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Photon statistics: Nonlinear spectroscopy of single quantum systems
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A unified description of multitime correlation functions, nonlinear response functions, and quantum mea-
surements is developed using a common generating function which allows a direct comparison of their infor-
mation content. A general formal expression for photon counting statistics from single quantum objects is
derived in terms of Liouville-space correlation functions of the material system by making a single assumption
that a spontaneous emission is described by a master equation.
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[. INTRODUCTION coherences among selected states and the signals provide
snapshots of their dynamics. There are numerous motivations
Knowledge of the full density matrix of the radiation field for performing such measurements. Novel spectroscopy:
allows to compute all its measurable properties. In particularthe ability to explore and access unusual regions of phase
photon counting statistics which had proven to be a mosspace.(ii) Coherent control: achieving a desired géelg.,
valuable measure of coherence has been formulated in tifgotimize the branching ratio of a reaction towards a favor-
sixties by Kelley and Kleiner, Glauber, and Mandel in termsable product (iii) Quantum computing: these applications
of expectation values of normally ordered field operatorsdepend on generating and retrieving information about co-
[1-8]. A revived interest had emerged in the eighties wherherences between several degrees of freedom prepared in
stochastic trajectory experiments on single quantum object§orrelated wave packetsuchentanglemenis a synonym to
atoms, ion traps, molecules, and quantum dots became fefle old fashioned terroorrelation). (iv) Overcome coupling
sible [9-17]. It is more convenient to formulate such mea- 0 a bath, e.g., selectively eliminatirdgphasingprocesses
surements in terms of correlation functions of the materia(Or the more trendy terrdecoherence We shall draw upon
system, rather than of the radiation field. Various applicationghe analogy between photon statistics and nonlinear response
for specific few-level model systems have been investigateé”d correlation functions to show important similarities and
[9,18-21. diﬁerences in their information content and simulation
In this paper we develop correlation function expression$trategies.
for photon statistics which app]y to a genera| model of a In Sec. Il we present the LiOUVi”e'Space eXpreSSionS for
quantum system driven by an external field and coupled to gultipoint correlation functions and response functions. In
bath. The normally ordered field expressions are remarkablg€c- Il we discuss multipoint quantum equilibrium measure-
general; the only assumption made in their derivation is thafents and introduce a unified generating function that can be
the photon detection is described by the Fermi golden ruleused to compute correlation, response, and measurements.
Similarly, our material correlation function expressions holdThis sets the stage for deriving the Liouville-space expres-
under a single assumption that spontaneous emission can B&@ns for photon counting in Sec. IV. Finally, our results are
described by a master equation. The derivation of the mastéummarized in Sec. V.
equation starting with the fully quantum description of the

field is well documentefi22—24. No other properties of the Il MULTIPOINT GENERATING EUNCTIONS FOR

radiation field enter explicitly_ in the_ present_ formulation. CORRELATION AND RESPONSE FUNCTIONS
Computing the reduced density matrix of a single quantum

system coupled to a bath has been a long standing goal of The state of complex quantum systems may be conve-
nonequilibrium statistical mechani¢84—26. Various types niently characterized by multitime quantities which carry
of reduced equations of motion based on stochastic or microarious levels of information and are easier to calculate,
scopic models are well developed. The present approach imeasure, or visualize compared to the many-body wave
therefore particularly useful for single quantum systemsunction[29]. In this section we present formal expressions
since it can utilize any level of reduced equations of motionfor two such objectgcorrelation and response functionss-
to predict the photon statistics. Computing the many-bodyng a Liouville-space(superoperatgrapproach. While the
density matrix of a macroscopic system is much more comresults of this section are not new, they establish the notation,
plex and a collective description using field operafdrs8]  setting the stage for calculating the successive measurements
may then be more adequate. in Sec. Il and eventually to the photon statistics in Sec. 1V,
We further develop some fundamental connections bewhich are our main results. Correlation and response func-
tween multitime correlation functions of photon statistics andtions can be defined in Hilbert space using ordinary opera-
response functions of nonlinear spectroscfi®¥. Coherent tors. Quantum measurements on the other hand, must be for-
experiments conducted using multiple pulses provide anulated using density matrices in Liouville space. The
wealth of information on electronic and nuclear dynamicsnotation introduced here is essential for expressing all of
[28]. These technigues can create and manipulate quantuthese quantities using a common generating funcfieqg.
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(26)] which unambiguously reveals their relative information where A, and Ag are the superoperators that act on the ket

content. (left) and bra(right) of the density matrix £ B=AB and
Consider a dynamical variable of intere&twhich can AgB=—BAR).

