eigenstates IR intensitya (a.u.)

index frequency (cm-1) description 1 2

1 0.0 S, ground state
2 25.6 A, ground state 4.03
9 1511.9 0.73 0.15

10 1537.7 0.13 0.46
11 1642.6 0.18 0.03
12 1695.3 0.07 0.01
13 1732.9 S,CdO(V ) 1) 0.97 0.22
14 1750.0 A,CdO(V ) 1) 0.23 1.00
15 1916.1 0.04 0.37
22 2339.6 S,O-H(V ) 1) 0.00 0.86
25 2491.8 A,O-H(V ) 1) 1.00 0.00

a IR intensities from the two ground states G1 and G2.

|ψ〉 ) ∑
nA1,ω1

‚‚‚ ∑
nA1,ω1

|nA1,ω1
,‚‚‚, nA6,ω6

〉〈nA1,ω1
,‚‚‚, nA6,ω6

|ψ〉 (5)

|nA1,ω1
,‚‚‚, nA6,ω6

〉 ≡ |nA1,ω1
〉|nA2,ω2

〉‚‚‚|nAn,ωn
〉 (6)
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The coordinatesQi and momentaPi were replaced by bosonic
creation (Bi

+) and annihilation (Bi) operators:

Using the Bose commutation relation betweenBi
+ andBi, and

neglecting constant terms, the vibrational Hamiltonian in a
normally ordered form is given in Appendix C.

The harmonic oscillator basis functions used for each
coordinate are summarized in Table 3. High-energy basis states,
where the total number of excitations (nT ) ∑inAiωi) is large,

only weakly affect the energy levels of lower-lying eigenstates.
Therefore, basis states withnT > 36 were neglected. The total
number of basis states is 73 728 (DW), and IRAM was used to
solve the large-scale eigenvalue problem. The Arnoldi subrou-
tine was taken from the public domain ARPACK package.48-50

All 245 DW states that lie below 6000 cm-1 were included in
the simulation. The transition dipole moment between the
eigenstates was calculated from the dipole moment derivative,
with respect to the mass-weighted normal coordinates.36

4. Linear Infrared Spectra

The calculated room-temperature (297 K) linear IR spectra
for the DW and SW potentials are displayed in Figure 6 and
compared with experiment.11 A homogeneous line width of 10
cm-1 was assumed for all transitions. The calculated vibrational

Figure 5. PESs of the SW model potential projected onto 2-D space spanned byQ1 and two other coordinates (Q2, the other reaction coordinate;
andQ3, the O-H stretch inB2 symmetry); the shape of the PES around geometry G1 is well preserved, compared to the corresponding PESs in
Figure 3.

Figure 6. Calculated and observed linear infrared (IR) spectra of MA: (a) double well (DW) and (b) single well (SW). The room-temperature
(297 K) Boltzman distribution was assumed for eigenstates 1 and 2 in the DW calculation. The experimental IR spectra isolated in a xenon matrix11

are superimposed on the DW calculation. Energy-level scheme and peak assignments are shown on the right-hand side.

Qi ) x p
2miωi

(Bi
+ + Bi) (7)

Pi ) ixmipωi

2
(Bi

+ - Bi) (8)
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eigenstates with strong IR intensities to the split two ground
states are summarized in Table 4. The states are ordered by
increasing frequency. Each vibrational state for the double well
is split into two components, symmetric and antisymmetric,
which represent the tunneling. The calculated ground-state
splitting (25.7 cm-1) is in excellent agreement with micro-
wave measurements (21.6 cm-1). We also calculated the
splitting that included only one reaction coordinateQ1 (RC1),
with nT ) 36, which resulted in a value of 0.65 cm-1. The
increase of the splitting with the extra coordinatesQ2,‚‚‚, Q6 is
attributed to the strong coupling between RC1 and the other
coordinates.

The calculated DW spectra capture the qualitative characters
of the O-H and CdO stretch peaks. In the 2750-2950 cm-1

region, experiments show a medium peak at∼2860 cm-1 and
one smaller peak at 2777 cm-1, neither of which were assigned
in the previous study.11 The DW calculation reproduces these
two peaks. The calculated peak at 2491.8 cm-1 is assigned to
the transition from the symmetric (S) ground state to antisym-
metric (A),O-H(V ) 1), or A,O-H/RC1(V ) 1), which
explicitly indicates the mixing of the O-H stretch and RC1.
The 2314.0 cm-1 peak corresponds to the transition from the
antisymmetric (A) ground state to symmetric (S) O-H/RC1(V
) 1). The calculated tunneling splitting of 152.2 cm-1 for the

