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Stochastic Liouville equation simulation of multidimensional vibrational
line shapes of trialanine
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The line shapes detected in coherent femtosecond vibrational spectroscopies contain direct
signatures of peptide conformational fluctuations through their effect on vibrational frequencies and
intermode couplings. These effects are simulated in trialanine using a Green’s function solution of
a stochastic Liouville equation constructed for four collective bath coordifatesRamachandran
angles affecting the mode couplings and two diagonal engrgiés find that fluctuations of the
Ramachandran angles which hardly affect the linear absorption can be effectively probed by
two-dimensional spectra. The signal generatekat k,—Kks is particularly sensitive to such
fluctuations. ©2004 American Institute of Physic§DOI: 10.1063/1.1807824

. INTRODUCTION H(t)=Hg(t) + Hin(t), D

The biological activity of proteins is determined by their Where
three-dimensional structure and dynanficExperimental
techniques including nuclear magnetic resonaihdR),?~* Ho(t)= E w;i(t)BB;— —2 K;(t)B/B/B;B;
linear optical and Raman fluoresceriéesmall angel x-ray
scattering;® and Laue diffraction'® are widely used to in-
vestigate proteins structures with nanosecond time resolu- +> J;()BB; )
tion. While various structural motifs may be distinguished by 7
changes in linear infrared absorptibn®femtosecond mul- is the molecular Hamiltonian and
tidimensional coherent vibrational spectroscopies facilitate
the extraction of more detailed_inforrr_u’:ltiﬂ)‘?ﬁ7 Thesl% ltéa_c:h— Hin()=> wi(BI+BE(D) 3)
niques are analogous to two-dimensiof@D) NMR**"in

that'the spe(?tral rgsolutpn is enhanced by spreading the S the interaction with an external electric fiele(t). B;r
nal into multiple dimensions.

. . . . . .,and B, are creation and annihilation operators for the local
Proteins consist of amino acid units connected by amid ! b

. . . armonic basis of amide | vibrations with frequeneyand
borllgs(lilg. fl)' Tge c;)arbor;y : stritggoglv?? rls_(la_r;co tgg Sltlgongquartic anharmonicityK; satisfying the Boson commutator
amige 1 inirared absorp |oq~( cm). € . relation[ B/ ,Bj]= &j; . Jj; are intermode couplings and is
spectra of the amide | region of many smak § units)

L 20-30 . o X the transition dipole.
pept|de§ were studied in addition to a handful of inves- The fluctuations of all parameters)(, K, andJ; ) re-
tigations for larger systemis 3 Extensive experi- DTN "

5 96.32 T ) sult from large amplitude motions of various conformations
menta and theoretical work was carried out on the 55 \yell as coupling to solvent and intramolecular low fre-

small peptide trialaninéFig. 1), which contains two amide quency modes. If the fluctuations are very slow, the dynam-
groups and a terminal carboxylic acid group. The 1725tm ics does not affect the line shapes and the simulation simply
CO stretch of the termmal acid group is spectrally isolatedpyolves a static averaging over configurations using the in-
from the 1650 cm* and 1670 cm® amide CO stretches. stantaneous eigenstates. The line shapes in this limit are de-
The relative orientation of the two coupled amide | modes isnoted inhomogeneous. As long as the fluctuations are not too
thus determined by a single set of Ramachandran anglefsst, so that these eigenstates are well separated compared to
making this system ideal for studying the effect of confor-the nonadiabatic coupling parametdefined in Sec. )| it is
mational fluctuations on the infrared spectra of peptides. possible to represent the necessary dipole correlation func-
The interpretation of spectra involves connecting the obtions as sums over the various excited states, involving one
servable peak positions and line shapes to molecular strugtate at a timdsee Eqs(8) and (9)]. If further the energy
ture and dynamics. The energies are in general fluctuatinfluctuations are Gaussian, one can derive closed expressions
with the molecule’s instantaneous environment. The peak paising the second-order cumulant. This cumulant expansion
sitions depend on the average environment whereas the spesf- Gaussian fluctuation§CGF (Ref. 37 was reviewed
tral line shapes are sensitive both to the static distributions afecently®

local environments and their dynamics. For faster fluctuations the nonadiabatic parameter is no
The infrared spectra of the amide | band may be dedonger negligible, the direct simulation involves multiple

scribed by the fluctuating exciton Hamiltonidh:° level crossinggsee Appendix D and becomes much more
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Amide I Il. ADIABATIC SIMULATIONS OF LINE SHAPES
0 H CH, 0 The time dependent wave functiah(t) of a quantum
D system described by the Hamiltonidd(t) satisfies the
+D3N N Schralinger equation,
B b oD
\ .
dg(t) i
H CH; 0 H CH —at = zHWOIeM). @
Amide [

FIG. 1. Trialanine with the Ramachandran angles and amide | modes indThe instantaneous eigenfunctiofbg(t) of H(t) with eigen-
cated. valuese;(t) constitute a natural orthonormal set known as
the adiabatic basis:

expensive. In this case an alternative approach will be to ~ ~

include explicitly the relevant collective bath modes and to ~ H(DI#i(D)=e(D)|#i(1)). 5
work in an extended phase space, where we consider the

evolution of distributions rather than individual trajectories.

gh's IIS thg SaSK'S bo%;ggf Sc;tocha_lts)tlcthLloswlle equatf(ﬂLE) merely denote garametric dependence of the eigenfunc-
eveloped by Bu 0 describe the dynamics of a quan- .4 on time. These functions are not solutions to the time

tum system perturbed by a stochastic process described byq%pendent Schdinger equation. Expanding the time depen-
Markovian master equation. It is widely used in the simula-dent wave functionp(t) in this basis

tion of electron spin resonancéESR,**4! NMR,*? and
infrared®>**line shapes. ESR spectra depend on the orienta-

tional motions and the SLE can, for example, be used to ~

account for the effect of rotational diffusiéf*' The SLE is ¢(t)22 (DY), ®
used for the description of chemical exchange in NfAf&

where the system can be found in one of several states with

different resonance frequencies. Population transfer betwedhe time evolution of the expansion coefficientt) is
states can, for example, be described by the two state junven by (see Appendix D

modef?® or reorientational diffusion modefé:*’ Motional

narrowing in infrared absorption was studied with the Red- i

field approacff in alkanes with torsional motiéd and a .Cj(t):_%ej(t)cj(t)_z Si(tey(t). )
carbon monooxide iron complex with carbon monooxide k

exchangé’ The SLE has also been applied to optical stark

spectroscop§>*°where the bath was treated using a Brown-yere 3 dot denotes the time derivative arg)(t)

ian oscillator model. A microscopic derivation of the SLE for _ ,~ ..+ . . _
excitons was given in Ref. 50. =(4;(1)| (1)) are the nonadiabatic couplings.

. : The linear optical response is related to the two time
In this paper we construct a SLE for the amide | band Ofcorrelation function of the dipole operatar(t).® In the

:Ezlﬂwzgrr]nei.lt;lij;nmoi\?i ﬁgnéls(tl)of_rt\rl]v; Sigléﬁfiicmogizsu:e'ggadiabatic approximation where the nonadiabatic couplings
. 9 n =g, . P . Sik in Eq. (7) are neglected, this correlation function is given
perturbing the frequencies are described by a Brownian 0s-

cillator model. The coupling depends on dihedral angles
whose dynamics is also described by Brownian oscillators.
Thus the model provides a direct connection between dy-

namics of the molecular structure fluctuations and the spec- <M(t2),u(t1)>=% P(a)< Mab(t2) mpalty)
trum. The SLE is solved numerically by expansion in the

eigenbasis of the relaxation operator. Green’s function matri- Xex;{

It should be emphasized that the time argumeptét)

ces are computed in the frequency domain using a matrix > ®
continued fraction representatioh.

The time evolution in the adiabatic basis is described in
Sec. Il. The Liouville equation for the vibrational coordinates Here uab(t)z@a(t)mﬂ/fb(t)) is the transition dipole mo-
is presented in Sec. Ill. The model for the time evolution ofment between the adiabatic statasand b and wy4(7)
the stochastic collective coordinates giving the structurak= e,(7) — €,(7) is the corresponding frequengy: -) denotes
fluctuations is described in Sec. IV. The SLE for the jointthe ensemble average.
distribution of the vibrational and the stochastic collective  The third-order response function is similarly given by a
coordinates are discussed in Sec. IV. The line shape simulaum of four Liouville space pahtwayg; related to the four
tions are carried out in Secs. V and VI. The results are distime correlation function, which in the adiabatic limit is
cussed in Sec. VII. given by (see Appendix [#?

i ([t
% Jtl wpa(T)dT
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FIG. 2. Solid line—the energy difference between the two amide | eigen-
states. Dashed line—the absolute value of the nonadiabatic coupling.

