HTML AESTRACT * LINKEES

JOURNAL OF CHEMICAL PHYSICS VOLUME 121, NUMBER 1 1 JULY 2004

All-forward semiclassical simulations of nonlinear response functions
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We propose a quantum trajectory algorithm for computing nonlinear response functions of
condensed phase molecular systems based on a time-ordered expansion of the density matrix. The
nth-order response function is expressed as a suni @hfulsive response pathwasepresenting
trajectories involving zero, one, and up mointeractions with short external pulses. These are
evaluated using a forward propagation algorithm based upon a Liouville space extension of the
Bohmian propagation method. ®004 American Institute of Physic$DOI: 10.1063/1.1756582

I. INTRODUCTION densed phase systems. We work exclusively with time-

V,B=(VB+BV)/2, 2

V_B=VB-BV. 3

ordered expressions for the response which require only for-
The development of fast algorithms that reduce the comward propagation in Liouville space. We show that a more
putational overhead required to find accurate numeric solutransparent physical insight may be obtained by working in
tions of the time-dependent Schlinger equation has been a real time and formulating the problem using the density
long-standing goal in molecular dynamics simulations. Strik-matrix2®~28 Consider a quantum material system, described
ing the right balance between accuracy and efficiency is imby the HamiltoniarH, driven by an external fiel&(t) that is
portant for polyatomic molecules and unavoidable for concoupled to a dynamical variabM via H;,;= —E(t)-V. The
densed phase matter, since exact direct integration is neixpectation value o¥ at timet may be computed in the
possible. The many-body wave functiéor density matrix  interaction picture according to
describing a complex molecular system contains much more
information than necessary to calculate experimental observ- i [t
ables; thus, many-body theory focuses on the direct calcula- (V(t)>=<TV+(t)ex;{%f drE(n)V_(7) > 1
tion of the single-point and multipoint time correlation func- -
':leI’]S \which carry the desired informatidn. These can . (AY=Ti[Ape] denotes averaging with respect to
escribe, for example, the response of a material system t[%e equilibrium density matri The + subscriots denote

external fields. Schwingghad formulated these calculations q Sy Feq- 1NE= P

. . . superoperators defined by their action on an ordinary opera-
using closed time loops which represent the forward propa; | "o,
gation of the ket and the backward propagation of the brain™
a matrix element(t)|A|y(t)). KeldysH> had recast this
picture within the perturbation theory for Green functions,
which has now become a standard tool in many-body equi-
librium and nonequilibrium diagrammatic techniques. The
forward—backward propagation involved in the Schwinger—
Keldysh loop is an extremely powerful formal device for V=(7) in Eq. (1) are Heisenberg picture superoperators
carrying out computations. given by

Perhaps owing to the popularity and success of molecu- _ _
lar dynamics methods in simulating the dynamlc§ of Iarge- V+(T):eX[(I—HT>V+ exp{ _ I—Hq-). @
scale molecular and condensed phase systems via classically h h
evolving atomic trajectories, considerable research activity
has been dedicated to the development and application dfis a positive time-ordering operator in Liouville space that
methodologies which strive to incorporate quantum interferrearranges all products of superoperators in order of decreas-
ence effects into a trajectory based description of moleculaihg time from left to right?”®
system$™# The forward—backward formalisid;?#~24 Nonlinear response measurements are usually inter-
which combines semiclassical propagation with thepreted by expandingV(t)) in powers of the incoming field.
Schwinger—Keldysh time loop, has been extensively andhe nth-order contribution to Eq(1) is given by
successfully applied to a broad range of physical problems
(see Ref. 25 for a comprehensive review Tl . 7
In this paper we develop an alternative semiclassical <V(n)(7n+1)>:f dTnf dTn—l"'f dry

strategy for calculating nonlinear response functions for con- - - -

XE(Tn)'“E(Tl)s(n)(Tn+1!"'v7-l)v (5)
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Toq Tn,n-1 time intervalsr;, ;. This method can be implemented inde-
g ~—P pendently of how the density matrix is propagated in time
W ﬁ and how the interactions with the field are carried Dun

the classical limit we replace each)V _ factor by a Pois-
son bracket. This results in expressions involving stability
matrices representing the sensitivity of trajectories to small
perturbations’ 8 These matrices are hard to compute, mak-
ing it difficult to develop tractable semiclassical approxima-

tions.