Figure 7. Double-sided Feynman diagrams describing the third-order response in four possible directions as indicated; the resonant diagrams with
RWA approximation in this calculation are shown.
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O-H stretch agrees reasonably well with the estimated experi-
mental tunneling splitting, which was 105 cm-1 (2860 cm-1 -
2777 cm-1 + 21.6 cm-1 ) 105 cm-1). Note that the calculated
relative intensities of the two peaks are different from experi-
mental values because the assumed room temperature is much
higher than the experimental temperature (10 K). The 35 K
simulation is in good agreement with experiment. Room
temperature was used to study the peaks that involve transitions
from the second ground state. The intense experimental peak
at 1650 cm-1 is assigned to the CdO stretch fundamental.
According to the DW calculation, this is comprised of two
degenerate peaks: one is assigned to the transition from the S
ground state to symmetric CdO(V ) 1), and the other is
assigned to the transition from the A ground state to antisym-
metric CdO/RC1(V ) 1). The calculated splitting of CdO
stretch is 17.1 cm-1, which also agrees well with the experiment
(1650 cm-1 - 1650 cm-1 + 21.6 cm-1 ) 22 cm-1).

Comparison of the SW and DW calculations shows that the
O-H stretch fundamental is red-shifted from 2828 cm-1 (SW)
to 2491 cm-1 (DW). In contrast, the CdO stretch fundamental
is hardly affected: 1743 cm-1 (SW) and 1750 cm-1 (DW). The
red shift of the O-H stretch is typical in hydrogen bonding.
Our calculations suggest that the red shift is related to the proton
transfer due to the other potential minimum G2.

Quantitatively, the calculated peak position of the CdO
stretch is satisfactory; however, the calculated O-H stretch is
359 cm-1 less than the experimental value. This frequency is

very sensitive to the proton-transfer barrier, and this difference
may attributed to the limited accuracy of the ab initio calculation.
The calculated spectra reproduce the peaks related to the CdO
and O-H normal modes, which are responsible for the most
prominent signatures of proton transfer in linear and 2-D IR
spectra. Other spectral regions may be calculated in the same
way. This goes beyond the scope of the present study.

5. Three Pulse Nonlinear Infrared Signals
We have calculated the three pulse IR signals of MA

generated in the four possible directions:kI ) -k1 + k2 + k3,
kII ) k1 - k2 + k3, kIII ) k1 + k2 - k3, andkIV ) k1 + k2

+ k3 with ZZZZ polarization using the sum-over-states expres-
sion51 and orientational factors taken from eq 13 in the work of
Hochstrasser.52 Signals were calculated for both the DW and
SW potentials, to reveal the effect of proton transfer on the
signals.

Using the rotating wave approximation (RWA), the response
function for each signal is given by the sum of the following
Liouville space pathways:

Figure 8. Three-pulsekI signal (absolute value ofS(-ω1, t2 ) 0, ω3) in eq 13) of MA. The three incident pulses (10 fs) are tuned to 2200 cm-1

and have a bandwidth of(700 cm-1 ((left) DW model data and (right) SW model data). Top figures are the signals, and bottom figures highlight
the main peaks with colored circles and denotations. Peaks with red and blue circles in the DW signal are originating from the Liouville space paths
that involve transitions from the A,CdO/RC1(V ) 1) and S,CdO/RC1(V ) 1) states to higher excited states, respectively. Remaining peaks are
marked with green circles. The Liouville space paths of the peaks are shown in Figures 9 and 10.

RI(t3, t2, t1) ) R2(t3, t2, t1) + R3(t3, t2, t1) - R1
/(t3, t2, t1) (9)

RII(t3, t2, t1) ) R1(t3, t2, t1) + R4(t3, t2, t1) - R2
/(t3, t2, t1) (10)

RIII (t3, t2, t1) ) R4(t3, t2, t1) - R3
/(t3, t2, t1) (11)

RIV(t3, t2, t1) ) R4(t3, t2, t1) (12)
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The Liouville space paths are represented by the double-sided
Feynman diagrams given in Figure 7, wherea, b, c, and d
correspond to one of the vibrational eigenstates.RS (with S )
I, II, III, IV) are proportional to the product of the transition
dipole moments related to four optical transitions,µabµbcµcdµda.53

Using a 2-D Fourier transform with respect tot1 and t3, the
(ω1,ω3) signal is

We also calculated an (ω2,ω3) signal:

5.1. The kI Signal.The three incident pulses (10 fs) are tuned
to 2200 cm-1. To obtain the global pattern of 2-D signals at
one time, a very broad rectangular bandwidth of(700 cm-1 is
assumed for each of the three pulses; thus, all energy levels
within ωj n ( 700 cm-1 are resonant with the carrier frequency
ωj n. This resulted in a total of 55 347 terms contributing to the

Figure 9. Feynman diagrams and energy-level schemes of the main peaks inkI signals of the DW potential. (I)

S(ω1, t2,ω3) )

|∫-∞

∞
dt3 ∫-∞

∞
dt1RS(t3, t2, t1) exp[-i(ω3t3 + ω1t1)]| (13)

S(t1,ω2,ω3) )

|∫-∞

∞
dt3 ∫-∞

∞
dt2RS(t3, t2, t1) exp[-i(ω3t3 + ω2t2)]| (14)
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signal. A homogeneous line width of 10 cm-1 was assumed
for all transitions.

