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Photon statistics: Nonlinear spectroscopy of single quantum systems

Shaul Mukamel
Department of Chemistry, University of California, Irvine, California 92697-2025, USA
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A unified description of multitime correlation functions, nonlinear response functions, and quantum mea-
surements is developed using a common generating function which allows a direct comparison of their infor-
mation content. A general formal expression for photon counting statistics from single quantum objects is
derived in terms of Liouville-space correlation functions of the material system by making a single assumption
that a spontaneous emission is described by a master equation.
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I. INTRODUCTION

Knowledge of the full density matrix of the radiation fie
allows to compute all its measurable properties. In particu
photon counting statistics which had proven to be a m
valuable measure of coherence has been formulated in
sixties by Kelley and Kleiner, Glauber, and Mandel in term
of expectation values of normally ordered field operat
@1–8#. A revived interest had emerged in the eighties wh
stochastic trajectory experiments on single quantum obje
atoms, ion traps, molecules, and quantum dots became
sible @9–17#. It is more convenient to formulate such me
surements in terms of correlation functions of the mate
system, rather than of the radiation field. Various applicati
for specific few-level model systems have been investiga
@9,18–21#.

In this paper we develop correlation function expressio
for photon statistics which apply to a general model o
quantum system driven by an external field and coupled
bath. The normally ordered field expressions are remarka
general; the only assumption made in their derivation is t
the photon detection is described by the Fermi golden r
Similarly, our material correlation function expressions ho
under a single assumption that spontaneous emission ca
described by a master equation. The derivation of the ma
equation starting with the fully quantum description of t
field is well documented@22–24#. No other properties of the
radiation field enter explicitly in the present formulatio
Computing the reduced density matrix of a single quant
system coupled to a bath has been a long standing go
nonequilibrium statistical mechanics@24–26#. Various types
of reduced equations of motion based on stochastic or mi
scopic models are well developed. The present approac
therefore particularly useful for single quantum syste
since it can utilize any level of reduced equations of mot
to predict the photon statistics. Computing the many-bo
density matrix of a macroscopic system is much more co
plex and a collective description using field operators@1–8#
may then be more adequate.

We further develop some fundamental connections
tween multitime correlation functions of photon statistics a
response functions of nonlinear spectroscopy@27#. Coherent
experiments conducted using multiple pulses provide
wealth of information on electronic and nuclear dynam
@28#. These techniques can create and manipulate quan
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coherences among selected states and the signals pr
snapshots of their dynamics. There are numerous motivat
for performing such measurements.~i! Novel spectroscopy:
the ability to explore and access unusual regions of ph
space.~ii ! Coherent control: achieving a desired goal~e.g.,
optimize the branching ratio of a reaction towards a fav
able product!. ~iii ! Quantum computing: these application
depend on generating and retrieving information about
herences between several degrees of freedom prepare
correlated wave packets~suchentanglementis a synonym to
the old fashioned termcorrelation!. ~iv! Overcome coupling
to a bath, e.g., selectively eliminatingdephasingprocesses
~or the more trendy termdecoherence!. We shall draw upon
the analogy between photon statistics and nonlinear resp
and correlation functions to show important similarities a
differences in their information content and simulatio
strategies.

In Sec. II we present the Liouville-space expressions
multipoint correlation functions and response functions.
Sec. III we discuss multipoint quantum equilibrium measu
ments and introduce a unified generating function that can
used to compute correlation, response, and measurem
This sets the stage for deriving the Liouville-space expr
sions for photon counting in Sec. IV. Finally, our results a
summarized in Sec. V.

II. MULTIPOINT GENERATING FUNCTIONS FOR
CORRELATION AND RESPONSE FUNCTIONS

The state of complex quantum systems may be con
niently characterized by multitime quantities which car
various levels of information and are easier to calcula
measure, or visualize compared to the many-body w
function @29#. In this section we present formal expressio
for two such objects~correlation and response functions! us-
ing a Liouville-space~superoperator! approach. While the
results of this section are not new, they establish the notat
setting the stage for calculating the successive measurem
in Sec. III and eventually to the photon statistics in Sec.
which are our main results. Correlation and response fu
tions can be defined in Hilbert space using ordinary ope
tors. Quantum measurements on the other hand, must be
mulated using density matrices in Liouville space. T
notation introduced here is essential for expressing all
these quantities using a common generating function@Eq.
©2003 The American Physical Society21-1
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~26!# which unambiguously reveals their relative informati
content.

