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We propose a quantum trajectory algorithm for computing nonlinear response functions of
condensed phase molecular systems based on a time-ordered expansion of the density matrix. The
nth-order response function is expressed as a sum of 2n impulsive response pathwaysrepresenting
trajectories involving zero, one, and up ton interactions with short external pulses. These are
evaluated using a forward propagation algorithm based upon a Liouville space extension of the
Bohmian propagation method. ©2004 American Institute of Physics.@DOI: 10.1063/1.1756582#

I. INTRODUCTION

The development of fast algorithms that reduce the com-
putational overhead required to find accurate numeric solu-
tions of the time-dependent Schro¨dinger equation has been a
long-standing goal in molecular dynamics simulations. Strik-
ing the right balance between accuracy and efficiency is im-
portant for polyatomic molecules and unavoidable for con-
densed phase matter, since exact direct integration is not
possible. The many-body wave function~or density matrix!
describing a complex molecular system contains much more
information than necessary to calculate experimental observ-
ables; thus, many-body theory focuses on the direct calcula-
tion of the single-point and multipoint time correlation func-
tions which carry the desired information.1,2 These can
describe, for example, the response of a material system to
external fields. Schwinger3 had formulated these calculations
using closed time loops which represent the forward propa-
gation of the ket and the backward propagation of the bra in
a matrix element̂ c(t)uAuc(t)&. Keldysh4,5 had recast this
picture within the perturbation theory for Green functions,
which has now become a standard tool in many-body equi-
librium and nonequilibrium diagrammatic techniques. The
forward–backward propagation involved in the Schwinger–
Keldysh loop is an extremely powerful formal device for
carrying out computations.

Perhaps owing to the popularity and success of molecu-
lar dynamics methods in simulating the dynamics of large-
scale molecular and condensed phase systems via classically
evolving atomic trajectories, considerable research activity
has been dedicated to the development and application of
methodologies which strive to incorporate quantum interfer-
ence effects into a trajectory based description of molecular
systems.6–21 The forward–backward formalism,12,22–24

which combines semiclassical propagation with the
Schwinger–Keldysh time loop, has been extensively and
successfully applied to a broad range of physical problems
~see Ref. 25 for a comprehensive review!.

In this paper we develop an alternative semiclassical
strategy for calculating nonlinear response functions for con-

densed phase systems. We work exclusively with time-
ordered expressions for the response which require only for-
ward propagation in Liouville space. We show that a more
transparent physical insight may be obtained by working in
real time and formulating the problem using the density
matrix.26–28 Consider a quantum material system, described
by the HamiltonianH, driven by an external fieldE(t) that is
coupled to a dynamical variableV via H int52E(t)•V. The
expectation value ofV at time t may be computed in the
interaction picture according to

^V~ t !&5K TV1~ t !expF i

\ E
2`

t

dt E~t!V2~t!G L , ~1!

where ^A&[Tr@Areq# denotes averaging with respect to
the equilibrium density matrixreq. The6 subscripts denote
superoperators defined by their action on an ordinary opera-
tor B:

V1B[~VB1BV!/2, ~2!

V2B[VB2BV. ~3!

V6(t) in Eq. ~1! are Heisenberg picture superoperators
given by

V6~t!5expS i

\
H2t DV6 expS 2

i

\
H2t D . ~4!

T is a positive time-ordering operator in Liouville space that
rearranges all products of superoperators in order of decreas-
ing time from left to right.27,28

Nonlinear response measurements are usually inter-
preted by expandinĝV(t)& in powers of the incoming field.
The nth-order contribution to Eq.~1! is given by

^V~n!~tn11!&5E
2`

tn11
dtnE

2`

tn
dtn21¯E

2`

t2
dt1

3E~tn!¯E~t1!S~n!~tn11 ,...,t1!, ~5!

where thenth-ordernonlinear response function
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S~n!~tn11 ,...,t1!