The calculatedkI signals are displayed in Figure 8. The DW
and SW signals have very different cross-peak patterns. The
SW signal consists of the diagonal peaks (-ω1,ω3) ) (-1743,
1743) and (-2828, 2828) and their cross peaks. This is common
for harmonic and moderately anharmonic systems. In general,
in moderately anharmonic systems, the sidebands appear near
the diagonal peaks, because of the energy difference between
the transition fromV ) 0 to V ) 1 and the transition fromV )

1 to V ) 2 of each mode.53 However, the DW signal shows
several off-diagonal peaks, with no corresponding diagonal
peaks, which is very unique to this system.

Figures 9 and 10 show the Liouville space pathways, depicted
as double-sided Feynman diagrams that contribute to the main
peaks in thekI signal of the DW potential. The corresponding
energy-level schemes are shown to the right of the respective
diagrams. The frequency and the eigenvector of the vibrational
eigenstates involved in the signals ofkI,‚‚‚, kIV direction are
given in Table 5. The calculated transition dipole moments that

Figure 10. Feynman diagrams and energy-level schemes of the main peaks inkI signals of the DW potential. (II)

TABLE 5: Vibrational Eigenstates Involved in the Liouville Space Paths that Contribute to the Main Peaks of the Nonlinear
Infrared Signals

eigenstate frequency (cm-1) descriptiona contributing basis states

1 0.0 S, ground state (0), (12), (21), (22), (2112), (41), (2122), (4112),‚‚‚
2 25.7 A, ground state -(11), -(1112), -(31), -(1122), -(3112), -(51),‚‚‚

22 2339.6 S,O-H/RC1(V ) 1) -(0), -(12), -(21), (111213), (3113), (311213),‚‚‚
25 2491.8 A,O-H/RC1(V ) 1) (11), (1112), -(1213), -(2113), -(4113), -(5112),‚‚‚
80 4004.0 S,O-H/RC1(V ) 2) (16), -(1115), -(111215), (211315), (411315),‚‚‚
82 4065.4 S,O-H/RC1(V ) 1)CdO(V ) 1) -(16), -(1115), (221315), (11121316), (11221316),‚‚‚
92 4257.3 A,O-H/RC1(V ) 2) -(11), -(13), (31), (1123), (3123), (311223), (5123),‚‚‚

112 4596.6 S,O-H/RC1(V ) 2)RC2(V ) 1) -(511213),‚‚‚
118 4665.8 S,O-H/RC1(V ) 2′) (12), -(1113), (1223), (2123), (211223), (4123), (312213),‚‚‚
134 4836.9 A,O-H/RC1(V ) 3) (13), (111223), (112223), (113223), -(5123), -(7132),‚‚‚
245 5939.6 A,O-H/RC1(V ) 3)CdO(V ) 1) (1116), (1316), -(312316), -(31122316), -(512316),‚‚‚

a The term (V ) n) representsV vibrational quanta on moden.
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are responsible for the major features in these signals are
displayed in Table 6.

Figure 9 shows that the two strong diagonal a1 and a3 peaks,
located at (-ω1,ω3) ) (-1732, 1732) and (-2491, 2491) in
Figure 8, correspond to the transition between the ground state
and state 13 (S,CdO(V ) 1)) and state 25 (A,O-H/RC1(V ) 1)),
respectively. The intensity is proportional toµ1,13

4 and µ1,25
4 .

Peaks a4 (-1732, 2491) and a5 (-2491, 1732) correspond to
the diagrams that include the two transitions between the ground
state and state 13 (S,CdO(V ) 1)) and the two transitions
between the ground state and state 25 (A,O-H/RC1(V ) 1)).
Therefore, the IR intensity is proportional toµ1,13

2 µ1,25
2 . Peak

a2 (-2314, 2314) comes from the transition between the second
ground state (A, ground state) and state 23 (S,O-H(V ) 1)).
Peaks a1′ and a3′,‚‚‚, a5′ of the SW signal come from the same
pathways as the corresponding peaks in the DW signal.