<M(7'1),LL(7'2)M(7'3)M(T4)>

= %d P(a)< Mad(T4) mac( T3) men( T2) pal T1) g—
(0,0)

a
i (74 i (73
X eXF{ % f wga(T)dT— gJ wca( 7)dT FIG. 3. Energy level diagram for the two amide | modes in trialanine. The
3 2 excitation number of each mode is shown in parenthesis below each state.
i (m
_%f wba(T)dT)>. 9 N .
T2 to the energy splitting and is often much larger. Therefore the
Extensive experimental and theoretical work on the in-adiabatic approximation does not generally hold and nona-
terpretation of line shapes of the spectrally isolated OHdiabatic effects can be expected to be observable in the spec-
stretch of HOD(Refs. 53-55in D,O and amide | modes of trum. The full expressions for the linear and third-order re-
N-methyl acetamidéNMA ),>"~**trialaniné®>%°~%2and other ~ sponse with the nonadiabatic coupling are given in Appendix
molecule&® have been carried out using the adiabatic ap-D. The SLE provides an alternative route which circumvents
proximation. the nonadiabatic simulations by expanding the phase space
The adiabatic approximation assumes that the adiabati® include bath coordinates, as will be described below.
states obtained by diagonalizing the Hamiltonian at various
points along the trajectory retain their identity and no curve,; THEe LIOUVILLE EQUATION FOR TRIALANINE
crossing occurs. Equation8) and (9) hold as long as the
transitions under consideration are spectrally well separated Two local modes contribute to the amide | band of tri-
compared to the nonadiabatic coupling between them so tha&lanine. The Hamiltonian is given in E(.) with frequencies
the adiabaticity parametgti Sy /AE;|<1, whereAEj is  wa and wy, anharmonicitieK, andK,, and the coupling
the separation between the levels. To test the applicability ofonstant). A total of six levels will be considered. These are
this approximation, the nonadiabatic coupling elements anthe ground stateq), two single excited levelsgg ande,),
the energy difference between the two eigenstates were caand three doubly excited leveld(, f,, and f3),*""* as
culated for a short trialanine trajectory. Details of the mo-shown in Fig. 3. We denote a state, where the first made (
lecular dynamic§MD) simulation are given in Sec. IV. The is excitedn times and the second mode)(is excitedm
Hamiltonian[Eq. (1)] was constructed for each point along times (n,m). m, n=0,1,2. The time evolution of the exciton
the trajectoryJ;,(t) were obtained from the Tasumi m&h. system is determined by the Liouville equation
The frequencies were obtained by adding a constant gas
phase value calculated from density-functional th&with
a solvent interaction term obtained from the two lowest order
derivatives of the solvent-solute interaction potential fromwherep is the density matrix describing the state of the two
the cHARMM27 force field with respect to the CO stretch mode systemL (t)p(t)=— i/ [Hq(t),p(t)] is the Liouvil-
coordinate’® Only the lowest two excited states were consid-lian  for the isolated system, while Li(t)p(t)
ered andK;(t) was neglected. The eigenvalues and eigen=—i/A[H;.(t),p(t)] represents the coupling with the ra-
functions were obtained by diagonalizing this Hamiltonain atdiation field.
10 fs intervals and nonadiabatic coupling elements were L(t) does not couple states in different excitation mani-
computed by numerical differentiation. The exciton splitting folds (g, e, andf ). Density matrix elements that do not have
is compared with the nonadiabatic coupling element in Figthe same number of excitations in both the ket and the bra
2. It is evident that the nonadiabatic coupling is comparablean then be treated separately. The density matrix can be

(0= 2L OO~ LD, 10
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divided into independent blocks denotetl, wherek is the is determined by the Liouville matrix
number of excitations in the ket anndhe number of excita-

tions in the brak, j=0,1,2. The Liouville operator corre- 0 —J J 0
sponding to the density matrix blogg*! will be denoted —J wa—wp 0 J
_KiKi- Leeee= : (16)
: J 0 wp—w,; —J
LI 0o J -J 0
| KiK] K]
pr 5 L*PKI kI, (12)

) The evolution of the density matrix elements with a doubly
For our model a total of eight blocks are needed to dexycited ket and a ground state bra

scribe the third-order respongs??, p®9, p9¢, p°e p'9, p9',
p'e, andp®’. Of those only five are independent, sing&’ prg(t)

andp”/” are Hermitian conjugates. The ground state density — ,f9(t)= pfsg(t) , (17)
matrix p99(t) = py4(t) evolves with the Liouville matrix szg(t)
L9999=[0]. 12 . o .
) ) ) o is determined by the Liouville matrix
The density matrix elements with one excitation in the ket
and the bra in the ground state, 2w,— K, 0 V2]
N ) . Liefo=) 0 20p,=Kp V2] |, (18)
P = Peg(t) ]’ 13 v2J v2J w,+ wy
evolves according to the Liouville matrix When the ket is doubly excited and the bra is singly excited
the density matrix elements
cgeg_| %2 (14)
Leoeo— :
J wp pflel(t)
The evolution of the density matrix elements where both the pfsel(t)
ket and the bra are singly excited, Pt e (1)
fe _ 1=2
Pelel(t) Pfge,
ee(t) = Pese (D) 15 Pige, (D)
= pezel(t) ' ( pfzez(t)
pezez(t) the time evolution is determined by the Liouville matrix
|
[ w,— K, 0 -J 0 v2l 0]
0 20,— Kp—w, 0 -J v2) 0
-J 0 2w,— K~ oy 0 0 v23
Liefe= g -3 0 wp—K, 0 V23| (20
v2J v2J 0 0 w, O
0 0 v2J v2J 0 w,

The Liouville space dipole operator matrix elements ardV. THE STOCHASTIC LIOUVILLE EQUATION

Many infrared experiments have been performed on the
amide | band of trialanine. The absorption spectrum §®©D
PacObd™ MbdFac- (21)  has been measured at differepd values2®326062\wout-
ersen and Hamm have reported the 2D IR pump probe spec-
trum of trialanine in DO at pD 1, where the molecule is
The time evolution of the density matrix elements with fully protonated?®32*3C isotope labeling was used to further
one excitation in the bra or the kg?® andp®? determine the  simplify the 2D IR spectrum®?®*2These experiments sug-
first time interval in the third-order nonlinear resporisee  gested that trialanine primarily exists in the polyglycine I
Figs. 4—6. The second time interval is determined p%f, (Py)) structure in solution, a conformation characterized by
p®¢ andp’¥ and the third time interval depends on the den-Ramachandran angles af (¢) = (— 60°,+ 140°) 2>2* How-
sity matrix element®9 and p'e. ever, significanta-helix like (ag) composition was sug-

Mab,cd:
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FIG. 4. Feynman diagrams and coupling scheft&sR,, (2) R3, and(3)
R;] for the photon echol(). The ground state is denoted The single
excited manifold is denotece and the doubly excited manifold are
denotedf.

NoYe'o
050
0l0%63610

g8

\ g g g g e ¢ FIG. 6. Feynman diagrams and couplings scheftiBsR3 and(2) R,] for
e g ¢ g f e the k_m technique. The ground state_is denogedrh(_e single excited mani-
ty fold is denotede and the doubly excited manifold is denotéd
e g e g f e
e e g e e ¢
e e g g e o 2 gested based on the spectral inhomogeneity of the amide |
. \ \ band? In addition, theg strand conformation was suggested
& c 8 c 8 t by polarized Raman and Fourier transform infraf€d’IR)
€ .
& e g e g experiment$%:62
/ g g g g / g g Response functions expressed in terms of frequency
R1 R4 R fluctuation correlation functions of various functional forms

were fitted to reproduce the experimental spettfd.The
dephasing rate, central frequencies, and coupling constant
were used as fitting parameters. The model assumes that the

[¢H) (€
fluctuation of the coupling is so fast that motional narrowing

)

e ensures that the value can be approximated by the average
value. Molecular dynamics simulations with various force
e field®1"%"*support the observation of a domind®j struc-
ture. However, different force fields predict the presence of
@ both 8 strand andag structure as well and the relative sta-
bilities of the different structures were found to be very sen-
sitive to the force field parameters.
Our molecular dynamics simulation of trialanine in@
FIG. 5. Feynman diagrams and coupling schefii®sR, , (2) R,, and(3) includes all the atoms of the trialanine and water. The ami-

R3] for the k;, technique. The ground state is denogedrhe single excited noterminu_s group was protonatésee Fig. J..tO account _for
manifold is denotea and the doubly excited manifold is denoted the experimentapD value of 15261 A chlorine counter ion