Consider a dynamical variable of interestA which can
represent, e.g., the dipole operator, the coordinate or the
mentum of a tagged particle, or some collective coordin
The simplestn-point object is the correlation function

C(n)~tn . . . t1![Tr@A~tn! . . . A~t1!req#, ~1!

wherereq is the equilibrium density matrix of the system.
Classical correlation functions are given by moments

the joint distribution of successive measurements and
therefore directly observable. Quantum correlation functio
in contrast, are not connected to specific measurements
simple way. Instead, response functions@25,27,29,30# which
represent the reaction of the system to an external fieldE(t)
coupled to the variableA via Hint52E(t)A may be readily
measured. In a response experiment the total Hamilton
HT(t) consists of material HamiltonianH and the coupling
to the driving field

HT~t!5H1Hint~t!. ~2!

We shall be interested in the expectation value ofA at timet

U~ t !5Tr@Ar~ t !#[^^Aur~ t !&&, ~3!

where ur(t)&&5( jkr ik(t)u jk&& is the density matrix of the
system, and the ketu jk&& denotes the Liouville-space oper
tor u j &^ku @25,27,31#.

Equation~3! can be recast in the form@32,33#

U~ t !5K TA1~ t !expF i

\E2`

t

dtE~t!A2~t!G L . ~4!

Here and beloŵ•••& denotes averaging with respect to t
equilibrium density matrixreq

^A&[Tr@Areq#, ~5!

A6 are superoperators acting in Liouville space defined
follows: For any ordinary operatorA, we define

A2[AL2AR A1[
1

2
~AL1AR!, ~6!
-
to
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whereAL andAR are the superoperators that act on the
~left! and bra~right! of the density matrix (ALB[AB and
ARB[2BAR).

The time evolution in Eq.~4! is given in the interaction
picture. For an ordinary operator in Hilbert space this is d
fined by

A~t![expS i

\
Ht DA expS 2

i

\
Ht D . ~7!

Similarly, the time evolution of superoperators is govern
by the Liouville operatorH2 corresponding to the materia
HamiltonianH

Aj~t![expS i

\
H2t DAj expS 2

i

\
H2t D , j 51,2,L,R.

~8!

T is the positive time ordering operator which rearranges
products of superoperators in order of decreasing time fr
left to right. The nonlinear response functions are obtain
by expanding the exponent of Eq.~4! in powers ofE(t). The
expectation value ofA to (n21)th order in the field is given
by

U (n21)~tn!5E
2`

tn
dttn21

•••E
2`

t2
dt1R(n)~tn•••t1!

3E~tn21!•••E~t1!, n52,3, . . . ~9!

with the nonlinear response function

R(n)~tn•••t1![S i

\ D n

^A1~tn!A2~tn21!•••A2~t1!&.

~10!

R(n) represents the response at timetn to n21 very short
pulses applied at timest1•••tn21 @27#. Note that all time
arguments are fully orderedt1<t2•••<tn . The operator
A1(tn) corresponds to the observation time, the operat
A2(t j ) j 51, . . . ,n21 represents interactions with the e
ternal field at timest j . We chose to label the response fun
tion corresponding toU (n21) by R(n) rather thanR(n21)

since it is ann-point function; this will facilitate the com-
parison with the other multitime quantities discussed belo

Equation~10! is an abbreviated notation for
R(n)~tn•••t1!5S i

\ D n

^†•••„@A~tn!,A~tn21!#,A~tn22!…, . . . ,A~t1!‡&, ~11!

or

R(n)~tn•••t1!5S i

\ D n

Tr$A~tn!†A~tn21!, . . . ,„A~t2!,@A~t1!,req#…•••‡%. ~12!
le-
-
so-
R(n) is thus given by a combination ofn-order ordinary
~Hilbert space! correlation functions. Equation~12! contains
2n21 terms representing all possible ‘‘left’’ and ‘‘right’’ ac
tions of the various commutators. Each term corresponds
 a

Liouville-space pathand can be represented by a doub
sided Feynman diagram@27#. The various pathways inter
fere, giving rise to many interesting effects such as new re
nances. For a multilevel systemR(n) is usually expanded in
1-2
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the eigenstates of the free HamiltonianH. Each path then
consists ofn21 periods of free evolution separated byn
couplings withA, which change the state of the system.