Other peaks listed in Figure 10 carry information about higher
excited states. All off-diagonal peaks (b1,‚‚‚, b4) located at
(ω2, -ω3) ) (-2491,x) come from the transition between the
ground state and state 25 (A,O-H(V ) 1)) and the transition
from state 25 to higher excited statesn (n ) 80, 82, 112, 118).
States 80 and 82 are mixtures of symmetric O-H/RC1(V ) 2)
and symmetric O-H/RC1(V ) 1)CdO(V ) 1) that are due to
the Fermi resonance. State 112 is symmetric O-H/RC1(V ) 2)-
RC2(V ) 1), and state 118 is symmetric O-H/RC1(V ) 2′).
The term 2′ represents the two nodes in an potential minimum,
which are different from those of state 82 (S,O-H/RC1(V ) 2)).

There are three basis states with two quanta in O-H and RC1
modes at one potential minimum (O-H(V ) 2), O-H(V ) 1)-
RC(V ) 1), RC(V ) 2)), which results in three eigenstates with
two nodes in the O-H/RC1 plane at that geometry. Two of
them (states 82 and 118) are optically allowed from state 25
(A,O-H(V ) 1)). The anharmonic frequency shift (∆ω )
2ωS,O-H/RC1(V)1) - ωS,O-H/RC1(V)2)) is 676 cm-1, which is much
larger than that of moderate anharmonic systems (5-29 cm-1

in DABCODO53). Because of this strong anharmonicity, no
diagonal peaks related to these off-diagonal peaks are observed.

Peaks c1 and c2 located at (-ω2,ω3) ) (-2314, x) come
from the transition from the ground state to state 22 (O-H
stretch) and the transition from the state 22 to the higher
excited statesn (n ) 92, 134). States 92 and 134 are the
second and antisymmetric third overtone of the mixture of
O-H stretch and the reaction coordinate, antisymmetric O-H/
RC1(V ) 2) and antisymmetric O-H/RC1(V ) 3). The anhar-
monic frequency shift (∆ω ) 2ωA,O-H/RC1(V)1) - ωA,O-H/RC1(V)2))
is also quite large (727 cm-1). The value of the expression∆ω
) 3ωA,O-H/RC1(V)1) - ωA,O-H/RC1(V)3) is 2639 cm-1. The intense
(-2314, 4837) peak comes from the allowed transition from
antisymmetric O-H/RC1(V ) 1) to antisymmetric O-H/RC1-
(V ) 3) and is also attributed to the extraordinarily strong
anharmonicity.

5.2. The kII Signal. The three incident pulses (10 fs) were
tuned to 2200 cm-1 with a rectangular bandwidth of(700 cm-1.

Figure 11. Three-pulsekII signal (S(ω1, t2 ) 0, ω3) in eq 13) of MA. The three incident pulses (10 fs) are tuned to 2200 cm-1 and have a
bandwidth of(700 cm-1 ((left) DW model data and (right) SW model data). Top figures are the signals, and bottom figures highlight the main
peaks with colored circles and denotations. Peaks with red and blue circles in the DW signal are originating from the Liouville space paths that
involve transitions from the A,CdO/RC1(V ) 1) and S,CdO/RC1(V ) 1) states to higher excited states, respectively. Remaining peaks are marked
with green circles. The Liouville space paths of the peaks are shown in Figures 12 and 13.
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This resulted in a total of 51 752 terms contributing to the
signal.

The calculatedkII signals are displayed in Figure 11. Figures
12 and 13 show the Liouville space pathways that contribute
to the main peaks inkII of the DW potential.

In the DW signal, off-diagonal peaks b1-b4, c1, and c2
involve the same optical transitions as the corresponding peaks
in thekI signal (see Figure 13), but in a different combination
of bra and ket as well as in different time ordering.R1

/ paths
contribute to the off-diagonal peaks in thekI signal, butR2

/

paths are the cause of the off-diagonal peaks in thekII signal.
In R1

/, the ket first interacts with-ω1, then the bra interacts
with ω2 andω3. In R2

/, the bra interacts withω1, ω2, and-ω3

sequentially, which is directly related to the observed direction
(kI ) -k1 + k2 + k3 andkII ) k1 + k2 - k3).

5.3. The kIII Signal. The three incident pulses (10 fs) were
tuned to 2200 cm-1 with a rectangular bandwidth of(700 cm-1.
This resulted in a total of 116 706 terms contributing to the
signal.

The calculatedkIII signals for both the original DW potential
and the SW model potential are displayed in Figure 14. Figures
15 and 16 show the Liouville space pathways that contribute
to the main peaks in thekIII signal of the DW potential.

