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Resonant Enhancement and Dissipation in Nonequilibrium van der Waals Forces
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Dispersion forces between molecules that are in relative motion, coupled to baths at different
temperatures, or in excited states, are calculated using a Green function Liouville space expansion
that extends the celebrated McLachlan response theory to the nonlinear regime. Our dynamical theory
is applicable to systems that may be in any initial nonequilibrium state and that are subject to an
arbitrary time-dependent coupling. In contrast to equilibrium forces which are attractive, nonequi-
librium forces may be attractive or repulsive, exhibit chemically specific resonances, are far stronger,
and may be nonconservative (with either positive or negative dissipation).
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Fluctuation-induced long-range forces are universal
and have been well studied for systems in thermodynamic
equilibrium [1,2]. However, many interesting systems are
not in equilibrium when they interact. Cells run on inter-
actions between molecules that have been chemically
excited, e.g., by conversion of ATP. Optically excited
molecules interact during photosynthesis [3], photo-
chemical reactions [4], excitonic processes in molecular
aggregates [3], and experiments using fluorescence reso-
nance energy transfer (FRET) [5,6]. Closely spaced
micromechanical components may exist at different tem-
peratures or under optical illumination. Furthermore, the
coupling between systems is rarely constant in time.
Molecules in a gas undergo fleeting encounters, while
the coupling between molecules in a liquid may oscillate
at bond vibrational frequencies. Theoretical and ex-
perimental attention to nonequilibrium van der Waals-
Casimir forces has focused on systems where the specific
material properties are either irrelevant (e.g., dynamic
Casimir forces [7,8]) or very simple (e.g., few-level gas-
eous atoms [9-11]).

McLachlan derived an expression for the equilibrium
two-body van der Waals force that is applicable to systems
with complex internal dynamics: it expresses the inter-
action free energy in terms of generalized single-system
linear response functions [Eq. (10) below], which may be
determined through experiment, simulation, or at various
levels of theory [12,13]. The McLachlan formula is valid
at any temperature and includes classical (Keesom force,
induction force), and quantum (dispersion force) con-
tributions within one framework. We have generalized
the McLachlan formalism to include: time-dependent
coupling associated with relative motion; nonequilibrium
initial conditions corresponding to different temperatures
or athermal distributions; and higher order corrections
related to nonlinear single-molecule response functions.
The equilibrium force appears as a special case in our
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theory. Our calculations are based on a novel field theory
Green function approach to superoperators in Liouville
space. We first summarize the formalism, and then calcu-
late the force for some model systems.

Consider the Hamiltonian of two interacting mole-
cules, a and b:

H = H,(q4 o) + Hy(q, py) — J(2(1)B, (1)

where g; and p; are an internal coordinate and momen-
tum, respectively, of molecule j (j = a, b). J(z(1)) = J(¢)
is a coupling strength, where z() is an externally imposed
classical trajectory for the intermolecular separation. The
operator B = ¢q,q, generates intermolecular correlations.
The bilinear intermolecular coupling of Hamiltonian (1)
is paradigmatic of intermolecular forces: nonretarded
interactions between arbitrary three-dimensional charge
distributions can always be written as a sum of terms of
the form of Eq. (1).

The key quantities in our theory are nonlinear response
functions, R"™(t, 7,, ..., 7;), that relate the expectation
value of the correlation, (B(r)), to the coupling at past
times, J(7), via:

wo)= [ an&V i)

t T
+ [ an f dr RO(1, 7 7)J (7 (7))

+ 2
The nth order response function is most simply expressed
as a multitime correlation function of superoperators in
Liouville space. For any Hilbert space operator, X, we
define the Liouville space superoperators X, and X_ by
their action on the elements of the density matrix, p
(which is written as a vector in Liouville space): X, p <&
1(Xp + pX), and X_p & [X, p]. We further define an
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interaction picture for superoperators, such that X, (1) =
eLot/lix, e~ iLot/h where L, is the Liouville super-
operator corresponding to some reference Hamiltonian.
Using this notation and a reference Liouvillian L, =
H,_ + H,_, the nth order response function becomes
n

R = (1) (0B.0E-(n)-Bo(m)) . ®)
where the ©® operator is 1 if r>7,>-+--> 7, and 0
otherwise, and the expectation value is evaluated on the
initial two-body density matrix, p,, of the uncoupled
molecules.