5S i

\ D n

Tr@V1~tn11!V2~tn!¯V2~t1!req# ~6!

represents the measurement ofV at timetn11 following the
interaction withn time-ordered short pulses centered att1

<¯<tn . In Liouville space all superoperators in the re-
sponse function are time ordered, leading naturally to semi-
classical and path integral descriptions.

Each of the commutatorsV2(t) in Eq. ~6! contributes
two terms corresponding to its ‘‘left’’ and ‘‘right’’ actions.
This leads a total of 2n distinct n-point quantum correlation
functions. Each of these terms constitutes a uniqueLiouville
space pathway~LSP! that may be represented by a single
double-sided Feynman diagram.27 The subtle interference be-
tween the pathways determines the overallnth-order quan-
tum response. An individual LSP does not have a well-
defined classical limit. Only after they are combined
according to Eq.~6!, will the \2n prefactor cancel and the
classical limit be recovered.28

Equation~6! may be recast in the form

S~n!~tn11,n ,...,t21!

5S i

\ D n

Tr@V1e2 iH 2tn11,n /\V2¯e2 iH 2t21 /\V2req#, ~7!

where we have used Eq.~4! to expand the Heisenberg super-
operators andt j i [t j2t i>0 are the time intervals between
successive pulses as illustrated in Fig. 1. Equation~7! im-
plies that the quantum response is obtained by an alternating
sequence of interactionsV2 and wave packet propagations
exp@(i/\)H2t# in Liouville space. Given the equilibrium den-
sity matrix, we obtain the perturbed state at timet1 by evalu-
ating r(t1)5V2req[@V,req#. The density matrix resulting
from this first interaction is then propagated for a timet21

and followed by a second interaction with the fieldV2. This
process is repeatedn times. Finally, the response for a given
set of time intervals is evaluated by operating withV1 and
taking the trace. The entire nonlinear response function is
obtained by repeating this procedure for various values of the

time intervalst j 11,j . This method can be implemented inde-
pendently of how the density matrix is propagated in time
and how the interactions with the field are carried out.29 In
the classical limit we replace each (i /\)V2 factor by a Pois-
son bracket. This results in expressions involving stability
matrices representing the sensitivity of trajectories to small
perturbations.30–38These matrices are hard to compute, mak-
ing it difficult to develop tractable semiclassical approxima-
tions.

The present approach is based on computing the impul-
sive response to a sequence of very short pulses and avoiding
the perturbation expansion in the field amplitude altogether.
Computation of the resultingimpulsive response pathways
~IRPs! is more numerically stable than the LSPs. Rather than
computing 2n LSPs, we recast the response as a sum over 2n

IRPs, which are represented by perturbed quantum trajecto-
ries calculated using the derivative propagation method
~DPM!.21,39,40Unlike the LSPs, each IRP has a well-defined
classical limit. Explicit calculation of stability matrices is
avoided and the desired response functions are then obtained
as specific combinations of the IRPs.

II. QUANTUM IMPULSIVE RESPONSE PATHWAYS

To define the impulsive response pathways, we assume
that the field envelopeE(t) is a sum ofn very short time-
ordered pulses each with areae j :

E~ t !5(
j 51

n

e jd~ t2t j !, ~8!

with t1<¯<tn . The response to these pulses is calculated
exactly, via Eq.~1!, rather than perturbatively via Eq.~5!.
The expectation value ofV at timetn11 , ^V(tn11)&, is now
parametrically dependent on the ordered sequence of inter-
actions timest1 ,...,tn and will be denoted as thenth-order
impulsive response pathway F(n)(tn11 ,...,t1). Substituting
Eq. ~8! into Eq. ~1! yields

F ~n!~tn11 ,...,t1!

[TrFV1~tn11!expS i

\
enV2~tn! D¯

3expS i

\
e1V2~t1! D reqG . ~9!

To connectF (n) with S(n) we make use of the identity

i

\
V25 lim

e→0

1

e FexpS i

\
eV2D21G . ~10!

Substituting Eq.~10! into Eq. ~6!, we obtain

S~n!~tn11 ,...,t1!