In the DW signals, peak b1 (4004, 2491) and b2 (4004, 1512)
involve the same optical transitions (two times of the transitions
between the S ground state and antisymmetric O-H/RC1(V )

Figure 12. Feynman diagrams and energy-level schemes of the main peaks in thekII signals of the DW potential. (I)
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1) and two times of the transitions between antisymmetric O-H/
RC1(V ) 1) and antisymmetric O-H/RC1(V ) 2)) but in
different time ordering (R4 andR3

/). Peak pairs of b3 and b4,
b5 and b6, b7 and b8, c1 and c2, and c3 and c4 also have the
same optical transition in a different combination of bra and
ket, as well as in different time ordering. Two pathways,R4

andR3
/ that involve the transition between the S ground state

and symmetric CdO(V ) 1) and the transition between
symmetric CdO(V ) 1) and symmetric CdO(V ) 2) contribute
to a degenerate peak a1 at (3465, 1732), because of the
harmonicity of the CdO stretch. The b1′ peak in the SW signal
involves the transitions between O-H(V ) 1) and O-H(V )
2), which correspond to the b1 peak in the DW signal but is
located in a region of much higher frequency. The b3′ and b4′
peaks in the SW signal also correspond to the b3 and b4 peaks
in the DW signal, which involve the transitions between O-H(V
) 1) and O-H(V ) 1)CdO(V ) 1). In contrast, the symmetric
O-H/RC1(V ) 2) and symmetric O-H/RC1(V ) 1)CdO(V )
1) states of the DW signal are almost degenerate and, in Fermi
resonance, O-H(V ) 2) and O-H(V ) 1)CdO(V ) 1) of the
SW signal are 1076 cm-1 apart.

5.4. The kIV Signal. The three incident pulses (10 fs) were
tuned to 2200, 2200, and 1500 cm-1 with a rectangular
bandwidth of(700 cm-1. This tuning resulted in a total of
122 891 pathways being involved in the signal. The calculated

kIV signals for both the original DW potential and the SW model
potential are displayed in Figure 17. Figure 18 shows the
Liouville space pathways that correspond to the main peaks in
kIV of the DW potential.

In Figure 18, the Liouville pathways have different transitions
from kI to kIII . Every pathway involved is the transition to state
245 (A,O-H/RC1(V ) 3)CdO(V ) 1)). In the SW signal, there
are no peaks that involve the transition to O-H(V > 3), because
these states lie above 6000 cm-1 and are not included in our
calculations.

To identify the origin of the unusual large anharmonic
frequency shift, the vibrational eigenfunctions projected onto
the two coordinatesQ1 and Q3 are plotted in Figure 19. The
eigenfunctions of states 1 and 2 have two maxima at the
equilibrium geometries G1 and G2. State 1 has the same sign
(symmetric), but state 2 has an opposite sign (antisymmetric).
The eigenfunctions other than the split ground states are
complicated and different from the eigenfunctions that are
expected for harmonic systems. There are no clearly defined
nodes that can be assigned to each coordinate. Therefore, our
study was based on the total number of nodes in the plane at
each potential minimum. The strongly distorted shape of the
eigenfunctions could be the primary cause of the exceptionally
large anharmonic shift. States 92 and 134 are antisymmetric
and optically allowed from state 22. The eigenfunction of state

Figure 13. Feynman diagrams and energy-level schemes of the main peaks in thekII signals of the DW potential. (II)
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92 has two nodes in each equilibrium geometry. Therefore, this
state is the second excited state of O-H stretch. The eigen-
function of state 134 has three nodes in each equilibrium
geometry, and, thus, this state is the third excited state of
the O-H stretch mode. Therefore, the peaks at (2314,-1917)
and (2314,-2497) respectively represent the second and
third harmonics of the O-H stretch mode. States 80, 82,
112, and 118 are all symmetric and optically allowed from
state 25. States 80 and 82 are the mixed states obtained from
the second harmonics of the O-H stretch mode and the
combination band of the O-H stretch and the CdO stretch
with the Fermi resonance. State 112 is the combination band
of CdO/RC1(V ) 2) and RC2(V ) 1). State 118 also has two
nodes in each potential minimum.