We now relate R to the properties of the individual
molecules. Using superoperator algebra, the following
substitutions may be made in Eq. (3): By — q,+qp+
and B_ — q,+q,— + qu—qp+. The expression for R
then factors into a sum of 2" terms. Each term splits
into a product of two multitime correlation functions:
one that depends only on §,-(¢) and p,y, and one that
depends only on §,+(f) and p;o. Depending on the se-
quence of +, — superoperators, each multitime correla-
tion function is related to either a nonlinear response
function, molecular fluctuations in the initial state, or
the response of the fluctuations to a perturbation. In
contrast to the eigenstates used in standard perturbation
theory, correlation functions are easier to calculate, are
directly related to experimental observables, and can
accommodate interactions with a bath.

As an example of the factorization of Eq. (3), the linear
response function factors to

RD =G ~Git + GGy, 4)

where the Green functions are G7 (1,7 =
204,03, (7)o and G (1, 71) = (@ (03 (1),
with j = (a, b). The quant1ty G/ is the response func-
tion of coordinate (g,(¢)) to a perturbatlon V,=—fi(tq;.
The quantity G/ * is a measure of the steady state fluc-
tuations of coordlnate q;- When p, does not evolve with
time (i.e., Lopy = 0), then the Green functions may be
written as functions of a single variable, t{ =t — 7, as
may the response function R,

The steady-state van der Waals energy is obtained by
an adiabatic switching of the coupling, J. In this process

h [ h !
xV(w) :—f dw’[coth( Pre
27 ) 2
For the special case 8, = B;, and @ = 0, y'V(0) may be
evaluated via contour integration. The free energy, AF =
—1 xY(0)|J]? is given by the McLachlan formula:
00 /

AF = —kgTJ*D

n=0

(10)

aiv,)ay(io,),

where the prime means that the n =0 term is to be
multiplied by 1/2, w, = 27nkgT/h are the Matsubara
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the work and change in energy are equal and are given
by U= [(0H/dJ)d] = — [(B)dJ. The intermolecular
correlation, (B(r)), is related to J(¢) by Eq. (2), or its
frequency domain equivalent: (B(w)) = yV(w)J(w) +
Y (—w; 0, ) J(w)J(wy) + -+, where x™ is the
frequency domain analog of R™. In the adiabatic limit,
U depends on the response functions at zero frequency:
U=—1xD0)I1? 1 x?0;0 07 -

When the trajectory z(z) causes J to vary with time
(e.g., close encounters of gas-phase molecules), then the
interaction energy is not defined, but the intermolecular
force, given by f(t) = (B(1))d.J(¢), is meaningful. The
linear response function, y"(w) = y/(w) + ix"(w), pro-
vides the leading contribution to the force. When J
changes slowly (but not infinitely slowly), then the force
has the form f = A(z) — I'(z)z where the conservative
part of the force is

A@—ﬁanﬁ 5)

and the friction coefficient is

aa)

(6)

w=0

If J(¢) is harmonically modulated at frequency w, then
x'(w) is related to the time-averaged force and y"(w) is
related to the time-averaged dissipation. A Kramers
Kronig relation connects y'(w) and y"(w).

Our first application is to the interaction of systems at
different temperatures, 8, ' and B;l. In the case of local

thermal equilibrium, the Green functions G/~ and G *
are directly related to response functions:
_ 1 [ _
Gj-“ (1) = Efioo a;(w)e "“"dw, @)

B[ hwB:\
G (1) = ZT,/QOO a}’(w)coth(#)e hdw, (8)

where a;(w) = a’(a)) + la”(w) is the generalized linear
polarlzablhty of the molecule j. Equation (7) follows
from the definition of the polarizability and Eq. (8) is a
statement of the fluctuation dissipation theorem. Using
Egs. (7) and (8) , the Fourier transform of Eq. (4) is

()]

| frequencies, and «;(w) is the linear polarizability of
molecule j.