The present approach is based on computing the impul-
sive response to a sequence of very short pulses and avoiding
the perturbation expansion in the field amplitude altogether.

° cee ° ° > Computation of the resultingmpulsive response pathways
IRPS is more numerically stable than the LSPs. Rather than
Ti Tz Tn1 Tn  Tnel (IRP9 y

computing 2 LSPs, we recast the response as a sum oVer 2
FIG. 1. Schematic diagram of pulse sequencing in a typical nonlinear extRPS, which are represented by perturbed quantum trajecto-
periment. Successive pulses arriving at timesr,,...,7,_1,7, are sepa-  ries calculated using the derivative propagation method

rated by the time intervalsy .., 7y,n-1=0. (DPM).2%3940nlike the LSPs, each IRP has a well-defined
classical limit. Explicit calculation of stability matrices is
s (7 ) avoided and the desired response functions are then obtained
Lt as specific combinations of the IRPs.
i n
:(%) TV (7 DV (1) V- (71) pe ()
represents the measurementbét time r,,. ; following the . QUANTUM IMPULSIVE RESPONSE PATHWAYS

interaction withn time-ordered short pulses centeredrat : . .
To define the impulsive response pathways, we assume

<---<7,. iouvi i - . ; :
n In'LlouwIIe. space all superqperators in the re that the field envelop&(t) is a sum ofn very short time-
sponse function are time ordered, leading naturally to semi-

classical and path integral descriptions. ordered pulses each with areg

Each of the commutatorg _(7) in Eq. (6) contributes n
two terms corresponding to its “left” and “right” actions. E()=2 &d(t—1)), )
This leads a total of 2distinct n-point quantum correlation 1=
functions. Each of these terms constitutes a unigoaville  with 7;<---<r,. The response to these pulses is calculated
space pathwayLSP) that may be represented by a single exactly, via Eq.(1), rather than perturbatively via E@5).
double-sided Feynman diagré&fiThe subtle interference be- The expectation value of at time 7.1, (V(7y.1)), is now
tween the pathways determines the ovendli-order quan- parametrically dependent on the ordered sequence of inter-
tum response. An individual LSP does not have a well-actions timesry,...,7, and will be denoted as theth-order
defined classical limit. Only after they are combinedimpulsive response pathway™(7,.1,...,71). Substituting
according to Eq(6), will the " prefactor cancel and the Eg. (8) into Eq. (1) yields
classical limit be recovered. (n)

Equation(6) may be recast in the form Fo(Tneg0em)

S(n)(TnJrl,n’"'vTZl) =Tr

V+(Tn+1)eX[<fii—€nV(Tn))' v

i\" . .
= (%) TI[V.e H-"nrin/fy_.. 'e_'HJﬂ/thpeq], (7)
where we have used E@) to expand the Heisenberg super- _ _ _
operators and;=r,— 7,=0 are the time intervals between  To connect=" with S we make use of the identity
successive pulses as illustrated in Fig. 1. Equatinim- 1 i

plies that the quantum response is obtained by an alternating —V_=lim— exp(%ev_) — 1} (10)
Substituting Eq(10) into Eqg. (6), we obtain

Xex%;—lelv_(rl))peq}. (9)

sequence of interactiond_ and wave packet propagations e—0€
exfd (i/A)H_7] in Liouville space. Given the equilibrium den-
sity matrix, we obtain the perturbed state at timeby evalu-

ating p(71) =V_pe=[V,pegl- The density matrix resulting S™(Ti1searTy)
from this first interaction is then propagated for a timg

and followed by a second interaction with the figld. This = lim Tr V+(Tn+l)£(e(i/ﬁ)5nv—(7n)_ 1)

process is repeatedtimes. Finally, the response for a given €0 €n

set of time intervals is evaluated by operating with and 1

taking the trace. The entire nonlinear response function is X (elievV—(r)_ 1) (11)
. . . . Peq|-

obtained by repeating this procedure for various values of the €1
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Expanding Eq(11) generates 2terms corresponding to the various impulsive response path#@&ys-F(. For example,
the three lowest-order response functions are given by