5 lim
e j→0

TrFV1~tn11!
1

en
~e~ i /\!enV2~tn!21!¯

3
1

e1
~e~ i /\!e1V2~t1!21!reqG . ~11!

FIG. 1. Schematic diagram of pulse sequencing in a typical nonlinear ex-
periment. Successive pulses arriving at timest1 ,t2 ,...,tn21 ,tn are sepa-
rated by the time intervalst21 ,...,tn,n21>0.
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Expanding Eq.~11! generates 2n terms corresponding to the various impulsive response pathwaysF (0)
¯F (n). For example,

the three lowest-order response functions are given by

S~1!~t2 ,t1!5
1

e2e1
@F ~1!~t2 ,t1!2F ~0!~t2!#, ~12!

S~2!~t3 ,t2 ,t1!5
1

e3e2e1
@F ~2!~t3 ,t2 ,t1!2F ~1!~t3 ,t2!2F ~1!~t3 ,t1!1F ~0!~t3!#, ~13!

S~3!~t4 ,t3 ,t2 ,t1!5
1

e4e3e2e1
@F ~3!~t4 ,t3 ,t2 ,t1!2F ~2!~t4 ,t3 ,t2!2F ~2!~t4 ,t3 ,t1!2F ~2!~t4 ,t2 ,t1!

1F ~1!~t4 ,t3!1F ~1!~t4 ,t2!1F ~1!~t4 ,t1!2F ~0!~t4!#, ~14!

and so forth.
Alternatively the impulsive response pathways serve as

generating functionsfor the response functions, which can
be obtained as their derivatives

S~n!~tn11 ,...,t1!5
]n

]e1¯]en

3F ~n!~tn11 ,...,t1!U
e15¯5en50

. ~15!

Note that there is no simple one to one connection be-
tween the 2n Liouville space paths with the 2n impulsive
response paths. In contrast to the LSPs, each IRP has a well-
defined classical limit and can be represented by a distinct
ensemble of all-forward propagating trajectories in Liouville
space. This is best seen by recasting Eq.~9! in the form

F ~n!~tn11 ,...,t1!

5TrFV1 expS 2
i

\
H2tn11,nDexpS i

\
enV2D¯

3expS 2
i

\
H2t21DexpS i

\
e1V2D reqG . ~16!

EachF (n) and its corresponding ensemble of trajectories is
distinguished by the sequence of time-ordered impulsive but
nonperturbative interactions with the external field. The
zeroth-order impulsive response contains no impulsive inter-
actions and is obtained by choosing the ‘‘one’’ part of Eq.
~10! each time the interaction superoperator is applied in Eq.
~11!. Note thatF (0)[Tr@V1(t)req#5^V& is independent oft
and this term is represented by an ensemble of freely evolv-
ing reference trajectories. The trajectories corresponding to
higher-orderF (n)’s are constructed from these reference tra-
jectories by making small perturbations at the appropriate
times. To compute thenth-order response we launch multiple
ensembles of trajectories consisting of the unperturbed one
plus 2n21 weakly perturbed ones at various combinations of
times. These trajectories interfere with one another in the
sense that they make slightly different contributions to the
response for a given sequence of interactions with the field.

III. SEMICLASSICAL SIMULATIONS
OF THE IMPULSIVE RESPONSE

To implement a numerical propagation strategy for the
IRPs that will scale favorably with the number of degrees of
freedom we must consider the two primary operations in
Eq. ~16!: the free propagation of the density matrix
exp@2(i/\)H2t# and the interaction with the field
exp@(i/\)eV2#.

We consider the Hamiltonian

H~P,Q,t !5
P2

2M
1U~Q!2V~Q!E~ t !, ~17!

whereP andQ are the momentum and position operators for
a particle with massM evolving on a potential energy surface
U(Q). The operatorV(Q) determines the coupling to the
driving field E(t). In the absence ofE(t), the density matrix
r(QL ,QR) evolves according to

i\] tr~QL ,QR!