Using our superoperator notation, the correlation funct
Eq. ~1! can be recast as

C(n)~tn•••t1!5Tr@AL~tn!•••AL~t1!req#, ~13!

where the time evolution ofAL(t) is given by Eq.~8!.
Classical quantities are conveniently represented as

ments of somejoint distribution functionsconnected to mea
surements. The closest we can come up in quantum mec
ics is through moments ofgenerating functions. This is not
only a convenient computational tool, but also provides
-
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sights and helps connect different measurements. The ge
ating function for correlation functions is defined as

WC
(n)~antn•••a1t1![^d„an2A~tn!…•••d„a12A~t1!…&.

~14!

By comparing Eq.~1! and Eq.~14! we immediately find that

C(n)~tn•••t1!5E •••E a1•••an

3WC
(n)~antn•••a1t1!da1•••dan . ~15!

Similarly we can define a generating function for respon
functions
WR
(n)~antn•••a1t1!5^@d„an2A~tn!…, . . . ,†d„a22A~t2!…,@d„a12A~t1!…,req#‡#&, ~16!
tor

-
red

nts

n
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so that the response function is given by

R(n)~tn•••t1!5E •••E a1•••an

3WR
(n)~antn•••a1t1!da1•••dan .

~17!

Equations~14! and~16! play the role of a classical distri
bution functions even though they are generally complex
may be negative. Nevertheless, they serve as gener
functions for correlation and response functions which
given by their first ‘‘moments,’’ Eqs.~15! and ~17!.

So far we considered twon-point objects: Correlation
functions and response functions. A third type of quan
which is more closely connected to photon statistics is
joint distribution ofn successive measurements. This will
introduced next.

III. UNIFIED GENERATING FUNCTION FOR
CORRELATION, RESPONSE, AND EQUILIBRIUM

MEASUREMENTS

We consider a sequence ofn measurements of a dynam
cal variableA performed on the system at timest1<t2
<t3•••<tn and yielding the outcomesa1•••an . We would
like to compute the following ensemble average over ma
such measurements

S(n)tn•••t1[A~tn!•••A~t1!. ~18!

This quantity is common to classical and quantum syste
alike. Equation~18! is a shorthand notation for

S(n)~tn•••t1!5E •••E a1•••an

3WS
(n)~antn , . . . ,a1t1!da1•••dan ,

~19!
d
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e

y
e
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where the joint distribution functionWS
(n) can be computed

using the theory of quantum measurements@34–38#. To that
end, we define the eigenstatesua j& of A with eigenvaluesaj ,
and represent the operatorA in the form of an expansion in
projection operatorsÂj

A5(
j

aj Âj , ~20!

with

Âj[ua j&^a j u. ~21!

We next define the Liouville-space projection opera
onto the diagonal elements ofA

P̂~a![(
j

d~a2aj !uÂj&&^^Âj u. ~22!

The Liouville-space bracket^^FuG&&[Tr8FG denotes a sca
lar product computed by a partial trace over the measu
degrees of freedom of the operatorA. Using this projection,
the joint distribution function of successive measureme
may be recast in the form@34–37,39#

WS
(n)~antn•••a1t1!5Tr@ P̂~an ,tn!••• P̂~a1 ,t1!req#,

~23!

where the time evolution ofP̂(a,t) is given by the interac-
tion picture@Eq. ~8!#. The compact Liouville-space notatio
used in Eq.~23! will help establish the connection betwee
photon counting and other multitime quantities. Note th
both WC andWS are normalized as

E Wj
(n)~antn•••a1t1!da1•••dan51, j 5C,S,

~24!
1-3
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whereasWR , which represents the deviation of the dens
matrix from equilibrium, has a zero trace@40#

E WR
(n)~antn•••a1t1!da1•••dan50. ~25!

So far, we introduced three different generating functio
to describe correlation functions, response functions, and
joint probability of measurements@Eqs.~14!, ~16!, and~23!,
respectively#. To establish the connection between the
ra
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ite
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quantities it will be useful to compute all three using a sing
fundamental object. This is possible by using the followi
generating function:

W(n)~anan8tn ,a2a28t2•••a1a18t1!

[Tr$d„an2A~tn!…•••d„a12A~t1!…req

3d„a182A~t1!…•••d„an82A~tn!…%. ~26!

The density matrix underlying Eq.~26! is
r (n)~anan8tn•••a1a18t1!5Gana
n8an21a

n218 ~tn2tn21!•••Ga2a
28a1a

18
~t22t1!ra1a

18
~t1!, ~27!
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where

G~t![expS 2
i

\
H2t D , ~28!

is the interaction-picture propagator.
The generating function for correlation functions@Eq.

