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The line shapes detected in coherent femtosecond vibrational spectroscopies contain direct
signatures of peptide conformational fluctuations through their effect on vibrational frequencies and
intermode couplings. These effects are simulated in trialanine using a Green’s function solution of
a stochastic Liouville equation constructed for four collective bath coordinates~two Ramachandran
angles affecting the mode couplings and two diagonal energies!. We find that fluctuations of the
Ramachandran angles which hardly affect the linear absorption can be effectively probed by
two-dimensional spectra. The signal generated atk11k22k3 is particularly sensitive to such
fluctuations. ©2004 American Institute of Physics.@DOI: 10.1063/1.1807824#

I. INTRODUCTION

The biological activity of proteins is determined by their
three-dimensional structure and dynamics.1 Experimental
techniques including nuclear magnetic resonance~NMR!,2–4

linear optical and Raman fluorescence,5,6 small angel x-ray
scattering,7,8 and Laue diffraction9,10 are widely used to in-
vestigate proteins structures with nanosecond time resolu-
tion. While various structural motifs may be distinguished by
changes in linear infrared absorption,11–15 femtosecond mul-
tidimensional coherent vibrational spectroscopies facilitate
the extraction of more detailed information.16,17 These tech-
niques are analogous to two-dimensional~2D! NMR18,19 in
that the spectral resolution is enhanced by spreading the sig-
nal into multiple dimensions.

Proteins consist of amino acid units connected by amide
bonds~Fig. 1!. The carbonyl stretch gives rise to the strong
amide I infrared absorption (;1650 cm21). The 2D IR
spectra of the amide I region of many small (,6 units)
peptides20–30 were studied in addition to a handful of inves-
tigations for larger systems.31–34 Extensive experi-
mental25,26,32 and theoretical28 work was carried out on the
small peptide trialanine~Fig. 1!, which contains two amide
groups and a terminal carboxylic acid group. The 1725 cm21

CO stretch of the terminal acid group is spectrally isolated
from the 1650 cm21 and 1670 cm21 amide CO stretches.
The relative orientation of the two coupled amide I modes is
thus determined by a single set of Ramachandran angles,
making this system ideal for studying the effect of confor-
mational fluctuations on the infrared spectra of peptides.

The interpretation of spectra involves connecting the ob-
servable peak positions and line shapes to molecular struc-
ture and dynamics. The energies are in general fluctuating
with the molecule’s instantaneous environment. The peak po-
sitions depend on the average environment whereas the spec-
tral line shapes are sensitive both to the static distributions of
local environments and their dynamics.

The infrared spectra of the amide I band may be de-
scribed by the fluctuating exciton Hamiltonian,35,36

H~ t !5H0~ t !1Hint~ t !, ~1!

where

H0~ t !5(
i

v i~ t !Bi
†Bi2

1

2 (
i

Ki~ t !Bi
†Bi

†BiBi

1(
j Þ i

Ji j ~ t !Bi
†Bj ~2!

is the molecular Hamiltonian and

Hint~ t !5(
i

m i~Bi
†1Bi !E~ t ! ~3!

is the interaction with an external electric fieldE(t). Bi
†

and Bi are creation and annihilation operators for the local
Harmonic basis of amide I vibrations with frequencyv i and
quartic anharmonicityKi satisfying the Boson commutator
relation@Bi

† ,Bj #5d i j . Ji j are intermode couplings andm i is
the transition dipole.