For the general case 8, # B, and w # 0, it is neces-
sary to adopt a model for «, and «;, and then to evaluate
Eq. (9) numerically. As a simple illustration, we model a
and b each as a damped harmonic oscillator, representing
an electronic or vibrational transition. The polarizability
of molecule j is given by a Lorentzian line shape centered
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at frequency w; with a linewidth y. Figure 1 shows
the steady-state interaction energy [U « —x(V(0)] as a
function of the resonant frequencies w, and w, and in-
verse temperatures 8, and B,. The equilibrium force
(B, = Bp) displays no resonance at w, = w,, since it
depends only on (w, + w,)”'. The nonequilibrium
force (B, # B,) has a contribution proportional to
(w, — w,)~', which yields a chemically specific reso-
nance in the force, which can be either attractive or
repulsive.

Figure 2 shows y/(w) (related to the force) and y”(w)
(related to the dissipation) for fixed resonant frequencies,
w, and w,, when the coupling, J(w), is harmonically
modulated. At finite temperature, resonances in the force
occur at w = *w, * w,. Even if w, and w; are too high
for the nuclei to respond, their difference could be at a
mechanically relevant frequency. Furthermore, the
present formalism includes contributions to the force
from low-frequency vibrational modes, which could read-
ily couple to intermolecular motions.

When 8, = B, the dissipation, x"(w), is positive for
all o > 0. However, if w, > w;, and B,w, < B,w,;, then
the dissipation is negative for some w > 0, implying that
energy is transferred from the oscillators to the source
driving J. We thus have a heat engine, in which the
van der Waals force is the energy transducer. Extrac-
tion of energy from the system is accompanied by heat
flow from the hotter to the colder particle. The dissipa-
tive component of the van der Waals force allows for
conversion between intramolecular excitation and inter-
molecular work, mediated purely by the fluctuating elec-
tromagnetic field. Such a mechanism is required for the
system to reach thermal equilibrium.

We next consider an electronically excited molecule
interacting with a ground state molecule. Several authors
have studied this scenario for interaction of simple few-
level systems [14—-16]. Niemax measured van der Waals

0.6 0.8 1 12 14 16 1.8 2
o,/ 0,
FIG. 1. Interaction energy of two harmonic oscillators as a
function of their resonant frequencies, w,/w, and their tem-
peratures, 8,/8,. The nonequilibrium force (8, # B;) has a
resonance that is absent from the equilibrium force. In the

shaded regions the steady-state force is repulsive. The dimen-
sionless parameters are 8,/iw, = 1 and B,y = 0.03
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forces between excited atoms in the gas phase and found
that the force was up to 4 orders of magnitude stronger
than the ground state force [9]. We show that in the regime
where the Forster theory is valid, the interaction energy is
proportional to the rate of FRET.

The Forster theory addresses the rate of energy transfer
between an excited donor, d, weakly coupled to a ground
state acceptor, a. We consider the same scenario, but
calculate the interaction energy. The Green functions of
the acceptor, G/~ and G/ ", are given by Egs. (7) and (8).
The donor is not in thermal equilibrium, so Egs. (7) and
(8) do not apply; instead the donor Green functions are
related to its emission spectrum. Assuming fiwy > kg7,
where w, is a representative transition frequency of the
donor or acceptor, we have

_ 3mephc?

Gi%(w) i@ =a-on | an

- win(w)ry

where n(w) is the index of refraction of the medium
containing the donor, 7, is the donor lifetime, and
o 4(w) is the normalized donor emission spectrum.
Under steady-state coupling, the interaction energy is
given by Ugggr = — %)(2”(0)]2. Treating J as a coupling
between point dipoles, the interaction energy evaluates to:

dw, (12)

3hc3 K2 © g (w)al,(w)
Urrer =

- 167eyr®r, )0 n’(w)w?

where k = 3(A, - #)(A, - 7) — A, - A, is a geometrical fac-
tor arising from the relative orientations of the donor
transition dipole, 7,4, and the acceptor transition dipole,
7i,. This interaction energy bears a striking resemblance
to the Forster expression for the rate of FRET. The prin-
ciple difference is that Eq. (12) contains the real part of
the acceptor polarizability, @/, (w), while the Forster ex-
pression contains the imaginary part, a’(w).