represent, e.g., the dipole operator, the coordinate or the mo- The time evolution in Eq(4) is given in the interaction

mentum of a tagged particle, or some collective coordinatepicture. For an ordinary operator in Hilbert space this is de-

The simplesh-point object is the correlation function fined by

CO(y. .. 7)=THA(7y) ... A(T)pegl, (D) A(T)Eex%i_HT)Aexp(_i_HT

7 ZH7) 0

wherep.q is the equilibrium density matrix of the system. ) ) )
Classical correlation functions are given by moments ofSimilarly, the time evolution of superoperators is governed

the joint distribution of successive measurements and ar@y the Liouville operatoH _ corresponding to the material

therefore directly observable. Quantum correlation functionsiamiltonianH

in contrast, are not connected to specific measurements in a i i
simple way. Instead, response functi$@§,27,29,30which Aj(r)Eexr{gHr) A, ex% - %HT) , j=+,—,L,R
represent the reaction of the system to an external E¢tdl ®)

coupled to the variablé via H;,;= — E(t)A may be readily
measured. In a response experiment the total Hamiltoniaf is the positive time ordering operator which rearranges all
H+(7) consists of material HamiltoniaH and the coupling products of superoperators in order of decreasing time from

to the driving field left to right. The nonlinear response functions are obtained

by expanding the exponent of E@) in powers ofE(7). The

Hr(7)=H+Hy (7). (2)  expectation value oA to (n—1)th order in the field is given
We shall be interested in the expectation valuéait timet
n 72
U(H=TrAp()]=((Alp(1). @ U= AR

where |p(t))) == kpi(t)|jk)) is the density matrix of the % & & —23 9
system, and the kéjk)) denotes the Liouville-space opera- (7a-1)---&(m), n=23,... (O
tor |j)(k| [25,27,31. with the nonlinear response function

Equation(3) can be recast in the forii32,33 i\n
RO (7, - - Tl)E(g) (A (T)A_(Tq-1) - A_(T1)).
>. (4) (10)

R represents the response at timgto n—1 very short
pulses applied at times;- - - 7,_; [27]. Note that all time
arguments are fully ordered,<7,---<r7,. The operator

U(t)= < TAAt)exr{;i—ftwdrE(T)A( 7)

Here and below - - -) denotes averaging with respect to the
equilibrium density matrixpe

(AY=TI Apegl, (5)  A+(7y) corresponds to the observation time, the operators
A_ () j=1,... h—1 represents interactions with the ex-
A. are superoperators acting in Liouville space defined agernal field at times;. We chose to label the response func-
follows: For any ordinary operatdk, we define tion corresponding tdJ(" Y by R™ rather thanR("~ 1)

1 since it is ann-point function; this will facilitate the com-
A _ parison with the other multitime quantities discussed below.
= == + . . . .
A-=ALAR Av=5 (AT AR), © Equation(10) is an abbreviated notation for

RO rl>=(,'i—) ([ (A AT DA ), - AT, 1y

or

S

R(n)(Tn' o Tl): (;i_) Tr{A(Tn)[A(TnflL s 1(A(7'2)7[A(71)1Peq])' ' ]} (12)

R is thus given by a combination aforder ordinary Liouville-space pathand can be represented by a double-
(Hilbert spacg correlation functions. Equatiofi2) contains sided Feynman diagraf27]. The various pathways inter-
2"~ 1 terms representing all possible “left” and “right” ac- fere, giving rise to many interesting effects such as new reso-
tions of the various commutators. Each term corresponds tomances. For a multilevel systeR{™ is usually expanded in
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the eigenstates of the free Hamiltonigh Each path then sights and helps connect different measurements. The gener-
consists ofn—1 periods of free evolution separated hy ating function for correlation functions is defined as
couplings withA, which change the state of the system.