6. Discussion

We have conducted an ab initio simulation of three pulse
nonlinear IR signals of an intramolecular hydrogen-bonded
system. The signals were calculated using a six-coordinate DW
vibrational potential of MA. To pinpoint the effect of proton
transfer on the 2-D peak pattern, the signals calculated for the
DW potential are compared with those of the SW model
potential, where proton transfer is prohibited. We found some
clear signatures of intramolecular proton transfer. Several new
off-diagonal peaks in the signals of the DW potential, which
are absent in the SW signals, are clear markers for the proton

TABLE 6: Transition Dipole Moments Responsible for
Major Features in Two-Dimensional Infrared Spectraa

states transition dipole moment (normalized to|µ1,25|)
a b (µab)x (µab)y (µab)z |µab|
1 13 0.000 0.000 -0.985 0.985
1 25 0.000 1.000 0.000 1.000
1 92 0.000 0.075 0.000 0.075
2 22 0.000 0.927 0.000 0.927

13 54 0.000 0.000 1.321 1.321
22 25 0.000 0.927 0.000 0.927
22 80 0.000 0.000 -0.594 0.594
22 82 0.000 0.000 0.829 0.829
22 92 0.000 -1.135 0.000 1.135
22 134 0.000 -0.444 0.000 0.444
25 80 0.000 -0.617 0.000 0.617
25 82 0.000 -0.549 0.000 0.549
25 92 0.000 0.000 0.071 0.071
25 112 0.000 -0.768 0.000 0.768
25 118 0.000 0.966 0.000 0.966
80 92 0.000 -0.290 0.000 0.290
80 245 0.000 -1.369 0.000 1.369
82 92 0.000 0.200 0.000 0.200
82 245 0.000 1.123 0.000 1.123
92 112 0.000 0.322 0.000 0.322
92 118 0.000 -0.744 0.000 0.744
92 245 0.000 0.000 -1.697 1.697

112 134 0.000 0.251 0.000 0.251
118 134 0.000 0.422 0.000 0.422
118 245 0.000 0.182 0.000 0.182

a The x-, y-, andz-axes are defined in Figure 2.

Figure 14. Three-pulsekIII signal (S(t1 ) 0, ω2, ω3) in eq 14) of malonaldehyde (MA). The three incident pulses (10 fs) are tuned to 2200 cm-1

and have a bandwidth of(700 cm-1 ((left) DW model data and (right) SW model data). Top figures are the signals, and bottom figures highlight
the main peaks with colored circles and denotations. Peaks with red and blue circles in the DW signal are coming from the Liouville space paths
that involve transitions from the A,CdO/RC1(V ) 1) and S,CdO/RC1(V ) 1) states to higher excited states, respectively. Remaining peaks are
marked with green circles. Liouville space paths of the peaks are shown in Figures 15 and 16.
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transfer. Many signatures of proton transfer in experimental
linear spectra are hidden under a large broadening envelope
where the peak shift of the O-H stretch is noticeable. However,
in 2-D signals, the new peaks due to proton transfer should be
resolved, even in solution. The IR peak positions are very
sensitive to the PES along the transfer coordinates and to the
solvent environment. Therefore, nonlinear IR signals could be
useful for investigating proton transfer and its coupling to the
solvent dynamics.

The proton-transfer reaction path has been described14 by the
path in the 2-D configuration space spanned by two basis

vectors; one connects the two minima in the shortest path, the
other connects the transition state and the midpoint of two
minima. Therefore, we constructed the six coordinates that were
generated from these two reaction basis vectors and four other
vectors that correspond to the CdO stretch and O-H stretch
normal modes at G1 and G2 local minima, using Gram-
Schmidt orthogonalization. The MP2 level predicts the proton-
transfer barrier that is the most similar to that of the experiment,
and we have adopted this level of theory to calculate an
anharmonic force field for these six coordinates. A sixth-order
force field was necessary to reach convergence of the numerical

Figure 15. Feynman diagrams and energy-level schemes of the main peaks in thekIII signals of the DW potential. (I)

9126 J. Phys. Chem. A, Vol. 107, No. 43, 2003 Hayashi and Mukamel



differentiation and is used in our calculations, even though
quartic force fields were used in previous studies of proton-
transfer systems.24,25

To compute the eigenstates of the DW anharmonic Hamil-
tonian, we used a harmonic oscillator basis set with arbitrary
frequencies and center positions. We calculated the eigen-
states and energies, keeping 36 total excitations among these
six coordinates, which resulted in 73 728 states (DW). IRAM
was used to solve this large-scale eigenvalue problem. A
total of 245 states (DW) lie below 6000 cm-1, which is the
frequency range covered by the spectroscopic techniques
that are presented here. The tunneling splitting of the ground
state was 25.6 cm-1, which was in good agreement with the
experimental value (21.6 cm-1).

Three pulse nonlinear IR signals for the DW and SW
potentials along the four phase-matching directions were
simulated. In all cases, we found new off-diagonal peaks in the
DW potential that are absent in the SW potential and may
be attributed to the strong anharmonic coupling between the
O-H stretch and the two reaction coordinates. The transition
between antisymmetric O-H/RC1(V ) 1) and symmetric O-H/
RC1(V ) 2) and the transition between symmetric O-H/RC1-
(V ) 1) and antisymmetric O-H/RC1(V ) 2) and antisymmetric
O-H/RC1(V ) 3) contributed to these peaks, and the transition
frequencies have a much lower frequency than the fundamental

frequency. This unusually large anharmonic frequency shift
may be attributed to the very strong coupling betweenQ1 and
Q3 and the highly distorted wave functions that are plotted in
Figure 19.