5S 2
PL

2

2M
1

PR
2

2M
2U~QL!1U~QR! D r~QL ,QR!, ~18!

whereQL ~‘‘left’’ ! andQR ~‘‘right’’ ! are the Liouville space
coordinates associated with the ket and bra, respectively.
Substituting the symmetricQ5 1

2(QL1QR) and antisymmet-
ric Q25QL2QR combinations of the left and right coordi-
nates into Eq.~18!, we obtain

i\] tr~Q,Q2!52
\2

M
]QQ2

r~Q,Q2!

1U2~Q,Q2!r~Q,Q2!, ~19!

whereU2(Q,Q2) is defined by

U2~Q,Q2!5U~Q1 1
2Q2!2U~Q2 1

2Q2!. ~20!
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We next perform a local cumulant expansion of the den-
sity matrix about a reference trajectoryG(t)
[„Q(t),Q2(t)…. This procedure is based upon the de
Broglie–Bohm interpretation of quantum mechanics,41–44

the statistical reformulation of quantum dynamics in terms of
the moments and cumulants of hydrodynamiclike
distributions,45–50 and the derivative propagation
method.21,39,40We begin by writing the density matrix in a
complex exponential form

r~Q,Q2 ,t !5expS g~Q,Q2 ,t !1
i

\
A~Q,Q2 ,t ! D , ~21!

where g(Q,Q2 ,t) and A(Q,Q2 ,t) are real-valued func-
tions. Substituting Eq.~21! into Eq. ~19! and separating the
real and imaginary parts we obtain a pair of exact coupled
partial differential equations for the evolution ofg andA:

] tg52
1

M
~A~1,1!1g~1,0!A~0,1!1A~1,0!g~0,1!!, ~22!

] tA52U21
\2

M
~g~1,1!1g~1,0!g~0,1!!2

1

M
A~1,0!A~0,1!,

~23!

where f (m,n)[]Q
m]Q2

n f (Q,Q2 ,t) denotes partial derivatives

of f (Q,Q2) with respect toQ andQ2 . We next expandg,
A, and U2 in a Taylor series with respect to an arbitrarily
chosen configuration space reference trajectoryG(t):

g~Q,Q2 ,t !5 (
m50

`

(
n50

`
gm,n~ t !

m!n!
@Q2Q~ t !#m

3@Q22Q2~ t !#n, ~24!

A~Q,Q2 ,t !5 (
m50

`

(
n50

`
Am,n~ t !

m!n!
@Q2Q~ t !#m

3@Q22Q2~ t !#n, ~25!

U2~Q,Q2!5 (
m50

`

(
n50

` U2
~m,n!

„Q~ t !,Q2~ t !…

m!n!

3@Q2Q~ t !#m@Q22Q2~ t !#n, ~26!

where

f m,n~ t ![ f ~m,n!
„Q~ t !,Q2~ t !,t… ~27!

indicates that the functionf (m,n)(Q,Q2 ,t) is evaluated along
the trajectoryG(t). Equation~21! together with Eqs.~24!
and ~25! constitutes a cumulant expansion ofr(Q,Q2 ,t),
wheregm,n andAm,n are known as the (m,n!th cumulants of
r(Q,Q2 ,t) aboutG(t).

Substituting Eqs.~24!–~26! into Eqs.~22! and ~23! and
collecting powers of@Q2Qa(t)#m@Q22Qa(t)#n we obtain
an infinite hierarchy of coupled ordinary differential equa-
tions

ġm,n52
1

M
Am11,n112

1

M (
i 50

m

(
j 50

n S m
i D S n

j D
3~gi 11,jAm2 i ,n2 j 111Ai 11,jgm2 i ,n2 j 11!

1Q̇~ t !gm11,n1Q̇2~ t !gm,n11 , ~28!

Ȧm,n52U2
~m,n!