1
5(1)(7'2,7'1):_[F(l)(szTl)_F(o)(Tz)], (12
€€
SA(13,79,11)= [F@(13,75,71) = FV(73,75) —FV(73,7) +FO(73)], (13
€3€2€;
S¥(14,73,19,11)= ———[F®(74,73,72,71) —FP(74,73,72) —FP(74,73,71) —F?(74,72,71)
€ E3€E0€E
+FO (74, 73) +FO(14,70) +FO(74,7) —FO(7)], (14
|
and so forth. I1l. SEMICLASSICAL SIMULATIONS

Alternatively the impulsive response pathways serve a®F THE IMPULSIVE RESPONSE

generating functiongor the response functions, which can
be obtained as their derivatives To implement a numerical propagation strategy for the

IRPs that will scale favorably with the number of degrees of
freedom we must consider the two primary operations in

n
S(m(TnH,___'Tl):a— Eq. (16): the free propagation of the density matrix
dey--dey exd—(i/A))H_7] and the interaction with the field
exd (i/h)evV_].
XF™(141,.0,71) . (19 We consider the Hamiltonian
€= =€,=0
. , . P2
Note that there is no simple one to one connection be- H(P,Q,t)= W+U(Q)_V(Q)E(t)’ (17

tween the 2 Liouville space paths with the"2impulsive
response paths. In contrast to the LSPs, each IRP has a well-

defined classical limit and can be represented by a distinc\}vh reP andO are the momentum and ition rators for
ensemble of all-forward propagating trajectories in Liouville ereP andQ are the momentum and position operators fo

e ; : a particle with mas# evolving on a potential energy surface
space. This is best seen by recasting @g.in the form . )
P y 9 U(Q). The operatoV(Q) determines the coupling to the

driving field E(t). In the absence d(t), the density matrix

FO(7he1,eem) p(Q.,Qg) evolves according to
i i
=TrVy —7H_Thi1n eV [
r exp( AT )ex%ﬁe ) 1113p(QL. Q)
| | Pt | P
O T H-Ta O T eV [ Peq- (18 =| =5+ o U(QD+U(QR) [p(QL.Qr),  (18)

EachF(™ and its corresponding ensemble of trajectories is ) o
distinguished by the sequence of time-ordered impulsive buihereQu (“left” ) andQg (*right” ) are the Liouville space
nonperturbative interactions with the external field. Thecoordinates associated with the ket and bra, respectively.
zeroth-order impulsive response contains no impulsive interSubstituting the symmetriQ = 3(Q_ + Qg) and antisymmet-
actions and is obtained by choosing the “one” part of Eq.M¢ Q- =QL— Qg combinations of the left and right coordi-
(10) each time the interaction superoperator is applied in Eqhates into Eq(18), we obtain

(11). Note thatF O=Tr[ V. (7) pegl = (V) is independent of

and this term is represented by an ensemble of freely evolv- 52

ing reference trajectories. The trajectories corresponding to =

higher-order=("’s are constructed from these reference tra- '#2p(Q.Q-) M Yoq P(QQ-)

chtorles by making small perturbations at the appro;_)rlate +U_(Q,0.)p(Q,Q.), (19)
times. To compute theth-order response we launch multiple

ensembles of trajectories consisting of the unperturbed one

plus 2'— 1 weakly perturbed ones at various combinations ofyhereU _(Q,Q.) is defined by

times. These trajectories interfere with one another in the

sense that they make slightly different contributions to the

response for a given sequence of interactions with the field. U_(Q,Q_)=U(Q+3Q_)—U(Q—3Q._). (20)
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We next perform a local cumulant expansion of the den-
sity matrix about a reference trajectoryl’(t)
=(Q(1),Q_(t)). This procedure is based upon the de
Broglie—Bohm interpretation of quantum mecharfitg!*
the statistical reformulation of quantum dynamics in terms of
the moments and cumulants of hydrodynamiclike
distributions?®®° and the derivative propagation
method?13%4°We begin by writing the density matrix in a
complex exponential form