The highly excited vibrational eigenstates in the region of
4000-5000 cm-1, which may be reached by the transition from
the O-H fundamental, are delocalized along the reaction
plane and, therefore, are very sensitive to the PES along the
proton-transfer coordinates. Three pulse nonlinear IR spectros-
copy shows the peaks obtained from such transitions simulta-
neously. The spectra change quantitatively with the different
levels of ab initio calculation or by the selection of different
coordinates.

The inclusion of additional coordinates may be the next
step to improve the modeling of proton-transfer systems.56

However, the required numerical effort rapidly grows with the
number of coordinates. The dynamics of MA in solution is
another possible focus of future study. In that case, solvent
dynamics can be treated classically, and the Columbic inter-
action between MA and solvent may be included to calculate
the vibrational eigenstate of MA. The present approach is
directly applicable to other DW hydrogen-bonded systems,
such as DNA base pairs54 and peptides55 with hydrogen
bondings.

Figure 16. Feynman diagrams and energy-level schemes of the main peaks in thekIII signals of the DW potential. (II)
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Figure 18. Feynman diagrams and energy-level schemes of the main peaks in thekIV signals of the DW potential.

Figure 17. Three-pulsekIV signal (S(t1 ) 0, ω2, ω3) in eq 14) of malonaldehyde (MA). The three incident pulses (10 fs) are tuned to 2200, 2200,
and 1500 cm-1 and have a bandwidth of(700 cm-1 ((left) DW model data and (right) SW model data). Top figures are the signals, and bottom
figure highlights the main peaks with colored circles and denotations. Peaks with red and blue circles are originating from the Liouville space paths
that involve transitions from A,CdO/RC1(V ) 1) and S,CdO/RC1(V ) 1) state to higher excited states, respectively. The Liouville space paths of
the peaks are shown in Figure 18.
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Figure 19. Vibrational eigenfunctions of the DW potential projected to the two reaction coordinatesQ1 andQ3.
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Appendix A: Gram -Schmidt Orthogonalization

Normalizations and Gram-Schmidt orthogonalizations46 of
the six basis vectorsê′1,‚‚‚, ê′6 were performed in the following
order:

whereê′1, ê′3, andê′5 haveB2 symmetry, andê′2, ê′4, andê′6 have
A1 symmetry. The vectors in a different symmetry do not mix
with each other in this orthogonalization.

Appendix B: Numerical Differentiations

We calculated the five-point central difference formulas in
the same way as the three-point formulas given in ref 47 to
obtain the anharmonic force constantsf ij1

(3) to f ij1111
(6) . Third-order

to sixth-order derivatives (f ijk
(3), f ijkk

(4) , f ijkkk
(5) , and f ijkkkk

(6) ) are calcu-
lated from the numerical differentiation of the quadratic deriva-
tives (f ij

(2)), with respect to the single coordinateQk, as

whereδ1 andδ2 are the two displacement steps ofQk.

Appendix C: Excitonic Vibrational Hamiltonian

The vibrational Hamiltonian was recast in a normally ordered
field operator form36 to sixth order. In ref 36, the frequency
and center position of the harmonic oscillator basis set was fixed,
and the Hamiltonian was expanded to fourth order. In this study,
these formulas are extended to adopt any harmonic oscillator
basis set with arbitrarily chosen frequencies and center positions.
The diagonal matrix elements of the quadratic field-operator
portion associated withωi andUii

(2) contain theBi
+Bi

+ andBiBi

field-operator terms, which will vanish in the limit where the
frequency of the basis set for theith degree of freedom is equal

to that of the potential (miωi
2/2)/x(2miωi/p)2 ) Uii

(2)). The
fifth- and sixth-order derivatives are also included in the lower
field-operator terms. The Hamiltonian is given by

where

ê1 ≡ ê′1
||ê′1||

(A1)

ê2 ≡ ê′2
||ê′2||

(A2)

ê3 ≡ ê′3 - (ê′3·ê1)ê1

||ê′3 - (ê′3·ê1)ê1||
(A3)

ê4 ≡ ê′4 - (ê′4·ê2)ê2

||ê′4 - (ê′4·ê2)ê2||
(A4)

ê5 ≡ ê′5 - (ê′5·ê1)ê1 - (ê′5·ê3)ê3

||ê′5 - (ê′5·ê1)ê1 - (ê′5·ê3)ê3||
(A5)