44

(2)
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240 +— .
180 ((@ ‘ 1.0 210 - |
120 - L. 0.8 w180 o
4 B ) 180 T i FIG. 7. (Color) The joint distribution of the Ramachan-
60 i 7] B dran angles. The nine coloured equidistant contour lines
06 120 1 i are plotted. The horizontal black lines @t=0° and ¢
b r : 150' 1'20' '90' —1601 & =—120° indicate the boundary used to distinguish be-
. 0 TEEY _<I> - tween theP,, and ay configurations.P,, is centered
] | Dy around =170° while ar is centered aroundy
0.4 0 =—60°. To the right is the close up of tig, (top) and
—60 B T - ag (bottom) areas of the Ramachandran angle joint dis-
4 = —30 1 B tribution plot. Angles between 180° and 240° in the
~120 0.2 y i plot for P,, correspond to angles betweenl80° and
> —60 B —120° equivalent to a full 360° rotation.
—180 +—— ; 0.0 —901] i
180 0 —120 +——T T 111
—-150 —120 —80 —60 -30
®

was added to the simulation box to keep the system neutraiime step for 1 ns to get the right density and box size, the
The initial trialanine structure was obtained from thee- extended system meth@d’°was used to keep the tempera-
sTrRo packag€e? The velocity Verlet algorithrt was used to  ture and pressure constant, the final box length is 30.4 A.
describe the motion of the system. TtiearmMm27 force field  This was followed by an equilibration of the system in the
was employed for all interactions with a cutoff of 10 A for NVE ensemble with 1 fs time step for 1 ns. After the equili-
the nonbonded interactions. The Ewald Sfimwas used to bration phase, a 10 ns analysis trajectory was obtained by
calculate the long range electrostatic interactions. The simuapplying the NVE ensemble with 1 fs time steps. The struc-
lation was carried using theHARMM packag€e’® The struc-  ture was saved for every 10 fs giving a total off Kample
ture was first refined in vacuum using a 3000 step energpoints.

minimization procedurerRcGfrom the MAESTRO package’? The joint distribution of the Ramachandran angles is
The molecule was then embedded in a cubic unit cell of TIP3hown in Fig. 7. The two peaks correspond t&;aand an
water'® with the length of box 32 A. The cutoff distance for a configuration. Configurations with 120°< <0° were

the Lennard-Jones forces was set to 12 A. All the watemssigned asr, while all other configurations were taken as
molecules overlapping with the trialanine were removed. Theé?|, . These boundaries between the two configurations are
system includes one trialanine and 971 water molecules. Tmdicated by black lines in Fig. 7. Interconversion between

release the internal tension, a 10000 steps Adopted Basike two species takes place whgerosses the barrier around
Newton-Raphsoff energy minimization was performed. The —120°. We found thé®,, configuration for 70% of the time
system was then equilibrated und¢éP T ensemble with 1/fs and ag for the remaining 30%. These are comparable to the

similar simulations of Stock and co-worké¥sThose authors
found, however, a large variation in the relative abundance of

I 1 I I I . . . . . . .
06k ] different configurations of trialanine with different force
osk 3 fields (AMBER, CHARMM, GROMOS andopPLS). This discrep-
04} . ancy was also reported for other small peptitf&.The cal-
03 ] culated abundance should thus be treated with some caution
021 7] and spectra will therefore be presented both for the indi-
o L e E vidual configurations and the mixture.
Y60 300 240 -1@0 -120 -60 0 The distribution functions of the Ramachandran angles
1 , , : , , obtained for each configuration were fitted to Gaussians. The
osk ’ ] simulations and fits are shown in Fig. 8. The average values
0.6k ] and variancea? are reported in Table . The average angle
04k ] between the CO transition dipol€®) is reported in Table |
02 s
T e [
-q80 -150 -120 -94)0 -60 -30 0 TABLE I. Distribution parameters for the two configurations of trialanine.
FIG. 8. The distribution of the Ramachandran angles. Solid lines are simu-- ¢ : éd)) dA‘gz é@ dAgz d® p
- © : t .
lated data and dotted lines are Gaussian fits. Upper panel#-thistribu- onfigurations _ (deg (deg) (deg (deg) (deg op
tion, Py, is the left peak around 180°. R is the small right peak at 60°. P, —86.0 14.3 167.4 20.1 1139 70%
Lower panel—thep distribution, both configurations now peak around 80°. agr -82.9 141  —-627 18.3 854  30%

The larger peakR,, configuration the small peak ¢ configuration.
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180 218 250 —T T T T
1 - T 174 L ]
120+ i 13.1 2008 .
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| L 4.4 g g 150 \ N a
> 0+ - 00 § \.. ]
1 i —44 *
=80 i -8.7
120 i ~131
| i —17.4
—-180 —21.8

-180

FIG. 9. (Color) Ramachandran plot of coupling constant from Ref. 64. The
black contour lines are drawn for 25% of the peak value of the joint distri-
bution of the Ramachandran angles.

1 8(())

as well. The distribution of Ramachandran angles are super-
imposed on the Tasunaib initio mag* for the couplingd,,

L | L ] L | L | L
in Fig. 9. In Fig. 10 the distributions of the coupling in the 1000 100 200 300 400 500
two configurations are shown along with the distribution of vfs
the frequencies. FIG. 11. The calculated correlation functions of the Ramachandran angles.

The two configurations are found to be quite stable andsolid lines and dash-dotted lines are the calculated and fitted correlation
only 38 transitions occur during the 10 ns simulation. Thisfunctions of¢. Dashed and dotted lines are the calculated and fitted corre-
indicates that the lifetimes of the two species are a few hunl_atlon functions ofi. The fitting parameters are given in Table II.
dred picoseconds. The slow exchange between the two con-
figurations should not affect line shapes. We thus neglected
this dynamics and calculated the response as the inhomoge- IP(Q,1) _ _

S . =-T'(Q)P(Q,t) (22
neous average of the response of the individual species. The at
correlation functions of the Ramachandran angles were caly;h, Q1= 6wy, Qp=0bwy, Q3=05p, andQ,=oy. [(Q) is

culated for 350 ps pieces of the trajectory, where the systeffe rejaxation operator for the stochastic variatfesThe

was in the same configuration all the time. The correlationg,, 1 chowski equation for our Brownian oscillator model is
functions were well fitted by biexponentials with a fast 100

fs decay and a slower 4 ps decay as shown in Fig(sée IP(Qt) , 0
Table 1. o ——Z«l Y50, QJ'—'_AJ'(;_QJ. P(Q,1). (23
The probability distributionP(£2,t) is assumed to sat- ) . )
isfy the Markovian master equatigeee Appendix A Four independent collective coordinates were chosen to rep-

resent the relevant bath motion. Each coordinate is modeled
as a Brownian oscillator and has two parametefglistribu-

T 7 N R tion) and vy (relaxation constant The frequency shifts from
0.8} / . the average value of the fundamental frequency for each
06} ,,// . mode Pw, and Swy,) are treated as independent stochastic
0.4} yd A

/ . 1
0.21 L ]
o ---—-'./ | ) | . | . 3 TABLE II. Parameters for the SLE.
{500 1620 1640 1660 1680 1700
wlem” Py agr fit A fit B
0.04 w, (cm™h) 1652 1652 1647.41 1649.48
I ] wp, (cm™Y) 1668 1668 1672.18 1672.54
0.03r ] Yo, (pSY) 4.545 4.545 4.344 6.281
0.02 ] A, (cm™) 16.1 16.1 19.614 22.951
L Ya, (PSY) 4.545 4.545 4.916 4.909
0.01 — A,, (em™) 16.1 16.1 19.836 20.826
i ] (¢) (deg —86.0 -82.9 —80.5 —83.6
05 0 B 10 G 20 ¥4 (pSY) 13.53 14.57 11.474
Yem™ A, (ded) 14.3 14.1 9.886
() (deg 167.4 -62.7 165.9 163.8
FIG. 10. Top: distribution of the frequencies for the I¢aolid) and high v, (ps™?) 9.55 10.08 4.315
(dashegl frequency CO stretch. Bottow: distribution of the coupling Ryr A, (ded) 20.1 18.3 19.014

(solid) and ag (dashed

Downloaded 21 Dec 2004 to 128.200.11.121. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



10584  J. Chem. Phys., Vol. 121, No. 21, 1 December 2004 Jansen, Zhuang, and Mukamel

TABLE lIl. The expansion coefficients for the coupling in terms of the collective bath coordinate® defined in Sec. IV whose cou-
deviations of the Ramachandran angles from the average values in the t\l\ﬁ”ng with the system is given by th€ dependence of
figurations. Th it crhdeg ", wh d d the order of .
configurations. The units are chdeg ", wheren depends on the order o L (€). Fluctuations of the anharmonicitids, and K,, are
the expansion coefficient. 1 315800 -
neglected and we sé&,=K,=16 cm ~.°>>°“The transi-

Py aR tion dipoles for the two modes were placed at the C—O bond
Coo 4.039 94 10,5145 0.8268 A grom the garbon atom formmg an angle of 20° with
Cyo 0.143 177 0.0898829 the bond® Fluctuation of the transition dipoles of the local
Cor 0.125022 —0.115885 modes were neglected and their magnitude was set to unity.
Cu 2.8317%10°°3 —2.946 88102
Cao 2.4345% 102 —1.0161x10°°
Cox 4.44314¢10°* ~6.8695%10 V. THE LINEAR ABSORPTION
Cu 4.288 910 ¢ 1.756 54<10°° '

—5 —6 . . . . . .