~14!# is recovered by integrating Eq.~26! over the primed
variables

WC
(n)~antn , . . . ,a1t1!

5E W(n)~anan8tn ,a2a28t2 , . . . ,a1a18t1!

3da18da28•••dan8 ~29!

and the correlation function is given by Eq.~15!. Similarly,
the response function is obtained by the following integ
tion

R(n)~tn•••t1!5E da1•••danE da18•••dan8

3~an2an8!•••~a12a18!

3W(n)~anan8tn•••a1a18t1!. ~30!

Comparing Eq.~26! with Eq. ~23!, it is clear that the joint
probability of measurements is related to the diagonal
ments of Eq.~26!, i.e., aj5aj8 . However we cannot simply
setaj5aj8 in Eq. ~26! since it will diverge. In order to prop-
erly obtain Eq.~26! from Eq. ~23! we need to add a finite
resolution for the measurement defined by a normali
function f (a2a8) sharply peaked at zero. We can then wr

WS
(n)~antn•••a1t1!5E •••E da18•••dan8

3W~a1a18t1 ,a2a28t2•••anan8tn!

3 f ~a12a18!••• f ~an2an8!. ~31!
-

-

d

Note that the definition ofWS
(n) is more clean in Liouville-

space@Eq. ~23!# but requires some care in Hilbert space.
We can now better appreciate the fundamental differen

between these various multitime quantities.WC ~and C(n))
depend only onaj , whereaj8 are integrated out. This follows
from Eq. ~13! which only contains ‘‘left’’ superoperators
Due to theaj2aj8 factors in Eq.~30! R(n), on the other hand
depends only on the off-diagonal elements ofW with aj

Þaj8 ~diagonal elements do not contribute!. Finally, WS ~and
S(n)) depends solely on the diagonal elements ofW with aj

5aj8 . WS is the basic quantity in the consistent history d
scription of quantum dynamics@36–38# and has all the prop-
erties of a classical joint probability distribution. At eac
time t j the system is in the stateua j& and its density matrix
is ua j&^a j u, j 50, . . . ,n. In contrast, in a nonlinear respons
measurement as described byR(n) we only measureA at the
last timetn ; at the earlier timest j ( j 51, . . . ,n21) we only
‘‘pass through’’a j , but the density matrix could be eithe
ua j&^aku or uak&^a j u with kÞ j . WR is thus not a joint prob-
ability; even though we perform some operation on the s
tem at n points (n21 interactions with the fields and th
time of observation!, only the last interaction corresponds
an actual measurement. In the other times we merely per
the system. It should be emphasized that even though
response functions~andWR

(n)) are experimental observable
that may be obtained from multiple pulse experiments w
heterodyne detection@27#, they may not be represented b
the joint probabilityWS

(n) since it does not carry enough in
formation for representing this type of observables.

The response function carries information that depends
delicate interferences among events that occur at var
points in time. This interference may be understood in ter
of sums over pathways which differ by their time orderin
i.e., ^A(t1)A(t2)A(t3)&, ^A(t2)A(t1)A(t3)&, etc. It is less
obvious that a similar interference does exist in classical m
chanics as well. Classically, of course, time ordering is i
material since all operators commute and it suffices to ca
late ^A(t1)A(t2)A(t3)&, for t1<t2•••<tn . Quantum
mechanically, each of then! permutations of the time argu
ments in ann-point correlation function is distinct and ca
ries a different information. Classical correlation functio
1-4
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then carry less information than their quantum counterpa
The classical interference takes place between closely l
trajectories@41,42#.

IV. CORRELATION FUNCTION EXPRESSIONS
FOR PHOTON STATISTICS

Photon counting statistics as well as shot noise statis
of electrons@43# are most closely related toWS

(n) ~or S(n))
since they involven real measurements. However, phot
counting is a more complex operation than described byWS

(n)

since it is performed under nonequilibrium conditions whe
the system is strongly driven by an external field. Furth
more, the material system is not closed since photons
emitted. Thirdly, the measurement does change the sta
the system, not by merely projecting onto a diagonal e
ment. All of these complications can be adequately addres
and Eq.~23! can be modified to account for photon statistic
as will be shown below.