„Q~ t !,Q2~ t !…1
\2

M S gm11,n11

1(
i 50

m

(
j 50

n S m
i D S n

j Dgi 11,jgm2 i ,n2 j 11D
2

1

M (
i 50

m

(
j 50

n S m
i D S n

j DAi 11,jAm21,n2 j 11

1Q̇~ t !Am11,n1Q̇2~ t !Am,n11 . ~29!

Each cumulant is clearly coupled to both higher- and lower-
order cumulants. Neglecting terms greater than second order
in the expansion leads to a system of 14 coupled differential
equations@six equations of eachg, six for A, and two un-
specified equations forG(t)] to evaluate the density matrix
along a single trajectory at a later point in time. For a Gauss-
ian wave packet evolving on a quadratic potential this trun-
cation is exact. For anharmonic problems, however, there
will be unavoidable truncation errors. We note that this does
not imply that the global density matrix is Gaussian—rather,
only that the local structure of the density matrix in the
neighborhood of an individual trajectory is Gaussian.

A successful implementation of this procedure depends
on the truncation of the hierarchy, which, in turn, requires a
judicious choice of the reference trajectoryG(t). In Liouville
space, the velocity components of a Bohmian quantum tra-
jectory are given by

Q̇5A0,1/M , ~30!

Q̇25A1,0/M . ~31!

From a hydrodynamic viewpoint, Eqs.~30! and ~31! corre-
spond to the equations of motion for a fluid element that
evolves with the flow of the probability current density—i.e.,
the Lagrangian representation—as described in Appendix A.
This choice simplifies the equations of motion somewhat by
canceling two terms coming from the double summations in
both Eqs.~28! and ~29!.

In addition to free propagation of the density matrix,
evaluation of the IRPs requires computation of the interac-
tions with the field. Within the present representation, Eq.
~21!, we need to calculate effect of the interaction operator
exp(ieV2 /\) on g andA:

ei eV2 /\eg1 iA/\5eq81 iA8/\. ~32!

SinceV depends only depends on the coordinates~and not
the momenta!, the gm,n’s are unaffected by the transforma-
tion and we obtain

gm,n8 5gm,n , ~33!
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Am,n8 5Am,n1e (
k5~n21!/2

`
V~m12k11!

„Q~ t !…

22k~2k112n!!

3Q2~ t !2k112n. ~34!

There are many possible choices for representing Liou-
ville space wave packets. One strategy is to construct an
ensemble of reference trajectories$Ga(t)%. Each member of
the ensemble is distinguished by its initial conditions and its
own set of cumulantsgm,n

a andAm,n
a . For example, the total

density matrix of the system may be represented as a point-
wise sum over the ensemble of reference trajectories:

r~Q,Q2 ,t !5(
a

expS g0,0
a ~ t !1

i

\
A0,0

a ~ t ! D
3d„Q2Qa~ t !…d„Q22Qa~ t !…. ~35!

In this representation we only keep the zeroth-order cumu-
lants along many trajectories to represent the total density
matrix. Rather than using high-order cumulants, we add
many pointwise trajectories where the coefficientsg0,0

a (t)
andA0,0

a (t) carry information about the vicinity of each tra-
jectory.

In summary, the numerical procedure for calculating the
nth-order nonlinear response function is as follows: We
construct ann-dimensional grid of points in the time interval
domaint21>0,...,tn11,n>0. The dimensions and resolution
of this grid are determined by the details of the experiment to
be simulated. For a given set of time intervals the nonlinear
response is calculated as a sum of 2n impulsive response
pathways. Each IRP is computed by taking the trace of a
unique nonequilibrium density matrix represented over an
ensemble of reference trajectories. This density matrix is
generated by acting onreq with a specific sequence of inter-
action and propagation operations according to the methods
described in this section. Repeating these steps for various
choices of the time intervals, finally, generates thenth-order
response function.

IV. SEMICLASSICAL PROPAGATION COUPLED
TO A CLASSICAL BATH

The formalism of Sec. III can be extended to condensed
phases, where the system of interest is coupled to a classical
bath. The all-forward propagation is particularly transparent
for describing dephasing processes induced by a bath.