PO D=0 500 0+ ;AQQ 1], @2

where g(Q,Q_,t) and A(Q,Q_,t) are real-valued func-
tions. Substituting Eq(21) into Eq. (19) and separating the
real and imaginary parts we obtain a pair of exact coupled
partial differential equations for the evolution gfand A:

1
hg=— M(A(lvl)_,_ g(lYO)A(O,l)_FA(l,O)g(Oyl)), (22)

gm,n: -

Am,n:

Simulations of response functions

1 1§§n: m\/n
MAm+1,n+1_Mi=Oj=o i J
X(Gi+1jAm—in-j+1TA+1j9m—in—jr1)
+Q(t)gm+1,n+Q—(t)gm,n+lv

ﬁZ

_y(m,n) —
UMQD.Q (1) + 1

gm+ 1in+1

j

+§ é (T)(n>gi+l,jgm—i,n—j+l)

e S Ao e

J

+ Q(t)Am+1,n+ .Qf(t)Am,n+1-

39

(28)

(29

Each cumulant is clearly coupled to both higher- and lower-
order cumulants. Neglecting terms greater than second order

in the expansion leads to a system of 14 coupled differential

2

equationg[six equations of eacky, six for A, and two un-
specified equations fdr(t)] to evaluate the density matrix

h 1
aA=—U_+ -(gH+gogOn) - AGOA0D,

(23

along a single trajectory at a later point in time. For a Gauss-
ian wave packet evolving on a quadratic potential this trun-
cation is exact. For anharmonic problems, however, there

where f(™V=g8s5 f(Q,Q_,t) denotes partial derivatives il be unavoidable truncation errors. We note that this does

of f(Q,Q_) with respect toQ andQ_ . We next expand),

not imply that the global density matrix is Gaussian—rather,

A, andU_ in a Taylor series with respect to an arbitrarily only that the local structure of the density matrix in the

chosen configuration space reference trajectq(y:

neighborhood of an individual trajectory is Gaussian.
A successful implementation of this procedure depends

“ s Omn(b) on the truncation of the hierarchy, which, in turn, requires a
9(Q,Q-H)= 20 ZO i [Q—QMI™ judicious choice of the reference trajectdtft). In Liouville
e o space, the velocity components of a Bohmian quantum tra-
X[Q_—Q_(tH)]", (24)  jectory are given by
2 A Q=A01/M, (30)
AQ.Q-H=2 > — - [Q-Q(1)]" ,
m=0 n=0 M:N: Q_=Ao/M. (31)
n
*1Q-~Q-(]% (25) From a hydrodynamic viewpoint, Eq&30) and (31) corre-
® o mn) spond to the equations of motion for a fluid element that
U (00 )= UZM(Q(),Q-(1) evolves with the flow of the probability current density—i.e.,
B ) m!n! the Lagrangian representation—as described in Appendix A.
" N This choice simplifies the equations of motion somewhat by
X[Q=QMWIQ-~-Q-(]%, (26) canceling two terms coming from the double summations in
both Egs.(28) and (29).
where In addition to free propagation of the density matrix,
evaluation of the IRPs requires computation of the interac-
frmn(D=F™M(Q(1),Q_(t),t) (27)  tions with the field. Within the present representation, Eq.

indicates that the functiof™™(Q,Q_ ,t) is evaluated along

the trajectoryl’(t). Equation(21) together with Eqs(24)

(21), we need to calculate effect of the interaction operator
expieV_/h) ongandA:

and (25) constitutes a cumulant expansion @fQ,Q_ ,t),
whereg, , andA, , are known as thenf,n)th cumulants of
p(Q,Q_ ,t) aboutl'(t).