Using our superoperator notation, the correlation function Wc (@nTy a1 7) =(8@n—A(7y))- - - (a1~ A(71))).
Eqg. (1) can be recast as (14

CO(ry - 7)) =T A7) - - AL(1) pegl, 13) By comparing Eq(1) and Eq.(14) we immediately find that

where the time evolution o (7) is given by Eq.(8). c(r, Tl)_f f a--
Classical quantities are conveniently represented as mo-
ments of soméoint distribution functiononnected to mea- XW@)(anm ..a;m)day---da,. (15

surements. The closest we can come up in qguantum mechan-
ics is through moments ajenerating functionsThis is not ~ Similarly we can define a generating function for response
only a convenient computational tool, but also provides in-functions

WE a7y -aym) = ([8@n—A(mp), - - . [8(8z—A(72)),[ 881~ A(71)),peql1]), (16)
|
so that the response function is given by where the joint distribution functiokN(S”) can be computed
using the theory of quantum measuremdB#—3§. To that
RO (7 __.Tl):f f a,---a end, we define the eigenstata§> of A with eigenvalues;,
" " and represent the operatarin the form of an expansion in
XW (an7y- - -a;77)day - - -day. projection operators,
17 .

Equations(14) and(16) play the role of a classical distri- ]
bution functions even though they are generally complex and
may be negative. Nevertheless, they serve as generatn‘{ﬂ
functions for correlation and response functions which are R
given by their first “moments,” Eqs(15) and (17). Aj=|a;){qjl. (21
So far we considered twa-point objects: Correlation
functions and response functions. A third type of quantity We next define the Liouville-space projection operator
which is more closely connected to photon statistics is thénto the diagonal elements f
joint distribution ofn successive measurements. This will be
introduced next.

ﬁ(a)z}j: sa—ay)| Ay (A (22)
I1l. UNIFIED GENERATING FUNCTION FOR
CORRELATION, RESPONSE, AND EQUILIBRIUM The Liouville-space bracké{F|G))=Tr'FG denotes a sca-
MEASUREMENTS lar product computed by a partial trace over the measured

degrees of freedom of the operatrUsing this projection,
the joint distribution function of successive measurements
may be recast in the forif84—-37,39

We consider a sequence mfmeasurements of a dynami-
cal variable A performed on the system at times<r,
<r73--- =7, and yielding the outcomes, - - - a,,. We would
like to compute the following ensemble average over many A A
such measurements Vv(Sn) aAnTp: -« alTl) :Tr[ P(an ’ Tn) e P(al ) Tl)Peq]a

s Tnt - T1=A(7h) - - A(T9). (18 . . ~ L .
where the time evolution oP(a,7) is given by the interac-
This quantity is common to classical and quantum systemsion picture[Eg. (8)]. The compact Liouville-space notation

alike. Equation(18) is a shorthand notation for used in Eq.(23) will help establish the connection between
photon counting and other multitime quantities. Note that
S (7, . - 'Tl):J f a,---a, both W andWsg are normalized as
xW®(a,7,, ... a;m)day - --day, f W (a, 7, - -ag7y)day - -da,=1, j=C,S,
(19 (24)
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whereasWpg, which represents the deviation of the densityquantities it will be useful to compute all three using a single
matrix from equilibrium, has a zero tra¢é0] fundamental object. This is possible by using the following
generating function:

f W (ag7y- - -ag7y)day - - -da,=0. (25) W (apa) 7,857, - -a1877;)
So far, we introduced three different generating functions =Tr{é@,=A(7n))- - - 8(a1=A(71))Peq
to describe correlation functions, response functions, and the X (@) —A(ry))- - - @’ —A( )L (26)

joint probability of measuremenf&qgs.(14), (16), and(23),
respectively. To establish the connection between theseThe density matrix underlying Eq26) is

P(n)(anarq Tn" - alalTl) Ga a’ ndha (Th=Tn-1) -~ gazaéalai( T2 Tl)Palai( T1), (27)

n-187_1

where Note that the definition ofW{" is more clean in Liouville-
space Eq. (23)] but requires some care in Hilbert space.