The total Hamiltonian for a quantum degree of freedom
~the systemS! coupled to many classical molecular variables
~the bathB! is given by

HT~P,Q,p,q,t !5H~P,Q!1(
j

n pj
2

2mj
1UB~q!1USB~Q,q!,

~36!

whereH(P,Q) is given by Eq.~17!. The bath is composed
of n classical particles with masses$m1 ,...,mn%, positions
q5$q1 ,...,qn%, and momentap5$p1 ,...,pn% that interact
with one another through the multidimensional potential en-
ergy surfaceUB(q). The interaction potentialUSB(Q,q)
couples the system and bath. We assume that the field inter-
acts only with the systemV5V(Q).

We invoke the time-dependent Hartree approximation by
assuming that the total many-body density matrixF for the
mixed system is factorizable inton11 single-particle den-
sity matrices:

F~QL ,QR ,qL ,qR ,t !5r~QL ,QR ,t !)
j 51

n

r j~qjL ,qjR ,t !,

~37!

whereqjL andqjR are the Liouville space coordinates asso-
ciated with the single-particle density matrixr j of the j th
bath particle. Using symmetric and antisymmetric combina-
tions of ‘‘left’’ and ‘‘right’’ bath coordinates, we can define
the classical single-particle density matrices in terms of clas-
sical trajectories in phase space:

f j~qj ,pj ,t !5E
2`

`

r j~qj ,qj 2 ,t !eip jqj 2 /\

5d„qj2qj~ t !…d„pj2pj~ t !…. ~38!

The bath trajectories are given by Hamilton’s equations

q̇ j~ t !5]pj
H5pj /mj , ~39!

ṗ j~ t !52]qj
H52]qj

UB2]qj
^USB&, ~40!

and are parametrically dependent on the system’s coordinates
through the expectation valuêUSB(Q,q)&5Tr@USBr#. In
the absence of the driving fieldE(t), r evolves according to

i\] tr52
\2

M
]QQ2

r1U2r1USB2r, ~41!

whereUSB2 is defined by

USB2~Q,Q2 ,q!5USB~Q1 1
2Q2 ,q!2USB~Q2 1

2Q2 ,q!.
~42!

Following the procedure outlined in Sec. III, we can re-
write Eq. ~41! as an infinite hierarchy of coupled differential
equations:

ġm,n
S 5ġm,n , ~43!

Ȧm,n
S 5Ȧm,n2USB2

~m,n!
„Q~ t !,Q2~ t !,q…, ~44!

where ġm,n and Ȧm,n , given by Eqs.~28! and ~29!, now
depend parametrically onq. The velocity components of the
trajectory are

Q̇5A0,1
S /M , ~45!

Q̇25A1,0
S /M . ~46!

The final semiclassical equations of motion for a system
coupled to a classical bath are given by Eqs.~43!–~46! to-
gether with Eqs.~39! and ~40!. In this approach we have
explicitly included the bath degrees of freedom into the
equations of motion.

Alternatively, one can adopt a reduced description to the
system–bath dynamics by appealing to reduced equations of
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motion where the bath degrees of freedom have been elimi-
nated. In Appendix B we derive the cumulant expansion for
a reduced density matrix described by the Caldeira–Leggett
master equation.

V. DISCUSSION

When a measurement of a dynamical variableV is re-
peatedly performed on a system we obtain a joint probability
distribution of the outcomes. The response function carries
information that depends on delicate interferences among
events that occur at the various points in time and may not be
calculated from the joint probability of then11 measure-
ments ofV ~Refs. 28 and 51!. Quantum mechanically this
interference may be understood in terms of either a sum over
2n Liouville space pathways or 2n impulsive response path-
ways. Even though we perform some operation on the sys-
tem atn11 points in time,n interactions with the field plus
the time of observation, only the last interaction corresponds
to an actual measurement. In the other times we merely per-
turb the system; therefore, the pathways interfere with one
another. Individual LSPs do not have a classical limit; how-
ever, individual IRP do: classically, they represent impul-
sively perturbed trajectories.