Substituting Eqs(24)—(26) into Egs.(22) and (23) and
collecting powers of Q—Q“(t) ] Q_ —Q“(t)]" we obtain
an infinite hierarchy of coupled ordinary differential equa-
tions

o€V hagtiAlh _ ga' +iA' Ik

gr,n,n: Om,n»
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SinceV depends only depends on the coordindae®d not
the momentyp the g, ,’s are unaffected by the transforma-
tion and we obtain

(33
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o v(m+2ktD) (1)) We invoke the time-dependent Hartree approximation by
> 2R 2k 1—n)! assuming that the total many-body density matbixor the
k=(n-1)/2 ' mixed system is factorizable into+ 1 single-particle den-
X Q_(t)2kFi-n, (34)  sity matrices:

Afn=Amnte

There are many possible choices for representing Liou- n
ville space wave packets. One strategy is to construct a®(Q, ,Qg,d.,0r.t)=p(QL.Qr.t)]] pi(djL,djr,t),
ensemble of reference trajectorids“(t)}. Each member of =1
the ensemble is distinguished by its initial conditions and its (37)
own set of cumulantgy, , andAy, . For example, the total whereq;_ andq;r are the Liouville space coordinates asso-
density matrix of the system may be represented as a pointiated with the single-particle density matrix of the jth

wise sum over the ensemble of reference trajectories: bath particle. Using symmetric and antisymmetric combina-
i tions of “left” and “right” bath coordinates, we can define
p(Q,Q_ )=, ex 95 d )+ Ag 1) the clas§|cal s_mg_le—partlcle density matrices in terms of clas-
a h sical trajectories in phase space:

o

X 8(Q—Q*(1))d(Q-—Q“(1)). (35) |
?i(q;,pj.H)= f_ij(qj' 0 t)e'Pidi-/A

In this representation we only keep the zeroth-order cumu-
lants along many trajectories to represent the total density
matrix. Rather than using high-order cumulants, we add = 5(9;—0;(1))8(p; — p;(1))- (38)
many pointwise trajectories where the coefficieggs(t)

. . S Th h traj i i Hamilton’ i
andAg (t) carry information about the vicinity of each tra- e bath trajectories are given by Hamilton's equations

jectory. _ . q;(t)=d, H=p;/m; (39
In summary, the numerical procedure for calculating the !
nth-order nonlinear response function is as follows: We : — _
P pj(t)= —JdgH= _5quB_5’qj<USB>! (40)

construct am-dimensional grid of points in the time interval

domain 71=0,...7714.1,=0. The dimensions and resolution anq are parametrically dependent on the system’s coordinates
of this grid are determined by the details of the experiment tqnough the expectation valusg(Q,q))=Tr{Usg,]. In

be simulated. For a given set of time intervals the nonlineaghe aphsence of the driving fiel(t), p evolves according to
response is calculated as a sum &f ithpulsive response

pathways. Each IRP is computed by taking the trace of a 72

unique nonequilibrium density matrix represented over an 'Mtp:_m‘?QQ,PJFUfPJFUSBfP' (41)
ensemble of reference trajectories. This density matrix is

generated by acting opeq With a specific sequence of inter- whereUgg_ is defined by

action and propagation operations according to the methods

described in this section. Repeating these steps for varioddss-(Q.Q-,a)=Usg(Q+3Q_,a)~Usg(Q—3Q-,q).

choices of the time intervals, finally, generates tile-order (42)
response function. Following the procedure outlined in Sec. Ill, we can re-
write Eq.(41) as an infinite hierarchy of coupled differential
IV. SEMICLASSICAL PROPAGATION COUPLED equations:
TO A CLASSICAL BATH
. gﬁ n=0mn> (43
The formalism of Sec. Ill can be extended to condensed ’ ’
hases, where the system of interest is coupled to a classical ; ;
p ! b A=A UG (Q(1),Q_(1),0), (44)

bath. The all-forward propagation is particularly transparent
for describing dephasing processes induced by a bath.