We can now better appreciate the fundamental differences
9( T)Eexl{ a %H‘T)’ @8 petween these various multitime quantiti®¥e (and C(M)
depend only or;, Whereaj’ are integrated out. This follows
is the interaction-picture propagator. from Eq. (13) which only contains “left” superoperators.

The generating function for correlation functiofi€q.  Due to thea;—a; factors in Eq(30) R(™, on the other hand,
(14)] is recovered by integrating E@26) over the primed depends only on the off-diagonal elements \Wfwith a;
variables #a; (diagonal elements do not contribut&inally, Ws (and

S(“)) depends solely on the diagonal elements\bivith a
W (ay 7y, ... am) =a/ . Wy is the basic quantity in the consistent history de-
scription of quantum dynamid¢86—38 and has all the prop-
:f W (apal 88572, . . . @18,71) erties of a classical joint probability distribution. At each
time 7; the system is in the stafer;) and its density matrix
<da'da’. --da’ 29 s laj) (.= N. In contrast, in a nonlinear response
12 " measurement as descrlbed Ry we onIy measurd at the

. L o last timer,; at the earlier times;(j = n—1) we only
h I f EdD). larl n N ; :
and the correlation function is given by E@5). Similarly, “pass through”«;, but the density matrlx could be either

the response function is obtained by the following mtegra-| aj>(ak| or |ak>(aj| with k=]. Wy is thus not a joint prob-

tion /. X
ability; even though we perform some operation on the sys-
tem atn points (0—1 interactions with the fields and the

RO (7, 7y)= f da;- - 'danf da;j---daj time of observatiop only the last interaction corresponds to
an actual measurement. In the other times we merely perturb
Y(a.—a')..-(a.—a’ the system. It should be emphasized that even though the
(ap—ay)---(a;—ay)

response functiongand W) are experimental observables
XWM(aa)m,---a,ajm). (300 that may be obtained from multiple pulse experiments with
heterodyne detectiof27], they may not be represented by
Comparing Eq(26) with Eq. (23), it is clear that the joint  the joint probabilityW{" since it does not carry enough in-
probability of measurements is related to the diagonal eleformation for representing this type of observables.
ments of Eq.(26), i.e. 8= aj . However we cannot simply The response function carries information that depends on
seta;=a; in Eq.(26) since it will diverge. In order to prop- delicate interferences among events that occur at various
erly obtam Eq.(26) from Eq. (23) we need to add a finite points in time. This interference may be understood in terms
resolution for the measurement defined by a normalize®f sums over pathways which differ by their time ordering,

functionf(a—a’) sharply peaked at zero. We can then writei-€., (A(T1) A(72) A(73)), (A(72)A(71)A(73)), etc. Itis less
obvious that a similar interference does exist in classical me-

chanics as well. Classically, of course, time ordering is im-
W (a, 7, - 'alTl)Zf e f da;---day material since all operators commute and it suffices to calcu-
late (A(71)A(72)A(73)), for 7<,---<7,. Quantum
XW(aja171,8,85T - - @ndpTn) mechanically, each of the! permutations of the time argu-

) , ments in ann-point correlation function is distinct and car-
xXf(a;—ay)---f(ay—an). (B  ries a different information. Classical correlation functions
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then carry less information than their quantum counterpartdreatment of the field degrees of freedom when describing an
The classical interference takes place between closely lyingpen system. This can only be done by using the density

trajectorieq41,42. matrix in Liouville space.
We consider a single quantum system coupled to a bath,
IV. CORRELATION EUNCTION EXPRESSIONS driven by an external field and subjected to spontaneous
FOR PHOTON STATISTICS emission. The Liouville equation will be partitioned as
Photon counting statistics as well as shot noise statistics dp i
of electrons[43] are most closely related ta/2" (or S™) at- 7t®e=Tp. (37)

since they involven real measurements. However, photon
counting is a more complex operation than describetfy ~ Here the Liouville operatok (t)=H_(t) includes our single
since it is performed under nonequilibrium conditions wheremultilevel system, any other bath degrees of freedom, as well
the system is strongly driven by an external field. Further2s the driving field. It also includes the matrix [Eq. (35)]
more, the material system is not closed since photons anhich represents the diagor(a Liouville spacg part of the
emitted. Thirdly, the measurement does change the state jaster equatiorl’, on the other hanfEg. (36)], is the off-
the system, not by merely projecting onto a diagonal elediagonal part of the master equation which describes the
ment. All of these complications can be adequately addressdeansitions among statesand v'.
and Eq.(23) can be modified to account for photon statistics, We define the Green function solution of E@7) with
as will be shown below. =0