Correlation functions are equilibrium objects and can be
computed using sums over unperturbed trajectories. Classical
response functions can, thus, be obtained either as equilib-
rium averages in terms of stability matrices or recast in terms
of 2n closely lying IRP trajectories that are perturbed at vari-
ous points in time. In the equilibrium method one can evalu-
ate the response function for all time arguments by propagat-
ing a single ensemble of unperturbed trajectories. The
computational cost is that one must also propagate up ton
stability matrices. For anharmonic systems the elements of
the stability matrix can diverge exponentially.31,32 In the im-
pulsive simulation method the interference between per-
turbed trajectories is evaluated explicitly, so that one never
has to compute the stability matrix; however, a new set of
trajectories must be computed for each choice of time inter-
vals t21,...,tn11,n .

There are many different semiclassical propagation
schemes and simulation of the IRP is not limited to the
Bohmian trajectories@Eqs. ~30! and ~31!# discussed in this
paper. Other possibilities are stationary trajectories~the Eu-
lerian representation! $Q̇,Q̇2%50 or even classical trajecto-
ries $Q̇,Q̇2%5$2U (1)/M ,0%. Equations~28!–~31! are our
final closed equations for the density matrix propagation.
Consider an ensemble constructed from the classical trajec-
tories of the system—that is, the equilibrium trajectories
Qeq(t). Ordinarily, we could calculate the response function
by computing the appropriate stability matrices and average
over the ensemble of trajectories. Instead, we can treat the
classical trajectory as an input to the derivative propagation
method by lettingQ(t)5Qeq(t) andQ2(t)50. Thus we ex-
pand the density matrix about the classical trajectories evolv-
ing in Q, but stationary inQ2 . We can then evaluate the
density matrix along these trajectories in a way similar to the
method described in Sec. II.

The cumulant expansion has some limitations. It was
argued by Bittner40 that truncating the derivative hierarchy in
the expansion ofg andA is tantamount to including artificial
dissipation in the system. This leads to a loss of coherence
between different trajectories and is not expected to be suc-
cessful for nondissipative systems. However, when there is
dissipation due to the coupling of the bath~see Sec. IV and
Appendix B! one can justify truncating the hierarchy at some
low order depending on the strength of the dissipation.
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APPENDIX A: LAGRANGIAN VELOCITY
COMPONENTS IN LIOUVILLE SPACE

In this appendix we identify the velocity components of
a Bohmian quantum trajectory in Liouville space. In Hilbert
space, we can write the wave function as

c~Q,t !5exp@C~Q,t !1 iS~Q,t !/\#. ~A1!

The local conservation of probabilityr5cc* is expressed
through the continuity equation

] tr1¹•J50, ~A2!

whereJ is the probability current density. For a wave func-
tion satisfying the time-dependent Schro¨dinger equation, this
current is defined by

J5
\

2mi
~c* ¹c2c¹c* !. ~A3!

Substituting Eq.~A1! into Eq. ~A3!, it is easy to show that
J5r¹S/m. By analogy with fluid mechanics we can iden-
tify a velocity fieldv5¹S/m for a quantum probability fluid
using the definitionJ5rv. For a pure stater(QL ,QR)
5c(QL)c* (QR) the functionsg andA are given in terms of
C andS according to

g~QL ,QR ,t !5C~QL ,t !1C~QR ,t !, ~A4!

A~QL ,QR ,t !5S~QL ,t !2S~QR ,t !. ~A5!

In Liouville space we keep track of both forward and back-
ward evolving current density. Thus the velocity field is
given by

v~QL ,QR!5
1

m
$¹LS~QL!,2¹RS~QR!%. ~A6!

Transforming to the symmetric and antisymmetric coordinate
frame, we obtain

v~Q,Q2!5
1

m
$¹1A~Q,Q2!,¹2A~Q,Q2!%. ~A7!