The fluctuations of all parameters (v i , Ki , andJi j ) re-
sult from large amplitude motions of various conformations
as well as coupling to solvent and intramolecular low fre-
quency modes. If the fluctuations are very slow, the dynam-
ics does not affect the line shapes and the simulation simply
involves a static averaging over configurations using the in-
stantaneous eigenstates. The line shapes in this limit are de-
noted inhomogeneous. As long as the fluctuations are not too
fast, so that these eigenstates are well separated compared to
the nonadiabatic coupling parameter~defined in Sec. II!, it is
possible to represent the necessary dipole correlation func-
tions as sums over the various excited states, involving one
state at a time@see Eqs.~8! and ~9!#. If further the energy
fluctuations are Gaussian, one can derive closed expressions
using the second-order cumulant. This cumulant expansion
of Gaussian fluctuations~CGF! ~Ref. 37! was reviewed
recently.35

For faster fluctuations the nonadiabatic parameter is no
longer negligible, the direct simulation involves multiple
level crossings~see Appendix D! and becomes much more
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expensive. In this case an alternative approach will be to
include explicitly the relevant collective bath modes and to
work in an extended phase space, where we consider the
evolution of distributions rather than individual trajectories.
This is the basis of the Stochastic Liouville equation~SLE!
developed by Kubo38,39 to describe the dynamics of a quan-
tum system perturbed by a stochastic process described by a
Markovian master equation. It is widely used in the simula-
tion of electron spin resonance~ESR!,40,41 NMR,42 and
infrared43,44 line shapes. ESR spectra depend on the orienta-
tional motions and the SLE can, for example, be used to
account for the effect of rotational diffusion.40,41The SLE is
used for the description of chemical exchange in NMR,42,45

where the system can be found in one of several states with
different resonance frequencies. Population transfer between
states can, for example, be described by the two state jump
model42,46 or reorientational diffusion models.42,47 Motional
narrowing in infrared absorption was studied with the Red-
field approach48 in alkanes with torsional motion43 and a
carbon monooxide iron complex with carbon monooxide
exchange.44 The SLE has also been applied to optical stark
spectroscopy,49,50where the bath was treated using a Brown-
ian oscillator model. A microscopic derivation of the SLE for
excitons was given in Ref. 50.

In this paper we construct a SLE for the amide I band of
trialanine. Our model consist of two coupled modes using
the Hamiltonian given in Eq.~1!. The stochastic processes
perturbing the frequencies are described by a Brownian os-
cillator model. The coupling depends on dihedral angles
whose dynamics is also described by Brownian oscillators.
Thus the model provides a direct connection between dy-
namics of the molecular structure fluctuations and the spec-
trum. The SLE is solved numerically by expansion in the
eigenbasis of the relaxation operator. Green’s function matri-
ces are computed in the frequency domain using a matrix
continued fraction representation.51

The time evolution in the adiabatic basis is described in
Sec. II. The Liouville equation for the vibrational coordinates
is presented in Sec. III. The model for the time evolution of
the stochastic collective coordinates giving the structural
fluctuations is described in Sec. IV. The SLE for the joint
distribution of the vibrational and the stochastic collective
coordinates are discussed in Sec. IV. The line shape simula-
tions are carried out in Secs. V and VI. The results are dis-
cussed in Sec. VII.

II. ADIABATIC SIMULATIONS OF LINE SHAPES

The time dependent wave functionf(t) of a quantum
system described by the HamiltonianH(t) satisfies the
Schrödinger equation,

duf~ t !&
dt

52
i

\
H~ t !uf~ t !&. ~4!

The instantaneous eigenfunctionsc̃ i(t) of H(t) with eigen-
valuese i(t) constitute a natural orthonormal set known as
the adiabatic basis:

H~ t !uc̃ i~ t !5e i~ t !uc̃ i~ t !&. ~5!

It should be emphasized that the time argumentsc̃ i(t)
merely denote aparametric dependence of the eigenfunc-
tions on time. These functions are not solutions to the time
dependent Schro¨dinger equation. Expanding the time depen-
dent wave functionf(t) in this basis,

f~ t !5(
i

ci~ t !c̃ i~ t !, ~6!

the time evolution of the expansion coefficientscj (t) is
given by ~see Appendix D!

ċ j~ t !52
i

\
e j~ t !cj~ t !2(

k
Sjk~ t !ck~ t !. ~7!