ê6 ≡ ê′6 - (ê′6·ê2)ê2 - (ê′6·ê4)ê4

||ê′6 - (ê′6·ê2)ê2 - (ê′6·ê4)ê4||
(A6)

f ijk
(3) )

δ1
2δ2

2

δ2
2 - δ1

2(f ij
(2)(δ1) - f ij

(2)(-δ1)

2δ1
3

-
f ij

(2)(δ2) - f ij
(2)(-δ2)

2δ2
3 )

(B1)

f ijkk
(4) )

δ1
2δ2

2

δ2
2 - δ1

2(f ij
(2)(δ1) + f ij

(2)(-δ1) - 2f ij
(2)(0)

2δ1
4

-

f ij
(2)(δ2) + f ij

(2)(-δ2) - 2f ij
(2)(0)

2δ2
4 ) (B2)

f ijkkk
(5) ) 1

δ1
2 - δ2

2(f ij
(2)(δ1) - f ij

(2)(-δ1)

2δ1
-

f ij
(2)(δ2) - f ij

(2)(-δ2)

2δ2
)

(B3)

f ijkkkk
(6) ) 1

δ1
2 - δ2

2 (f ij
(2)(δ1) + f ij

(2)(-δ1) - 2f ij
(2)(0)

2δ1
2

-

f ij
(2)(δ2) + f ij

(2)(-δ2) - 2f ij
(2)(0)

2δ2
2 ) (B4)

H ) ∑
i)1

6

(Ui
(1) + 3∑

j)1

6

Uijj
(3) + 15∑

j,k)1

6

Uijjkk
(5) )(Bi

+ + Bi)

+ ∑
i,j)1

6

(Uij
(2) + 6∑

k)1

6

Uijkk
(4) + 45∑

k,l)1

6

Uijkkll
(6) )(2Bi

+Bj + Bi
+Bj

+
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+Bi
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+ ∑
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6

(Uijk
(3) + 10∑

l)1

6
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+Bj
+Bk

+ + 3Bi
+Bj

+Bk
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+ ∑
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6
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6
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+Bl
+
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i,j,k,l,m)1

6

Uijklm
(5) (Bi

+Bj
+Bk

+Bl
+Bm

+ + 5Bi
+Bj

+Bk
+Bl

+Bm

+ 10Bi
+Bj

+Bk
+BlBm + 10Bi

+Bj
+BkBlBm

+ 5Bi
+BjBkBlBm + BiBjBkBlBm)

+ ∑
i,j,k,l,m,n)1

6

Uijklmn
(6) (Bi

+Bj
+Bk

+Bl
+Bm

+Bn
+

+ 6Bi
+Bj

+Bk
+Bl

+Bm
+Bn + 15Bi

+Bj
+Bk

+Bl
+BmBn

+ 20Bi
+Bj

+Bk
+BlBmBn + 15Bi

+Bj
+BkBlBmBn

+ 6Bi
+BjBkBlBmBn + BiBjBkBlBmBn) (C1)

Ui1i2‚‚‚in
(n) ≡

f i1i2‚‚‚in
(n) ′

x(2mi1
ωi1

/p)(2mi2
ωi2

/p)‚‚‚(2min
ωin

/p)
(C2)
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The termsf i
(1)′ , f ij

(2)′ , f ijk
(3)′ , f ijkl

(4)′ , f ijkl
(5)′ , and f ijkl

(6)′ are defined as
follows:
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f i
(1)′ ≡ f i

(1) - 2∑
j

f ij
(2)Aj + 3∑

j,k

f ijk
(3)AjAk - 4∑

j,k,l

f ijkl
(4)AjAkAl +

5 ∑
j,k,l,m

f ijklm
(5) AjAkAlAm - 6 ∑

j,k,l,m,n

f ijklmn
(6) AjAkAlAmAn (C3)

f ij
(2)′ ≡ f ij

(2) - 3∑
k

f ijk
(3)Ak + 6∑

k,l

f ijkl
(4)AkAl -

10∑
k,l,m

f ijklm
(5) AkAlAm + 15 ∑

k,l,m,n

f ijklmn
(6) AkAlAmAn (C4)

f ijk
(3)′ ≡ f ijk

(3) - 4∑
l

f ijkl
(4)Al + 10∑

l,m

f ijklm
(5) AlAm -

20∑
l,m,n

f ijklmn
(6) AlAmAn (C5)

f ijkl
(4)′ ≡ f ijkl

(4) - 5∑
m

f ijklm
(5) Am + 15∑

m,n

f ijklmn
(6) AmAn (C6)

f ijkl
(5)′ ≡ f ijkl

(5) - 6∑
n

f ijklmn
(6) An (C7)

f ijkl
(6)′ ) f ijkl

(6) (C8)
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