Equation~A7! is the multidimensional analog of Eqs.~30!
and ~31!.
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APPENDIX B: SEMICLASSICAL DYNAMICS USING
THE CALDEIRA–LEGGETT MASTER EQUATION

Consider a model system described by a tagged degree
of freedomQ, linearly coupled to a bath of harmonic oscil-
lators. The total Hamiltonian for this system is given by

H~Q,P,q,p,t !5
P2

2M
1U~Q!2V~P,Q!E~Q,t !

1(
j

n pj
2

2mj
1

mjv j
2

2 S qj2
cj

mjv j
2 QD 2

. ~B1!

Because the bath degrees of freedomq are not explicitly
coupled to the field, we can eliminate them from our descrip-
tion by taking a partial trace of the many-body density ma-
trix. The Caldeira–Leggett master equation~the coordinate
space equivalent of the quantum Fokker–Planck equation!
provides a convenient description for the reduced dynamics
of the system.52 At high temperatures, the time evolution of
the reduced density matrixr5r(Q,Q2), in the absence of
E(t), is determined by the master equation

i\] tr52
\2

M
]QQ2

r1U2r22i\gQ2]Q2
r

2
2igMkT

\
Q2

2 r. ~B2!

The first and second terms in Eq.~B2! constitute the Liou-
ville superoperator for the tagged oscillator in the absence of
the bath. The third and fourth terms correspond to frictional
relaxation and phase relaxation~decoherence!, respectively.
The frictional relaxation rateg is determined by the strength
of the interaction with the bath and sets the time scale for
energy exchange between the tagged oscillator and heat bath.
The fourth term influences only the off-diagonal elements of
the density matrix~i.e., Q2Þ0) which become exponen-
tially damped at a rate}2gMkTQ2

2 /\2.
In the Caldeira–Leggett model the interaction coupling

strength is, by construction, assumed to be weak and only
strictly valid for the long-time behavior of the tagged oscil-
lator in the high-temperature limit~e.g., if V is the highest
frequency in the bath, then the model is applicable for time
scales t@V21 and thermal energieskT@\V). Other
models53–55 have been constructed that are less restrictive
than the Caldeira–Leggett master equation; however, the re-
sulting master equations contain time-dependent dissipative
coefficients which complicate numerical integration. For the
present study, it suffices to use Eq.~B2!. In what follows we
shall briefly review the reformulation of the Caldeira–
Leggett equation in terms of an infinite hierarchy of dissipa-
tive equations motion for the cumulants of the reduced den-
sity matrix.

Substituting Eq.~21! into Eq. ~B2! and separating the
real and imaginary components, we obtain

] tg
CL~Q,Q2 ,t !5] tg~Q,Q2 ,t !22gQ2g~0,1!~Q,Q2 ,t !

2
2gMkT

\2 Q2
2 , ~B3!

] tA
CL~Q,Q2 ,t !5] tA~Q,Q2 ,t !22gQ2A~0,1!~Q,Q2 ,t !.

~B4!

Substituting Eqs.~24!–~26! into the Eqs.~B3! and ~B4!, we
obtain

ġm,n
CL ~ t !5ġm,n~ t !22gngm,n~ t !1Q2~ t !gm,n11~ t ! ~B5!

2
2gMkT

\2 dm,0„Q2~ t !2dn,012Q2~ t !dn,112dn,2…,

~B6!

Ȧm,n
CL ~ t !5Ȧm,n~ t !22gnAm,n~ t !22gQ2~ t !Am,n11~ t !. ~B7!

In the Lagrangian reference frame, the velocity components
of the trajectory are given by

Q̇~ t !5A0,1/M , ~B8!

Q̇2~ t !5A1,0/M12gq2 . ~B9!

For dissipative systems we expect that the relaxation terms
involving g will counter the effects of the truncation error,
thus effectively closing the hierarchy of equations of motion.
We note that Trahan and Wyatt39 have very recently extended
the DPM to solve the quantum Fokker–Planck equation us-
ing quantum trajectories in phase space.
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