%! —1.756 13100 —7.1161x10° The solution of the stochastic Liouville equation is out-
Cu —5.127 531077 —1.2963x10°1°

lined in Appendix A. The evolution of th&j block of the
SLE is expressed in terms of the Green's function
ng(Q,Q’,t),SZ

variables. These fluctuations are dominated by the interaction
with the solvent water molecules in the vicinity of each in-
dividual amide unit. The Brownian oscillator parameters for
the frequencies arey,’=1y,'=220fs and A,=A,
=16.1 cm %, which were found to reproduce the experi-
mental line shape for the isolated amide | mode in NMA.
The fundamental frequencies are given by=(w,)+ dw,
and w,=(w,)+ dwy,. The average frequenciegaf,) and

pkj(ﬂ,t)=f GYkiQ,Q' 1) pMQ’,0dQ". (26)

The procedure used to obtain the Green’s function in the
frequency domain is given in Appendix E. The response
functions are given in terms of the Green’s function in Ap-
pendix B.

The absorption line shapgEg. (B1)] were simulated at
four levels of sophistication. At the highest lev@), fluctua-

(wpy) for the two bands were taken to be 1652 and,. : : . .
1 . > 62 . . tions of all four collective bath coordinates as described in
1668 cm %, respectively>2 The difference is due to the . ) SR
Sec. IV are included. At this level the Liouvillian is con-

charge on the terminal amino group and the amide unit clos= ) . )
est to the acid group has the lowest frequet Fig. 1 structed in the local basis and the coupling between the two

The intermode coupling! between the two modes is local modes fluctuates depending on the Ramachandran

determined mainly by the Ramachandran angles. The flucngles. The local mode frequencies fluctuate as well. At the

tuations of these anglé$¢ and §y) are a natural choice of next level(ii) th'e coupling is held f|xeq and only the local
stochastic variables for the coupling. The couplihgvas mode frequencies are fluctuating. The importance of the Ra-

. . machandran angle fluctuations is revealed by comparing
‘;Z';’a”ded in the Ramachandran angle fluctuatidgsand o o 1o levels. At the third levelii) the Liouvillian is

constructed in the fixed average Hamiltonian eigenbasis and
2 2 o only the eigenvalues are allowed to fluctuate. The fourth
Jdp.09)=2, 2 Cij5¢' 0P, (24 Jlevel (iv) is identical to(iii) except the fluctuations of the
T diagonal elements in the exciton basis are taken to be very
whereC;; are the expansion coefficientSg, is the coupling  slow. In practice, as the frequency fluctuations become slow
at the average position of the Ramachandran angles arourdiarger basis is needed to ensure the convergence of contin-
which the Taylor expansion is made. We four@y, ued fraction solution to the SLE. For faster convergence in

=4cm ! in the P, configuration and 10.5cnit for @r.  the static simulationgiv) the time scale for the fluctuations
Cj; were obtained by a fit to the Tasumi map connecting thehave been set an order of magnitude longer thafiiiin
coupling constant and the Ramachandran arfjige re- The linear absorption oP,, is given in Fig. 12 for the

maining expansion coefficients are reported in Table Ill. Thefour models. In modefiv) the spectrum is one broad Gauss-
stochastic variablesdw,, dwy,, 6¢, andsy) are all treated  jan centerd at 1660 cnt. In model (i) the two peaks are
as Brownian oscillators using the relaxation operator giverntesolved. The stronger peak is around 1650 trand the

in Appendix C. The parameters for the Brownian oscillatorweaker at 1670 cm. Model (ii) is very similar to(iii ). The
models used for the Ramachandran angles were taken frogw frequency peak gain a bit of intensity, while the high

the fits of the Ramachandran angle auto correlation functiongequency peak loose a bit. In modg@) the two peaks get
as reported in Table II. closer and the low frequency peak intensity decreases.
The stochastic Liouville equation is constructed by com-  The linear response afy is also given in Fig. 12. In
bining the Liouville equation for the exciton systef&q.  model (iv) a broad Gaussian line is observed around
(10] and the Markovian master equatipq. (22)] for the 1660 cm*. In the spectrum for modéiiii) two peaks are

four collective Brownian oscillator coordinates: visible at 1645 cm* and 1675 cm®. Here the highest fre-
i guency peak is the strongest. In modié] the peaks move
p(Q,t)=— %L(Q)p(ﬂ,t)—l“(ﬂ)p(ﬂ,t). (25 slightly apart and they both gain intensity. In model the high

frequency peak gain intensity.
The frequencies and coupling for the exciton system de- In model (iii) there is no coupling between the two
scribed in Sec. Il undergo fluctuations depending on themodes, the eigenstates are time independent and the nonadia-
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FIG. 13. The fitted linear absorption. The solid line is experiment. The
dotted line is fitA and the dashed line is fB. The deviation at high
frequencies is due to the carbonyl group CO stretch that is not included in
the simulation.
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etries of the configurations obtained with the fits are similar
to the geometryP, .
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)
w/cm VI. THE THIRD-ORDER RESPONSE

FIG. 12. (Color) The linear absorption d?,, , @r, and M. Blue modeli)
absorption; green modeéii); red model(iii ); black model(iv). The black
dashed line in the lower panel is the experimental spectief. 32.

Simulations were carried out for three signals generated
in the directions:k,= —k;+k,+ks, k;;=k;—k,+k; and
kin=ki+ko—ks.38 k., k,, andk; are the wave vectors
of the three laser pulses. In Figs. 4—6 the Feynman diagrams
and coupling schemes for the three techniques are shown.
batic coupling elements vanish. In modél the coupling The pulse sequences for the three techniques are shown in
between the two modes is finite and the eigenstates will b&ig- 14. All techniques use short laser pulses that are reso-
time dependent and the nonadiabatic coupling elements f3ant with both thege and ef transitions. The expressions
finite. The difference between these two models illustrate$!Sed in the simulations are given in Appendixfs.(B13),
the effect of the nonadiabatic coupling, when the couplingB17), and (B21)]. The simulations were performed in the
fluctuations are neglected. In general we expect that a wedkeguency domain where all plots are presented for the
peak can borrow intensity from other peaks through thdMaginary parts or the response:
nonadiabatic coupling. This is observed in the linear absorp-
tion for both configurations.

The two conformations have different linear absorption t1 t3
spectra with a smaller Davydov splitting By, . Further, the
low frequency peak is generally the most intense in e k 1 k uk k 1
conformation, while the reverse is true feg. The two spe-
cies interchange on a 100 ps time scale. The linear absorp- T,T,
tion for a 70/30 mixturégM) of P, andag are presented and
compared with experiment in Fig. 12. In the experimental
spectrum the low frequency peak is the strongest, while in b 15
the combined spectrum the two peaks seem equally strong

k uk k, l k

-~ Y

and the simulated low frequency peak has a slightly higher
frequency compared to experiment.