To proceed further we introduce the master equation,
rived by tracing the density matrix over the radiation fie
@22–24#. We shall denote byGnn8 the spontaneous emissio
rate from staten8 to the lower energy staten . The total
decay rate~inverse radiative lifetime! of staten8 will then be

gn8[ (
nÞn8

Gnn8 . ~32!

The effects of spontaneous emission are then incorpor
by the master equation

drnn8
dt

52
1

2
~gn1gn8!rnn8 , nÞn8,

drnn

dt
52gnrnn1 (

n8Þn

Gnn8rn8n8 . ~33!

Adopting Liouville-space ~tetradic! notation, the maste
equation reads

dr

dt
52gr2Gr, ~34!

with

g5 (
n,n8

unn8&&
1

2
~gn1gn8!^^nn8u, ~35!

and

G5 (
nÞn8

unn&&Gnn8^^n8n8u. ~36!

The quantities defined in the previous section correspond
closed-system and may be described either in Hilbert sp
or in Liouville-space@44,45#; the choice is a matter of con
venience. The master equation allows us to avoid the exp
06382
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treatment of the field degrees of freedom when describing
open system. This can only be done by using the den
matrix in Liouville space.

We consider a single quantum system coupled to a b
driven by an external field and subjected to spontane
emission. The Liouville equation will be partitioned as

dr

dt
52

i

\
L~ t !r2Gr. ~37!

Here the Liouville operatorL(t)[H2(t) includes our single
multilevel system, any other bath degrees of freedom, as
as the driving field. It also includes theg matrix @Eq. ~35!#
which represents the diagonal~in Liouville space! part of the
master equation.G, on the other hand@Eq. ~36!#, is the off-
diagonal part of the master equation which describes
transitions among statesn andn8.

We define the Green function solution of Eq.~37! with
G50

G~t2 ,t1![T expF2
i

\Et1

t2
dtL~t!G , ~38!

and introduce the off-diagonal radiative-decay operator
the interaction picture

G~t![G †~t,0!GG~t,0!. ~39!

The solution of Eq.~37! in the interaction picture then read

r~ t !5T expF2E
t0

t

dtG~t!Gr~ t0!. ~40!

The total probability density of emitting a photon betweent0
and t01dt0 and another photon betweent and t1dt is

W~ t,t0!5TrS TG~ t !expF2E
t0

t

dtG~t!GG~ t0!r~ t0! D .

~41!

Expanding the solution of Eq.~40! to nth order in G,
yields

r~ t !5 (
n50

`

r (n)~ t !, ~42!

where

r (n21)~tn!5E
0

tn
dtn21•••E

0

t2
dt1

3G~tn ,tn21!G•••GG~t2 ,t1!Gr~t1!. ~43!

r (n21) describesn21 photon emission processes at tim
t1•••tn21.

The probability densityK (n) of emitting n photons at
timest1•••tn is obtained by multiplying the integrand byG
from the left and taking a trace. This gives

K (n)~tn•••t1!5Tr@G~tn!•••G~t1!r~t1!#. ~44!
1-5
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This general expression for photon statistics in terms
system variables is equivalent to the standard normally
dered expression of field variables@1–4,6#. To see that, we
consider the probability of emittingn photons between time
t i and t f

Pn~ t f ,t i !5E
t i

t f
dtnE

t i

tn
dtn21•••E

t i

t2
dt1K (n)~tn•••t1!.

~45!

As can be seen from Eq.~40!, this is normalized as

(
n50

`

Pn~ t f ,t i !5Tr r~ t !51. ~46!

To computePn , we introduce the generating function

G~ t f ,t i ;U ![ (
n50

`

Pn~ t f ,t i !U
n. ~47!

It then follows from Eqs.~44! and ~45! that

G~ t f ,t i ,U !5K T expFUE
t i

t f
dtG~t!Gr~ t i !L , ~48!

G thus satisfies the equation of motion

dG~ t,t i ;U !

dt
52

i

\
L~ t !G~ t,t i ,U !2UGG~ t,t i ,U !.

~49!

Using Eq.~48!, we have

Pn~ t,t1T!5
1

n!

dn

dUn
G~U !U

U50

~50!

and Eq.~47! gives

dm

dUm
G~U !uU515 (

n50

`

Pn~ t,t1T!
n!

~n2m!!

[^n~n21!•••~n2m11!&, ~51!

which is thenth factorial moment ofPn . Settingm51 and
m52 in Eq. ~51!, we get

^n&5
dG~U !

dU U
U51

,

^n2&2^n&5
d2G~U !

dU2
U

U51

. ~52!