To proceed further we introduce the master equation, de- |
rived by tracing the density matrix over the radiation field _ R
[22—-24. We shall denote by, the spontaneous emission 9 7-2,7-1)—Tex;{ h drL(7)
rate from stater’ to the lower energy state . The total

decay ratdinverse radiative lifetimeof statev’ will then be ~ and introduce the off-diagonal radiative-decay operator in
the interaction picture

Vo= T (32 I'(1)=G"(7,0IG(,0). (39

vy

: (38)

71

The solution of Eq(37) in the interaction picture then reads
The effects of spontaneous emission are then incorporated
by the master equation

t
p(t)ZTeX;{—j d7I'(7)|p(tp). (40
to
dpvv’ _ 1 ,
i = 2t vedpes, vV, The total probability density of emitting a photon betwégn
andty+dty and another photon betweémndt+dt is
dp,, .
dt - ’VVPVV"_V%V FVV/PV/V/ . (33) W(t,t0)=TI’( Tl—‘(t)exp{ _J dTF(T) F(to)p(to)) .
to
Adopting Liouville-space (tetradig notation, the master (41)
equation reads Expanding the solution of Eq40) to nth order inT,
yields
dp
a- v le (34) ®
=> pMt 42
p(H=2 p(1), (42
with
where
! 1 !
y=2 [ )5+ v (v, (35) B ™ 7
! P(n )(Tn):fo dTn—l"'fo dry
and
XG(7h, T - -TG(75,7)p(11). (43
r=>, v, (v '] (36) p(" Y describesn—1 photon emission processes at times
v# v’ T Th—1-

The probability densityk(™ of emitting n photons at
The quantities defined in the previous section correspond to#mesr, - - - 7, is obtained by multiplying the integrand By
closed-system and may be described either in Hilbert spadeom the left and taking a trace. This gives
or in Liouville-space[44,45; the choice is a matter of con-
venience. The master equation allows us to avoid the explicit KM (ry - ) =THT (7)) - -T(m)p(r)]. (44

063821-5
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This general expression for photon statistics in terms ofluced descriptions and stochastic modi28 for computing
system variables is equivalent to the standard normally ork(?), One interesting application will be the photon statistics

dered expression of field variablgs—4,6. To see that, we

consider the probability of emitting photons between times

ti andtf

Po(ts ti) = jdrnf drn_q- delK( W7n- - T1).
(45)

As can be seen from E@40), this is normalized as

0

2 Pu(ts, t)=Trp(t)=1.

(46)

To computeP,,, we introduce the generating function

[’

Gty ;U)= 2, Pr(ty,t)U". (47)
It then follows from Eqs(44) and (45) that
t
G(tf,ti,U)=<Texp[uf "4 (7) p(ti)>, 48)
5
G thus satisfies the equation of motion
dG(t,t;;U) i
———=—L(1)G(t,t;,U)—-UI'G(t,t; ,U).
dt h
(49)
Using Eq.(48), we have
n
Po(t,t+T)= ~G(U) (50
d u=0
and Eq.(47) gives
m * |
qum G(U)]y- 1—2 Py (tt+T)(r1—m)l
=(n(n-1)---(n—-m+1)), (51

which is thenth factorial moment of,. Settingm=1 and
m=2 in Eq.(51), we get

(45
dU U:1'
dZGU
(%)~ (my= T 52
u=1

Higher moments may be calculated similarly.

in super-radiance of aggregates]. Equation(44) may be
easily generalized to describe more refined, frequency re-
solved, measurements whereby at each time we monitor a
different (preselectegdtransition. This can be done simply by
using a different element df at each timd’(7;) to represent

the desired transition. Equatid¢d4) could then provide more
detailed information about the system.