The linear response was fitted using simplex T, T Ty T,
minimizatior* of the root mean square deviation between a
single configuration SLE simulation and experim&nf.he f
fit is not unique and two fits were obtained. All 12 param- -3 .
eters used in the SLE were optimized inAit Eight param- k uk k l k
eters were used in fiB, where the Ramachandran angles
were kept fixed. The fits are shown in Fig. 13 and the param-
eters are given in Table Il. The tail of the carboxyl CO

stretch peak at 1725 cm observed in the high frequency gig. 14. puise sequences for the three techniques. From top to bdgtom,
end of the spectrum was not included in the fits. The geomephoton echp k,, , andk,, (reversed photon echo

~Y

114

7T, T, t
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FIG. 15. (Color) The photon echo spect@zzz. From left to right spectra oP, , ag, andM are shown. From top to bottom modg), (i), (iii ), and(iv).
Blue colors are negative and red colors are positive. All spectra are normalized to the most intense peak.

| % | to pulse 3 and the signaZ¢ZYY). The spectra were calcu-

S(wy,tz,03)=Im fﬁxdwzs (01,02,03) lated in the molecular frame and then averaged over the ori-
entations in the laboratory frame using E@) of Ref. 23.
Xexp —iwsty), (27 The photon echo spect&},,,[Eq. (B14)] are shown in

" Fig. 15. ForP,, all four models i, ii, iii, and iv have negative
S'(ty,w,,w3)=Im j dw;S(w;, 05, 03) peaks above the diagonal and positive peaks below the diag-

- onal. In the static limit(iv) multiple overlapping peaks are
Xexg —iwity), (28)  Observed, while in all other cases one peak is found above

the diagonal and one below. These peaks are stretched out
along the diagonal. While the spectra for modglg and(ii)

look very similar, the mode(i) spectrum has sharper peaks

) that are less stretched out along the diagonal. The spectra of

Xexp(—iwgty). (29) ar show multiple peaks above and below the diagonal. Pairs
The 2D IR spectra depend on the polarization direction®f positive and negative peaks are located at the diagonal

of the laser pulsé&®®and were calculated for two configu- positions ,=—1650 cm },w;=1650cm?) and (0,
rations. In the first all fields and the signal are parallel=—1670 cm %,w3=1670cm ). Cross peaks are located
(ZZZ2) and in the second pulses 1 and 2 are perpendiculaat (wy=—1650 cm ,w;=1670 cm %) and (01

S'"(ty,wy,w3)=Im j dw;S" (w1, 0,,w3)
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FIG. 16. (Colon The experimenta$' photon echo spectrum corresponding
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The spectra for parallel pulses are shown at the top and for perpendicular &), model (iv) shows a broad positive going peak with
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are normalized to the most intense peak.
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=—1670 cm },w3=1650 cm't). For model (iv) these
peaks strongly overlap. In the spectrum for mogg) the
diagonal peaks are approximately equally strong, while the
low frequency diagonal peak is the strongest in the m@del
spectrum. For modd(i) the negative part of the cross peak
above the diagonal is the most intense. The mixtuvg (
spectra of the two configurations are dominatedPhy, but a
series of weak extra peaks are observed at thg (
—1670 cm 1, w;=1670 cm ) diagonal position. In the
spectra observed by Woutersen and Hamithishown in Fig.
16 together with the modéi) spectrum of the mixture these
diagonal peaks are more pronounced. Note that the experi-
mental spectrum was obtained with a time delapf 1.5 ps,
where the delay time in the simulation is 0 ps.

The simulatedS,, spectra are shown in Fig. 17. For

Yome structure below the diagonal and a broad negative peak
is observed above the diagonal. Modiél) gives two sharp

Downloaded 21 Dec 2004 to 128.200.11.121. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp

. Pp ap M
(1) 1700 L L 1700 — \'\ 1700 S — 1.0
—~~ -
T . S - b N - . - 05
§ 1650 =S e 1650 7 1650 — - 0.0
g - 5 IR . . -05
1600 —— 1600 — L 1600 —— -10
—1700 -1650 —1600 —1700 —1650 —1600 —1700 —1650  —1600
(i1) 1700 T R 1700 T — 1700 T — 10
~ - -
g 1650 | L1650 1650 = 0.0
= W) N &S
3 T - . - =3 - -05
AN
1600 —— 1600 —— 1600 —— -10
1700 -1650 —1600 —1700 —1650 —1600 —1700 —1650  —1600
(iii) 1700 T - 1700 TR E— 1700 S - 10
S\ ]
= - . g . - s 05
1650 - ¢ . 1650 k 1650 = 0.0
» B L - . {19 . -05
g i
1600 — 1600 — 1600 = -10
—1700 -1650 —1600 —1700 —1650 —1600 —1700 —1650  —1600
(iv) 1700 T — 1700 1700
:\
| i
(E, 1650 - 1650 — 650
p—
(2] - -
3
1600 1600 SN SN4600
-1700 -1650 —1600 —1700 —1650 —1600 —1700 —1650  —1600
-1 -1 -1
wp (cm™) wp (em™) wp (em™)

FIG. 17. (Color) Same as Fig. 15 but fa8,,yy.



10588  J. Chem. Phys., Vol. 121, No. 21, 1 December 2004 Jansen, Zhuang, and Mukamel

peaks one above the diagonal and one below. The two strorgjven in Fig. 20. In this technique thiey elements show up

peaks are predominantly the cross peaks ab; ( along thew, axis and th€e andeg density matrix elements

=-1650cm !, w;=1670cm ) and (w,;=—1670 cm %, along thew; axis. The threedfg elements have frequencies

w3=1650 cm ). Between these a number of weaker fea-around 3287 (3281) cnt f,g, 3326 (3337) cm? f,g, and

tures are observed, arising from interference between th&315 (3309) cm?! f5g for P, (ag). The fe elements have

negative part of the cross peak below the diagonal and thiequencies around 1636 (1635) ¢t f.e;, 1675

positive going cross peak above the diagonal. For méiel (1690) cmi! f,e,, 1618 (1608) cm! f,e,, 1657

the cross peak below the diagonal and the low frequency1664) cm?® f,e,, 1646 (1636) cm® fize;, and 1664

diagonal peak dominate the spectrum. Weaker features atd663) cni® fze, for Py (ag). The dominant peaks are

observed above the diagonal. Modgl shows only two those where the system is in tiigg state duringt, and in

peaks, one above and one below the diagonal. Locatetye; or e; duringt; and those where the systemis in the

around ;= —1660 cn 1,w;=1660 cni 1) they look like  state duringt, and in fse, or in e,g during t;. Negative

the response from one mode rather than two. &grthe  peaks at thd;g, e;g position andf,g, e,g are observed in

model (iv) response is again the broadest and dominated byome spectra as well. T8}, spectra folP, , ag, andM

the diagonal peak around 1670 ¢hn In the remaining spec- are depicted in Fig. 21. FdP, and ag the number of re-

tra the peaks are sharper and weak cross peaks are observeéelved peaks reduces from mod@i) to model (ii). The

For model(ii) the low frequency diagonal peak is the stron- difference betweerii) and (i) is less pronounced. I,

gest. For modeli) the two diagonal peaks are equally strongmodel(i) there are two peaks along thag axis. The negative

again. peak in the middle between the two fundamental frequencies
For M, multiple peaks are observed in all spectra. Modelresults from motional narrowing. The stretch along indi-

(i) gives three positive peaks below the diagonal. The peakeates that all threég elements are reached. Feg the peaks

at the lowest and highest frequency predominantly comeg1erge when going from modeéii) to (i) creating four peaks

from ag, while the middle peak comes froR, . Above the ~ With approximately the same, frequency in model(i)

diagonal two negative peaks are observed. The high freagain indicating motional narrowing.

guency peaks is a combination of peaks fraq and P, ,

while the low frequency peak predominantly comes from

ag. In the experimental spectr&ﬁfzshown inFig. 16 only ' 515cUSSION

one peak is observed below the diagonal. Above the diagonal

two peaks are observed. These peaks both seem to be split The simulated linear absorption showed some differ-

into two peaks, but this splitting is not very pronounced andences with experiment. For mod@l the intensity of the high

might be due to the limited time resolution in the experiment.frequency peak is overestimated. This suggests that the MD

Below the diagonal only one peak is observed in contrast tgimulation overestimates the abundance ofdheonfigura-

the three in the simulated modg) spectrum. Note that the tion, in agreement with the conclusions reached by

experimental spectrum was obtained with a time déjagf  others?>2%32%2By varying the relative weight of the two

1.5 ps, where the delay time in the simulation is 0 ps. configurations we found better agreement as the weight of
The simulated linear response and 2D IR spectra did nog, is lowered. When fitting all parameters to the linear ab-

perfectly match experiment. A comparison with experimentsorption (fits A and B) only one P,, configuration was

suggests that they component is overestimated by the mo- needed.

lecular dynamics simulation. An earlier study by Stock and  The total simulatedS,,,, spectrum has two equally

co-worker§' showed that different molecular dynamics force strong peaks, while in the experimental spectrum shown in

fields predict very different probabilities for the different Fig. 12 the lowest frequency peak is slightly stronger, more

conformations of trialanine. The Ramachandran angles olresemblingP,, than theay configuration. The experimental

tained from the molecular dynamics trajectories may not b&pectrum shown in Fig. 16 was reproduced reasonably well

sufficiently accurate. However, the present method need nah the full simulation. The weak peak observed experimen-

necessarily rely on molecular dynamics simulations. For extally around ;=—1670cm *,wz=1670cm ') is, how-

ample parameters obtained from NMR can be used. ever, missing. The simulate®}, spectrum shows multiple
The S},,, spectra[Eq. (B18)] with t;=0 for the four  positive ar peaks below the diagonal that are not observed

models are shown fd?,, ag, andM in Fig. 18. In all cases in the experimental spectrum.