The total Hamiltonian for a quantum degree of freedom
(the systen®) coupled to many classical molecular variables
(the bathB) is given by

where g, , and Am'n, given by Egs.(28) and (29), now
depend parametrically o The velocity components of the
trajectory are

N p? Q=A5 /M, (45)
Hr(P.QPAD=H(P.Q)+2 5 +Us() +Usd Q).

(36)

whereH(P,Q) is given by Eq.(17). The bath is composed The final semiclassical equations of motion for a system
of n classical particles with massém,,...,m,}, positions coupled to a classical bath are given by E@3)—(46) to-
g={d1,..-.9n}, and momentgp={p4,...,.p,} that interact gether with Eqs.(39 and (40). In this approach we have
with one another through the multidimensional potential en-explicitly included the bath degrees of freedom into the
ergy surfaceUg(q). The interaction potentialgg(Q,Qq) equations of motion.

couples the system and bath. We assume that the field inter- Alternatively, one can adopt a reduced description to the
acts only with the systed=V(Q). system—bath dynamics by appealing to reduced equations of

Q-=AiJM. (46)
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motion where the bath degrees of freedom have been elimi- The cumulant expansion has some limitations. It was

nated. In Appendix B we derive the cumulant expansion forargued by Bittnél’ that truncating the derivative hierarchy in

a reduced density matrix described by the Caldeira—Leggethe expansion of andA is tantamount to including artificial

master equation. dissipation in the system. This leads to a loss of coherence
between different trajectories and is not expected to be suc-
cessful for nondissipative systems. However, when there is

V. DISCUSSION dissipati_on due to thg co_upling of _the ba(ﬂge Sec. IV and
Appendix B one can justify truncating the hierarchy at some

When a measurement of a dynamical variatlés re- low order depending on the strength of the dissipation.

peatedly performed on a system we obtain a joint probability

distribution of the outcomes. The response function carries

information that depends on delicate interferences among -k NOWLEDGMENT

events that occur at the various points in time and may not be

calculated from the joint probability of the+1 measure- This material is based upon work supported by National

ments ofV (Refs. 28 and 51 Quantum mechanically this Science Foundation Grant No. CHE-0132571.

interference may be understood in terms of either a sum over

2" Liouville space pathways or"2mpulsive response path-

ways. Even though we perform some operation on the sys-

terr)1/ atn+1 pointg in timg n interactions vsith the field plusy APPENDIX A: LAGRANGIAN VELOCITY

. . ’ . . COMPONENTS IN LIOUVILLE SPACE
the time of observation, only the last interaction corresponds

to an actual measurement. In the other times we merely per- |n this appendix we identify the velocity components of

turb the system; therefore, the pathways interfere with ong Bohmian quantum trajectory in Liouville space. In Hilbert
another. Individual LSPs do not have a classical limit; how-space, we can write the wave function as

ever, individual IRP do: classically, they represent impul- ]
sively perturbed trajectories. H(Q,1)=exg C(Q,t) +iS(Q,t)/A]. (A1)

Correlation functions are equilibrium objects and can berne |ocal conservation of probability= y* is expressed
computed using sums over unperturbed trajectories. Classicgﬂrough the continuity equation

response functions can, thus, be obtained either as equilib-
rium averages in terms of stability matrices or recastinterms  dp+V-J=0, (A2)

of 2" closely lying IRP trajectories that are perturbed at Vari'whereJ is the probability current density. For a wave func-
ous points in time. In the equilibrium method one can evalu—tion satisfying the time-dependent Sctlioger equation, this
ate the response function for all time arguments by propaga%urrent is defined by '

ing a single ensemble of unperturbed trajectories. The
computational cost is that one must also propagate up to h . .

stability matrices. For anharmonic systems the elements of J= ﬁ(‘/’ Vi=dVyr). (A3)
the stability matrix can diverge exponentially*? In the im-

pulsive simulation method the interference between perSubstituting Eq(A1) into Eq. (A3), it is easy to show that
turbed trajectories is evaluated explicitly, so that one neved=pVS/m. By analogy with fluid mechanics we can iden-
has to compute the stability matrix; however, a new set ofify a velocity fieldv =V S/m for a quantum probability fluid

trajectories must be computed for each choice of time interusing the definitionJ=pv. For a pure state(Q, ,Qr)