FIG. 2. Reversible [f, = y'(w)] and irreversible [f; & x"(w)]
components of the intermolecular force for harmonically
modulated coupling J(w). Resonances in the force occur at w =
*w, * w,. The shaded region indicates a domain of negative
dissipation. The dimensionless parameters are SB,fiw, = 1,
B.iw, = 1.5, and B, iy = 0.08
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The connection between energy transfer and the inter-
molecular force may be made more explicit by defining a
two-dimension transition density, K(w, »’), that corre-
sponds to the rate of FRET that would occur if the
absorption spectrum of the acceptor, a//(w'), were shifted
along the frequency axis to coincide with the emission
spectrum of the donor, o,(w). It is easy to compute
K(w, o) from a known donor emission spectrum and
acceptor absorption spectrum. In terms of K(w, '),

Krrer = ]000 f: Ko, 0")é(0 — ) do'do  (13)

and
h (oo © o' K(w, o)
UFRET = _;L @L m do' dw. (]4)

If one calculates a self-energy of the donor due to the
presence of the acceptor, then the rate of FRET is given
by the imaginary part of the self-energy and the FRET
force is given by the real part. Alternatively, the FRET
force may be thought of as optical trapping of the accep-
tor by the near-field radiation from the excited donor.
We have discussed these alternative viewpoints in [6].

We have simulated the interaction of two identical two
level systems, subject to inhomogeneous broadening from
a bath described by an overdamped Brownian oscillator
[17]. The a! and o, in this model are Gaussians with
variance A and centers at wy and wy — 2A, respectively.
2A is the Stokes shift, related to the strength of the
coupling to the bath, and A? = 2A/Ag is the linewidth
parameter. When J does not depend on time, the leading
term in the interaction free energy is of the form U =
—1J?/8, where 8 is a measure of the detuning. For
ground state interactions, 6 = fiw,. For the excited state
interaction, the detuning is entirely due to interactions
with a bath, and we find 6 = kgT. Typically iwg > kgT,
so the excited state force far exceeds its ground state
counterpart. These results are valid for times long com-
pared to the relaxation time, A (typically picoseconds in
water), but short compared to the spontaneous lifetime
(typically nanoseconds). In the weak-coupling limit,
spontaneous emission by the donor occurs independently
of FRET, and leads to a decreasing probability over time
that the donor is in the excited state. Also, our formalism
holds only for J < kgT'. For stronger couplings, excitonic
effects are important and the perturbation theory which
is the basis of our approach is invalid.

The present formulation extends the McLachlan ex-
pression to include time-dependent coupling, nonequi-
librium states, and the role of optical nonlinearities.
Thermal, optical, or chemical excitation leads to stronger
and more specific long-range forces. While the applica-
tions considered here are towards toy models, the formal-
ism is amenable to use in quantum chemistry codes for
including details of molecular structure.
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The ground state interaction [Eq. (10)] is insensitive to
the details of the spectral densities because it is highly
off-resonant, reminiscent of the off-resonant Stark shift
in nonlinear spectroscopy. The nonequilibrium forces, in
contrast, [Eqs. (9) and (12)] depend on the overlap of
absorption and resonant emission spectra at real frequen-
cies. The ability to generate resonant van der Waals forces
may be of practical use.

Several systems might demonstrate dramatic effects of
nonequilibrium van der Waals forces that may be ad-
dressed by our formalism. Such forces may play a role
in interactions of biomolecules within a cell and affect
the mechanical properties of the active medium in a laser.
The possibility of greatly reduced, or even negative,
friction between systems at different temperatures or
under optical excitation may be useful in the design of
micromechanical systems.
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