the peaks are stretched along the=0 axis. Little differ- Several factors contribute to the differences between the

ence is observed between the four modelsRqr. For ag ~ simulated and experimental spectra. First the 30% probabil-

the main peaks are split into two when going from madel ity of finding the system inug may be too high. In the light

to model(iii ). In model(ii) and model(i) spectra the lower of the recent study by Stock and co-worléneporting very

of the split peaks is the strongest. strong population dependence of the different conformations
TheSQZYYspectra witht; =0 for configurationP,, , ag, on the force fields this is likely. However, the simulateg

andM are given in Fig. 19 for the four models. In all spectra spectrum does not provide a perfect match either. The low

the peaks are stretched along the axis, whese=0. The  frequency peak has a slightly higher frequency in the simu-

number of peaks varies for the different models in both thdated spectrum. These might be due to some of the simplifi-

P, and ag configurations. cations in the model such as the neglect of coupling to other
The S}},, spectra Eq. (B22)] for P, ar, andM are  modes as the carbonyl stretch in the acid group. Furthermore,
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FIG. 18. (Colon Same as Fig. 15 but f@),,.

we have neglected fluctuations of the anharmonicity anget. The four models give different spectra also for this tech-
transition dipole moments. The stochastic variables ar@ique. This means that also for this technique the fluctuations
treated as Gaussian with the Brownian oscillator model. Thgf the Ramachandran angles and the difference between a
distributions of the Ramachandran angles are not perfectlodel with a fixed exciton basis and a local basis cannot be
Gaussian, as can also be seen in Fig. 7, where the Contoqﬁglected. Since all peaks haws close to zero this tech-

for the configuration distributions are not perfectly elliptical nique does not resolve well.

and in Fig. 8, where_thg Gaussian fits are shown. However, " 1 s and )b, spectra show the greatest differ-
these are small deviations and the model accounts for the : .

, L ence between the different models. Especially for$hg,
major part of distribution.

We therefore believe that the majority of the differenceSpeCtrum going from modélii) to model(ii) and introduc-

between experiment and simulations are due to the paran’ﬂg the fluctuations of the Ramachandran angles gave rise to
eters obtained from the molecular dynamics simulations thaft cl€ar rEd”Iﬁt'O” in the number of peaks due to motional
deficiencies in the SLE. It is clear that accounting for the"armowing.S™ provides the clearest way of distinguishing
dynamics of the Ramachandran angles even within each coRetween the different models and is the most sensitive of the
figuration is very important. Whether this affects the spectrdhree presented techniques.
of larger and more rigid peptide systems still remains to be  The SLE response for one configuration was fitted to the
seen. experimental linear absorption spectrum. Good fits were ob-
The S},,, and S}, spectra have not been measuredtained by either including fluctuations of the Ramachandran
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FIG. 19. (Colon Same as 15 but fa8), .

angles(fit A) or excluding thendfit B). The parameters were peaks are less sensitive. The two different fits can clearly be
restricted to the vicinity of the those obtained by moleculardistinguished in this spectrum.

dynamics simulation foP, . We did not fit the 2D IR spec- Distinct differences between th& and B fits are also
trum. The fitting procedure requires the calculation of numerobserved in theés}%,, and’5. spectra shown in Fig. 23. In
ous spectra with different values for the fitting parametersthe ZZZZ spectrum fitA shows more peaks tha®. The B

The fits show that only one configuration is needed to repropeaks correspond to pathways involving either only the low
duce the linear spectrum and that the same linear spectra cérequency mode or the high frequency node. The extra peaks
be fitted well regardless on whether the fluctuations of theorrespond to pathways involving tlege, coherence during
Ramachandran angles are included; the linear absorption tgne t,. Similarly, more peaks are observed in the perpen-
not sensitive to Ramachandran angle fluctuations. dicular polarized spectra going from & to fit A.

The linear absorption fits are not unique. T8lespectra The fluctuations of the coupling between the two amide
for the two fits are shown in Fig. 22. TI®,,,, spectra for | oscillators were directly connected to the fluctuations of the
the two fits are virtually identical. This spectrum is thereforeRamachandran angles determining the peptide structure,
not sensitive to the fluctuations of the Ramachandran angleschich in turn were obtained from molecular dynamics simu-
The S}, spectra are on the other hand very different. Thelations. The fluctuations of the fundamental frequencies were
negative peak is below the diagonal for Bt while it is  not directly connected to the motion of a specific structural
clearly above the diagonal for fA. The positive overtone element. However, if a specific set of collective coordinates
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FIG. 20. (Color) Same as Fig. 15 but fd),.

responsible for these fluctuations can be identified, as for In the present formalism the Green’s functions describ-

example the coordinates describing the hydrogen bonding, ihg the time evolution of the collective and system coordi-

should be possible to establish such a direct connection. nates are computed directly in the frequency domain. In this
In summary, a stochastic Liouville equation approach forway the two-dimensional Fourier transforms needed in the

the linear and nonlinear infrared spectra accounts for the eeumulant expansion of Gaussian fluctuations CGF are

fect of the fluctuations of collective bath coordinates on theavoided®’

line shapes by describing the evolution for the bath and sys-

tem coordinates simultaneously. At the same time the non;f—‘CK'\'OWLEDGMENTS

diabatic coupling is accounted for. Four collective coordi- ~ The support of the National Institutes of Health Grant

nates were used to account for the effect of the bath on th&o. (RO1 GM59230-0% and the National Science Founda-

two amide | modes for trialanine. We showed that the fluc-tion Grant No.(CHE-0132571 is gratefully acknowledged.

tuations of the Ramachandran angles are important in a fleVe are grateful to Peter Hamm for providing the experimen-

ible peptide such as trialanine. tal data.

The nonadiabatic coupling between the two states arisAPPENDIX A: GREEN FUNCTION SOLUTION

ing from the fluctuations of the local mode frequencies onIyOF THE STOCHASTIC LIOUVILLE EQUATION
separated by only about 20 cris important both in the

linear and nonlinear spectra transferring intensity between
the peaks.

The right eigenfunction are defined as

F(Q)hn(2)=N\ () (A1)
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FIG. 21. (Colon Same as Fig. 15 but f@}b. .

B A
and the left eigenfunctions as — .o \_) —_— e ] a5
Hn( Q)T (Q) =N, (D). (A2) = - . 05
The right eigenfunction with eigenvalue 0 is the equilibrium § g 1650 o 1650 | - 0.0
distribution according to the equilibrium condition » \% I % B 66
3 W = \ >
ap*d . 1600 —=" 4600 P N4 -10
ot =-T'(Q)P*(Q)=0. (A3) -1700  -1650  -1600 —1700  —1650  —1600
. . . . . . 1700 L L - 1700 L L - 1.0
The left eigenfunction with eigenvalue O is the unit vector.
The nth right eigenfunction has the same eigenvalue as the,, T T R\ I -
nth left eigenfunction. The right and left eigenfunctions are § @ 1650 _RQQ 11650 QD - 00
orthonormal (¢p,(2)| ém(£2)) = Snm)- S L N ! 05
To solve Eq.(25) we first expand the density matrix in 1600 3 1600 \ o
terms.of the(right-hand eigenfunctions of the relaxation op- 00 U686 —d805 —ingh  —i685  —i6oh ’
erator: ©, (Cm—i) ©, (cm_l)
Q)= C.(t ). Ad FIG. 22. (Colon S},,, spectra(upper row and S}, (lower row for the
g ) En: nl )d)n( ) ( ) two fits. Models A(?iézht column and B (left colurélfb\.(
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The Green’s function operator in the joint system and
05 bath space is denote@(€’,Q,t) with matrix elements
0o GPFPUt), wherei andj relate to the bath anab andcd to
the system in Liouville space. The bath space matrix element
of G(Q',Q,t) is denotedG, (t) and is operating on the
=0 system coordinates only. The system space matrix element of
G(Q',Q,t) is denotedg 2>, 0,1).

The linear and nonlinear responses can be obtained from
FIG. 23. (Color) S\, spectra(upper row andS,b. ., (lower row) for the  the Green’s functions as shown in Appendix B. The Green’s
two fit models A(right column and B (left column). functions are calculated numerically in frequency domain us-
ing the continued fractiol as described in Appendix E.