ValS To1, ...\ Tos1n- =(Q.) ¥* (Qg) the functionsg andA are given in terms of
There are many different semiclassical propagatioric andSaccording to
schemes and simulation of the IRP is not limited to the
, H=C H+C 0, A4
Bohmian trajectorie$Eqgs. (30) and (31)] discussed in this 9(Qu.Qr.1 (QuO+C(Qr.1) A4)
paper. Other possibilities are stationary trajectoftbe Eu- A(QL,Qr,1)=S(Q,,t)—S(Qr,t). (A5)

Ierian_representatiOr{'Q,'Q,}zO or even classical trajecto- In Liouville space we keep track of both forward and back-
. _ 1 .

res {Q,Q,}—{—U_( JIM,0}. Equations(28)—(31) are our  \yard evolving current density. Thus the velocity field is
final closed equations for the density matrix propagatlongiven by

Consider an ensemble constructed from the classical trajec-

tories of the system—that is, the equilibrium trajectories 1

Qe(t). Ordinarily, we could calculate the response function v(QL,Qr)= E{VLS(QL)n_VRS(QR)}' (A6)
by computing the appropriate stability matrices and average . . _ . .
over the ensemble of trajectories. Instead, we can treat the@nsforming to the symmetric and antisymmetric coordinate
classical trajectory as an input to the derivative propagatioff@me. we obtain

method by lettingQ(t) = Qe(t) andQ_(t)=0. Thus we ex- 1

pand the density matrix about the classical trajectories evolv-  v(Q,Q-)= —{V;A(Q,Q-),V-A(Q,Q-)}. (A7)
ing in Q, but stationary inQ_. We can then evaluate the

density matrix along these trajectories in a way similar to theEquation(A7) is the multidimensional analog of Eq&0)
method described in Sec. Il. and(31).
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APPENDIX B: SEMICLASSICAL DYNAMICS USING 2ACHQ.Q_ 1)=3,A(Q.Q_ 1) —2yQ_ACY(Q.Q_.1).
THE CALDEIRA-LEGGETT MASTER EQUATION ATHQQ AQ.Q < (QQ (B4)

Consider a model system described by a tagged degreubstituting Eqs(24)—(26) into the Eqgs(B3) and (B4), we
of freedomQ, linearly coupled to a bath of harmonic oscil- obtain

lators. The total Hamiltonian for this system is given by g%',‘n(t)=Qm,n(t)—27n9m,n(t)+Q7(t)9m,n+1(t) (B5)
2 2yMKT
- _ Y
H(Q,P,q,p,t)= oM +U(Q)—V(P,QE(Q,1) —Tﬁm,o(Q_(t)zén,o—i- 2Q_(1)Sh1+26,2),

(B6)

n 2 2
Py | Mo Cj
+ et 4= —>

2
= om T2 v Q)' BY ASL (0)= Apn() = 29MAn (1)~ 27Q_(DAmn-1(1). (B7)

Because the bath degrees of freedgnare not explicitly In the Lagranglan refe_rence frame, the velocity components
of the trajectory are given by

coupled to the field, we can eliminate them from our descrip-

tion by taking a partial trace of the many-body density ma-  Q(t)=A,,/M, (B8)
trix. The Caldeira—Leggett master equatithe coordinate _ '
space equivalent of the quantum Fokker—Planck equation Q_(t)=A;o/M+2yq_. (B9)

provides a convenient description for the reduced dynamic
of the system?? At high temperatures, the time evolution of
the reduced density matrix=p(Q,Q_), in the absence of
E(t), is determined by the master equation

Bor dissipative systems we expect that the relaxation terms
involving y will counter the effects of the truncation error,
thus effectively closing the hierarchy of equations of motion.
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52 the DPM to solve the quantum Fokker—Planck equation us-
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