V. DISCUSSION

We have introduced several types of multipoint functions
commonly used in experimental observations and their theo-
retical analysis. Using the Liouville-space superoperator no-
tation, we can recast these various quantities in a formally
similar form that facilitates their comparison. Equatidr3)
can be written as

C(n)(Tn' ) =TI AG(Th— “G(7o— Tl)ALPeq]

(53

where G(7) is given by Eqg.(28). The nonlinear response
function[Eq. (10)] can be similarly recast in the form

R(n)(Tn' . Tl)
=TA,G(7,,—

Tn-1)AL

T-1D)A_G---A_G(7,,— 7'1)A—Peq]-

(54

The joint distribution of successive measuremégts. (23)]
is written as

-aym) =TI P(an)G(7,— m-1)P(an_1) - -

X P(ap)G(1y— m1)P(a1)pegl- (55

The probability density of observing consecutive photons
[Eg. (44)]is

KO (7y - 7)=THLG(11,7h_1) -

W(S”)(an T

T'G(1p,m)p(71)],

(56)
whereG(r,7') is given by Eq.(38). Finally, the probability
density of measuring photons at times; - - - 7, (regardless
of how many photons are emitted in betwgén

-G(7,m)Tp(7)],
(57)

whereG is the Green function solution of E437) for the
driven system

PO (7 7) =TT G(7, 1) -

p(1)=G(t,to)p(to). (58)

We note several marked differences between the photon
statistics observablg¢&qgs.(56) and(57)] and the other quan-

The most commonly used measure of photon statisticgjties [Egs.(53)—(55)]. Since the latter are equilibrium prop-

the Mandel parameter, has been shown to be relatéd®o

[1,9,20 in simple kinetic models of single quantum systems.depends on the time differenc r; —

erties, the Green function is translationally invariant and only
7) rather than onr;

Photon statistics has been calculated using the simplest rand 7, separatelyG(7;,7,). Also the initial density matrix

duced descriptions such as the Bloch equati@ild. The

p(7,) in photon statistics measurements is generally a more

present approach opens up the use of a broad class of reemplex object tharp,, since it requires computing the
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preparation stage leading to a nonequilibrium steady state. Finally we note that Eqg56) and(57) are reminiscent of
This does not cause any problem in stochastic models whet@e normally ordered expressions with field operafdr$]
the bath evolution does not depend on the state of the syshere ' represents the detector rather than spontaneous
tem.p(7,) is then completely specified since the first photonemission. In the present approach we do not need normal
emission atr; determines the state of the systéthe final  ordering since in Liouville-space time ordering is enough to
state of the emissigrand the bath is always in equilibrium. maintain the bookkeeping of interactions. We also note that
However, fully microscopic modeling will require a separate| (r) in Eq. (38) contains they matrix, and the Green func-
calculation ofp(7y). o _ tion therefore contains some diagonal signatures of the pho-
Equation(56) is very similar to the general expression for 1o emissjon. This is required for maintaining the trace of the
h Successive measgremelhEzq. (55)].' H_ow_ever, thel Ma- — density matrix. Such terms should also be present in the field
trix is off-diagonal since photon emission is accorppamed b3formula\tion, but are usually neglected and the Green func-
a transition in the system, as opposed to the diagB(a) in  tjon represents the pure systémithout the detector[1,3)].

Eq. (55 which represents ordinary measurements. Were W@ qding these corrections could improve the standard theory
to use a diagonal’=|vv))((vv| it would represent the ¢ photon statistics.

probability of measuring the system at stateat times
71 - - 7. Photon counting, however, implies that the system
is at statev prior to the count but it changes to stateafter
the count; this is the initial state for the next period of propa-
gation. Apart from this, Eq(56) or Eq.(57) is equivalent to
n-point measurementfEq. (55)]. These differences stem The support of the National Science Foundation Grant
from the nonequilibrium nature of photon counting per-No. (CHE-013257) and NIRT (Grant No. EEC 0303389s
formed on open driven systems. gratefully acknowledged.
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