ZZYY

1600 \ f 1600
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Insetting the expansion of EgA4) into the SLE[EQ.
(25] gives APPENDIX B: THE LINEAR AND THE THIRD-ORDER

_ i RESPONSE
Cu(t Q)= ——L(Q)C(t Q
; (8 @al ) % [ h (D)Cn(t) S €2) The linear spectrum is determined by the time evolution

of density matrix elementg.,, wheree denotes an excited
—T(Q)Cp(1) dn(Q) | (A5) §tgte andy the grou.n'd ;tate. .Fo.r thg linear response the bath
initially has the equilibrium distribution an@,(t) is zero for
Using thaté,(Q) is a right eigenfunction of (€2), multi- n>0. The trace of the density matrix at timenly depends
plying with a left eigenfunctionp,(€2), and integrating over 0N Co(t). Therefore we only need to fin@, (t). The linear

Q the equation becomes response in time domain is

[
> Ca((dL(D)] bn(Q)) S(”(t)=R%g§ 1gbGo5 () tag | (B1)
n ,

i where gy, is the transition dipole from the excited stditeo
= [—g<¢{<(ﬂ)|L(Q)|¢m(ﬂ))cm(t)—)\mcm(t) the ground statgy. GJ%2%(t) is a matrix element of the
m Green’s functionGg ((t). This Green’s function is the upper
left matrix element of the Green’s function matiig o(t).
X(d’{((ﬂ)hbm(ﬂ»} (A6) The third-order response is given by the sum of four
Liouville space pathwaygand their complex conjugates
Using the orthonormality of the eigenfunctions leads to the 34

final equation 5(3)(t3,t2,t1)=(;i— Z [Ri(ts,t2,t1) —RF (t3,t5,t9)].
Cul() == N Ci(t) (B2)

i S (g1 A Fourier transform is often performed of the time variables
R~ (B D)|L(D)|pm(€2))Crr(1). (A7) t, andt; giving the frequency domain variables and ws.

) , A Fourier transform of the time variable gives the fre-
The matrix elementép, (Q)|L(Q)|pn(2)) depend on both quency domain variable,.

the relaxation operator and on how the Liouville operator |, the SLE formulation the first Liouville pathway is
depend on the stochastical bath variabf@s The formal given by

Green'’s function solution to EqA7) is

o0 R ( ’ , ): 2 kk,jk(ﬂm)
Cn(t)=mE:o G m(t)Cr(0). (A8) 1@ @201 Jjj’fabcdefghjklu

. N Xij’fh(ﬂm,ﬂ",wg),ufh’fg(ﬂ")
The matrice<C,,(t) can be found from the coefficients at

earlier times by numerical integration of E@7), when the X G'9(Q", Q' wy) Q)
eigenfunction expansion is truncated at an appropriate level. X GICDA Q| ), ) wP233( Q)

The system density matrix is then found by tracing over T
the bath coordinates XW(Q)P(a)dQ” dQ" dQ' dQ, (B3)
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whereW(Q) is the equilibrium distribution of the bath co- Here[- -]y, denote the 00 matrix element of the matrix prod-

ordinates.P(a) is the population of quantum state Intro-

uct in the bath space. The Green’s function matriGesre

ducing a shorthand notation, whefe-) denotes the integra- calculated using the continued fraction as described in chap-
tions over the bath coordinates and the sums over quantuter 9 of Ref. 51. The transition dipole matrix elements are

states this can be written as
Ri(wg,wz,01) = (A G M (wg) M 19G94% wy)

X[Lde,dcédc,ba(wl)ﬁbavaa>. (B4)

evaluated by expanding the transition dipole operators
122¢4(Q) in the bath coordinate® and evaluating the ma-
trix elements using Eq:B8).

When considering a specific experiment like the photon
echo some of the Liouville space pathways are forbidden by

The remaining three of the four independent Liouville spacehe rotating wave approximatiohand will not contribute to

pathways are in this notation
Ro(w3,@5,01) = (A G M(wg) 119G 9 w,)

% ﬁed,cdécd,ab(wl)ﬁab,aa% (BS)

Ra(w3z,wy,01) = (KGN (04) g1 OTGIMd( o))

% [Lde,dcédc,ab(wl)ﬁab,aa>, (BG)

Ra(©3,0,01) = (BHIKGIH N (3) AM"91GI 1)
< ﬁed,cdécd,ba(wl)ﬁba,aa>. (B?)

Using the Green’s function matricékw) and transition

the spectrum. In the photon echo experiment, the Liouville
space pathways corresponding to the Feynman diagrams in
Fig. 4 are the only ones contributing. When the Hamiltonian
is not coupling different excitation manifolds as the Hamil-
tonian used herfEqg. (1)], the Green'’s functions contributing
for a specific time interval can be characterized by the den-
sity matrix blocks of which they describe the evolution as
described in Sec. lll. Denoting states by the number of exci-
tations they have and an index ase; one can keep track of
the excitation manifolds. Using this notation a Green’s func-
tion matrix describing the time evolution of each of the den-
sity matrix blocks described in Sec. Il can be constructed
independently. The Green’s function matrix governing the

dipole matricesM, with the matrix elements in the basis of iMe evolution of the density matrix block® is denoted

the eigenfunctions oF () defined as

M3Ped= f B! (Q)u2PcY(Q) ¢, (Q)dQ, (B8)

the response functions can be recast as

Ri(wz,w,,wq)= Mkk,jkgjk,fh(w3)

abcdefghjk
fh,fg-fg,d
X MG T9C( )

X M de,dCQdc,ba(wl)M ba,aa]oop(a),
(B9)

[M kk,jkgjk,fh(wg)

Ry(w3,wy,w1)= )
abcdefghjk

X M fh,fggfg,ed(wz)

X M ed’Cdng’ab(wl)M ab,aa]oop(a),
(B10)

Rs(ws,0;,01)= [MIIEGIKIN gg)
abcdefghjk
X M hf,gfggf,de(wz)
X M de,dCQdc,ab(wl)M ab|aa]oop(a),
(B11)
Ry(03,07,01)= [M KGN (wg)
abcdefghjk
X M hf,gfggf,ed(wz)
X M ed’Cdng’ba(wl)M ba,aa]oop(a)_
(B12)

G®9%Yw). In a similar way the time evolution of the first
density matrix blocko,4 is described by the Green’s function
matrix G9999 w). The time evolution of the third density
matrix blockp®®is described by the Green'’s function matrix
G®%®%w). The fourth density matrix element blogk is
described by the Green’s function matrix'%'9(w). The
Green’s function matrixg "®¢(w) describes the time evolu-
tion of the fifth density matrix bloclpos .

Using this notation to keep track of the numbers of ex-
citations the three Liouville space pathways contributing to
the photon echo signal are then written as

3
[Ro(w3,w;,01) +R3(w3,w5,w1)

S'(wg,wz,wl)z(;i—

—RI (03,07,01)], (B13)

where
Ro(wz,wp,w1) =[ M 99€9GC9EY(3) M CICEGEEE )

X M eegegge’ge(wl)/\/l ge’gg]OO!

(B14)
Ra(w3,wp,wq)=[ M 999G 89CY( (o) M €999
X G9999( ) M 99985989 ,)
X M 9%99] 5, (B15

R?Lc (wg,wz,wl) — [M eefegfe,fe(wg)M fe,eegeaee( wz)
X M $895G 99 apy) M 9%99] 5.
(B16)

This expression allows utilizing the block diagonal structure
of the density matrix and thereby the overall Green’s func-
tion.
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To obtain the 2D IR spectrum the frequenoy need to  H (x) are Hermite polynomials fulfilling the recurrence re-
be transformed to the time domain. Alternatively the Green'9ation

function involvingt, can be evaluated directly in time do-

main by integration of the SLE. In the special case, where Hin+2(X) = 2XHn(X) = 2nHy -1 (X). (C4

is zero the Green's functiog(t,) is a unit matrix. The The eigenvalues aray. From the recurrence relation the
Green’s function matrixG(w,) can in this case simply be following integrals needed in order to calculate the matrix

ignored. elements oL (Q) can be evaluated
For thek;, technique the response is determined by the

Liouville space pathwaytsee Fig. %

i 3
SN (w3,0;,01)= %) [Ri(wz,w5,01)