Higher moments may be calculated similarly.
The most commonly used measure of photon statist

the Mandel parameter, has been shown to be related toK (2)

@1,9,20# in simple kinetic models of single quantum system
Photon statistics has been calculated using the simples
duced descriptions such as the Bloch equations@21#. The
present approach opens up the use of a broad class o
06382
f
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duced descriptions and stochastic models@26# for computing
K (2). One interesting application will be the photon statist
in super-radiance of aggregates@46#. Equation~44! may be
easily generalized to describe more refined, frequency
solved, measurements whereby at each time we monit
different ~preselected! transition. This can be done simply b
using a different element ofG at each timeG(t j ) to represent
the desired transition. Equation~44! could then provide more
detailed information about the system.

V. DISCUSSION

We have introduced several types of multipoint functio
commonly used in experimental observations and their th
retical analysis. Using the Liouville-space superoperator
tation, we can recast these various quantities in a form
similar form that facilitates their comparison. Equation~13!
can be written as

C(n)~tn•••t1!5Tr@ALG~tn2tn21!AL•••G~t22t1!ALreq#,

~53!
where G(t) is given by Eq.~28!. The nonlinear respons
function @Eq. ~10!# can be similarly recast in the form

R(n)~tn•••t1!

5Tr@A1G~tn ,2tn21!A2G•••A2G~t2 ,2t1!A2req#.

~54!

The joint distribution of successive measurements@Eq. ~23!#
is written as

WS
(n)~antn•••a1t1!5Tr@ P̂~an!G~tn2tn21!P̂~an21!•••

3 P̂~a2!G~t22t1!P̂~a1!req#. ~55!

The probability density of observing consecutive photo
@Eq. ~44!# is

K (n)~tn•••t1!5Tr@GG~tn ,tn21!•••GG~t2 ,t1!Gr~t1!#,

~56!
whereG(t,t8) is given by Eq.~38!. Finally, the probability
density of measuringn photons at timest1•••tn ~regardless
of how many photons are emitted in between! is

P(n)~tn•••t1!5Tr@GG̃~tn ,tn21!•••G̃~t2 ,t1!Gr~t1!#,

~57!

where G̃ is the Green function solution of Eq.~37! for the
driven system

r~ t !5G̃~ t,t0!r~ t0!. ~58!

We note several marked differences between the pho
statistics observables@Eqs.~56! and~57!# and the other quan
tities @Eqs.~53!–~55!#. Since the latter are equilibrium prop
erties, the Green function is translationally invariant and o
depends on the time differenceG(t j2tk) rather than ont j
and tk separately,G(t j ,tk). Also the initial density matrix
r(t1) in photon statistics measurements is generally a m
complex object thanreq since it requires computing th
1-6
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preparation stage leading to a nonequilibrium steady st
This does not cause any problem in stochastic models w
the bath evolution does not depend on the state of the
tem.r(t1) is then completely specified since the first phot
emission att1 determines the state of the system~the final
state of the emission! and the bath is always in equilibrium
However, fully microscopic modeling will require a separa
calculation ofr(t1).

Equation~56! is very similar to the general expression f
n successive measurements@Eq. ~55!#. However, theG ma-
trix is off-diagonal since photon emission is accompanied
a transition in the system, as opposed to the diagonalP̂(a) in
Eq. ~55! which represents ordinary measurements. Were
to use a diagonalG5unn&&^^nnu it would represent the
probability of measuring the system at staten at times
t1•••tn . Photon counting, however, implies that the syst
is at staten prior to the count but it changes to staten8 after
the count; this is the initial state for the next period of prop
gation. Apart from this, Eq.~56! or Eq. ~57! is equivalent to
n-point measurements@Eq. ~55!#. These differences stem
from the nonequilibrium nature of photon counting pe
formed on open driven systems.
-
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Finally we note that Eqs.~56! and~57! are reminiscent of
the normally ordered expressions with field operators@1,3#
where G represents the detector rather than spontane
emission. In the present approach we do not need nor
ordering since in Liouville-space time ordering is enough
maintain the bookkeeping of interactions. We also note t
L(t) in Eq. ~38! contains theg matrix, and the Green func
tion therefore contains some diagonal signatures of the p
ton emission. This is required for maintaining the trace of
density matrix. Such terms should also be present in the fi
formulation, but are usually neglected and the Green fu
tion represents the pure system~without the detector! @1,3#.
Adding these corrections could improve the standard the
of photon statistics.
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