+Ry(w3,w2,01) —R3 (w3, 02,01)],
(B17)
Ri(w3,wz,w1) =[MIFEIGEIEY 3) M C9EG S wy)
XMEEEIGEOEY 1) M99,  (BLY)
Ry(w3,wp,w1) =[ MI9CIGEIEY 3) M #999GI999(,)
X M 99E9GEGEY ) M #999] 5y, (B19)
RE (w3, @, 01) =[ M eefegTefe( o) A feeegeaee(q, )
X M €8€9Ge0e9( () ) M €999]  (B20)
For the calculations of thk,, spectra the time delal; was

kept fixed and the Green’s functiof(w;) was ignored

<¢,’1(Q)| ¢m(Q)> = 5m,n
(Ha(D) Q| () =AV2[ 601 1/24+ NS n-1]
<¢r’1(Q)|QZ| ¢m(Q)> = ZAZ[ 5m,n+2/4+ (n+1/2 5m,n

+n(n_l)5m,n72]- (CS)

APPENDIX D: THE RESPONSE IN THE ADIABATIC
REPRESENTATION

The expansion in the dynamic bas$ksg. (6)] is substi-
tuted into the time dependent ScHilmger equation in order
to obtain the time evolution of the expansion coefficients

ci(t):

Ae®dg)I| i ~
2 (T == 72 GOHOE). (01
The derivative of the product on the left side is taken and on
the right side the fact thag;(t) is the eigenfunction of (t)

analogous to what was done for the photon echo spectrumyith the eigenvalues;(t) is used. A dot denotes a time de-
For thek,,, technigue the response is determined by tworjyative:

Liouville space pathwaytsee Fig. 6

3
" (w3,0;,01)= g) [Ry(w3,0;,01) —R3 (w3,0,,01)],
(B21)
Ry(w3,07,01) =[ M 999G 989 45) M 2919GT9.19( ¢y
X M 199G Y 1) M99, (B22)
R (w3, w0, 07) =[ M 818G 1818 50) A1 019G 1010 )
X M 19:29G20G ) M 999] ;. (B23)

For the calculations of thk,;, spectra the time delay was
kept fixed.

APPENDIX C: THE BROWNIAN OSCILLATOR

The relaxation operator for the Brownian oscillator is

given by the Smoluchowski equatith

. (CD

J 2 Jd
F(Q):’y&—ﬂ A &_Q_l—Q

The right eigenfunctions are

1 0?2
¢n““:—znmnmexp(‘m)“n(m)- €2

and the left eigenfunctions are

Q
¢A(Q)=Hn(m)- (C3

Z |¢i<t>>ci<t>+2 &0 i(1)))

—— 5= aaO[Tn). (b2)

The first term on the left-hand side is moved to the right-

hand side and the equation is multiplied with one of the
eigenfunctionsy;(t) from the left:

S e OH0)=- 53 aOaO@OH0)

—Z @OlI)et). (D3

This leads to the final expression for the time evolution of
the expansion coefficients in the adiabatic basis

(0= 5e06(0-3 FHOlHv)E®. O

Defining the matrixK,
Kik(t)=€;(1) §j— i1 S (1), (D5)

the general solution to E@7) can be written in matrix form
assuming that the vector of expansion coefficieatgare
known at some timey:

c()=U"(t,to)c(to) =exp;

ti
—ftO%K(t )dt }c(to).
(D6)
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U°® which describes the time evolution of the expansion co-

i
10y — t
efficients depends on the nonadiabatic coupling m&d SW(ty) = g% Han(t1)Upp(ts) wpa(0)Uz4(t1) P(a)
the diagonal eigenvalue matrix exp, is the time ordered
exponentiaP? +c.c. (D12)

The timg e\{olution of the wave function in the adiabatic The four point correlation function in E¢9) determining the
representation Is nonlinear response is in the adiabatic basis given by

N () u(72) o 73) u(74))
[#(r)= [iha(r0) R

exp+(—f %K(r)dr)
i * = 2 ((70)|Pal 7)) (¥l 70) | ¢(70)) US] (710) e 1)
X (il 70)| $(70)). (D7) o
XUﬁj(7'10)U,piT(720),U«ih(Tz)Uﬁg(Tzo)UgRTso)Mfe(Ts)
Generally this is not easier to evaluate than in a fixed . of .
basis. It still involves a time ordered exponential of a time XU e T30 U o 720) eb( 74) Ul T0)- (D12)

dependent matrix wittN? elements, wher&l is the number  The probability [P(a)] of being in state(a) at time 7, is

of relevant eigenfunctions and expansion coefficients. Howgetermined by the Boltzmann distribution. The four time cor-
ever, if the nonadiabatic coupling is negligible or only in- relation function can then be recast as
volves a few eigenstates the time evolution can be simplified

considerably. () u(72) p(73) (74))
If the time variation of the adiabatic basis function is
slow (|¢¢(7))~0) the nonadiabatic coupling can be ne- :gh P(@) ng( T U g( 712 el 72) Ugd( T23) gl 73)
glected. Thisadiabatic approximationwill break down,
when the instantaneous eigenvalues cross. When the nona- XUSy(7ag) bal T2)USH(740)- (D13

diabatic coupling is neglected the time evolution operator., . o . . . .
: . L This general expression including the nonadiabatic coupling
becomes diagonal and each expansion coefficient ifEg). ? U .
has eight summation indices in contrast to the less computa-

evolves independently of the others. This allows us to followtionall demandina adiabatic aporoximation expression in
the time evolution of each adiabatic state separately. Y 9 bp P

If the nonadiabatic coupling is negligible only the diag- Eq. (9) with only four summation indices. It should be noted

onal e(t’) matrix is left over in Eq(D6) and the evolution of that for the summations both in E¢8) and (D12) the ma-

. . . trix nature of the expressions can be utilized allowing more
each expansion coefficient is independent of the others. In_. . ) o .
. . . o . . efficient computation, when the associative law is employed.
this adiabatic approximation the time evolution of the expan— . i : . Sr
. o o This expression for the four time correlation function in the
sion coefficients is simply

adiabatic representation is computationally just as expensive
as in a fixed basis and when the adiabatic approximation is
¢j(70)=1;(710)C;(70), not made the adiabatic representation need not be used.

i
Cj(Tl)ZEX;{—f 1%ej(7’)d7"
70

D8
(b8) APPENDIX E: MATRIX CONTINUED FRACTION

which means that each expansion coefficient simply acquir@o'-UTION OF THE SLE

a phasglj(rig)] as time evolves. o The stochastic Liouville equation as given in E#7)
The time dependent wave function in the adiabatic aptan pe solved in frequency domain using a matrix continued
proximation is fraction. Following chapter 9 of Risk&hthe general recur-
rence relation with. nearest neighbor coupling
|p(r)=| 2 [9(m) _ -
J Ca(0)= 2 ArCrsi(D) (ED)
i (7 ~
Xexr{ — %f ej(r)dr> (Yi(10)||l(70)) can be cast into a tridiagonal vector recurrence relation
’TO i
Ca(1)=Q, Cr1()+ On+ Q1 Ci 1 (). E2
EU(T10)|¢(TO)>. (Dg) n( ) n*n 1( ) n n n+1( ) ( )
Cy(t) is aL component vector of matriceS,(t):
In the adiabatic representation, the linear response is
Cra(t)
. CLn+1(t)
I Ch(t)= : E3
SOt =7 3 pact)US(t) oo OUSL(t) P() ot : &9
h abcd
Crnti-1(t)
+c.c. (D10 The matrice; , Q,, andQ;" are defined by their matrix
i ) o _ elements
When the adiabatic approximation is evoked the expression . R
simplifies to [Qnlar=ALnig-1 (E4
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[Qn]qrz rL;-?—q—l’ (E5)

setting Al =0 for [I|>L. This allows solving the general
equation using the solution of the tridiagonal vector recur-

rence relation, i.e., Eq. (E2. In Eq.
(Du(Q)L(Q)|pn(Q)) =A% ™.

(A7)

Simulation of vibrational line shapes 10597

The remaining Green’s functions matricé’@,ds) can be
found in a similar way. The Green'’s function matrices with
can be found by multiplying  with
Sn-1(8)8;-5(8) - S(8) 0r S;14(8) Sy 2(8) - Sin(9).
The full Green’s functionj(s) can be calculated using

The general solution of EqE2) can be expressed in Eq.(E1) to find the connection matricé™. Using thatS,

terms of the Green’s function matrix, (t):

cn<t>=mE:O Gom(1)Cr(0). (E®)

The initial value isG, (0)=Z8,,, whereZ is the unit ma-
trix. Using this identity and taking the Laplace transform

Gum(9)= | " exti—sty n(tict E7)
leads to the equation
SGnm(8) = Z8nm= Q1 G- 1m(S) + QG m(S)
+ Q7 Gy 1m(9). (E8)

Defining 9, = Q,— sZ gives

—Z8m= 91 Gn-1m(S) + CnGnm(S) + O Gt 1m(S)-
(E9)
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