Here a dot denotes the time derivative andSjk(t)
[^c̃ j (t)uc8 k(t)& are the nonadiabatic couplings.

The linear optical response is related to the two time
correlation function of the dipole operatorm(t).52 In the
adiabatic approximation where the nonadiabatic couplings
Sjk in Eq. ~7! are neglected, this correlation function is given
by

^m~ t2!m~ t1!&5(
ab

P~a!K mab~ t2!mba~ t1!

3expF2
i

\ E
t1

t2
vba~t!dtG L . ~8!

Here mab(t)5^c̃a(t)umuc̃b(t)& is the transition dipole mo-
ment between the adiabatic statesa and b and vba(t)
[eb(t)2ea(t) is the corresponding frequency.^¯& denotes
the ensemble average.

The third-order response function is similarly given by a
sum of four Liouville space pahtwaysRi related to the four
time correlation function, which in the adiabatic limit is
given by ~see Appendix D!52

FIG. 1. Trialanine with the Ramachandran angles and amide I modes indi-
cated.
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^m~t1!m~t2!m~t3!m~t4!&

5 (
abcd

P~a!K mad~t4!mdc~t3!mcb~t2!mba~t1!

3expS 2
i

\ E
t3

t4
vda~t!dt2

i

\ E
t2

t3
vca~t!dt

2
i

\ E
t2

t1
vba~t!dt D L . ~9!

Extensive experimental and theoretical work on the in-
terpretation of line shapes of the spectrally isolated OH
stretch of HOD~Refs. 53–56! in D2O and amide I modes of
N-methyl acetamide~NMA !,57–59 trialanine25,60–62and other
molecules63 have been carried out using the adiabatic ap-
proximation.

The adiabatic approximation assumes that the adiabatic
states obtained by diagonalizing the Hamiltonian at various
points along the trajectory retain their identity and no curve
crossing occurs. Equations~8! and ~9! hold as long as the
transitions under consideration are spectrally well separated
compared to the nonadiabatic coupling between them so that
the adiabaticity parameteru\Sjk /DEjku!1, whereDEjk is
the separation between the levels. To test the applicability of
this approximation, the nonadiabatic coupling elements and
the energy difference between the two eigenstates were cal-
culated for a short trialanine trajectory. Details of the mo-
lecular dynamics~MD! simulation are given in Sec. IV. The
Hamiltonian@Eq. ~1!# was constructed for each point along
the trajectory.J12(t) were obtained from the Tasumi map.64

The frequencies were obtained by adding a constant gas
phase value calculated from density-functional theory65 with
a solvent interaction term obtained from the two lowest order
derivatives of the solvent-solute interaction potential from
the CHARMM27 force field with respect to the CO stretch
coordinate.66 Only the lowest two excited states were consid-
ered andKi(t) was neglected. The eigenvalues and eigen-
functions were obtained by diagonalizing this Hamiltonain at
10 fs intervals and nonadiabatic coupling elements were
computed by numerical differentiation. The exciton splitting
is compared with the nonadiabatic coupling element in Fig.
2. It is evident that the nonadiabatic coupling is comparable

to the energy splitting and is often much larger. Therefore the
adiabatic approximation does not generally hold and nona-
diabatic effects can be expected to be observable in the spec-
trum. The full expressions for the linear and third-order re-
sponse with the nonadiabatic coupling are given in Appendix
D. The SLE provides an alternative route which circumvents
the nonadiabatic simulations by expanding the phase space
to include bath coordinates, as will be described below.

III. THE LIOUVILLE EQUATION FOR TRIALANINE

Two local modes contribute to the amide I band of tri-
alanine. The Hamiltonian is given in Eq.~1! with frequencies
va and vb , anharmonicitiesKa and Kb , and the coupling
constantJ. A total of six levels will be considered. These are
the ground state (g), two single excited levels (e1 ande2),
and three doubly excited levels (f 1 , f 2 , and f 3),67–69 as
shown in Fig. 3. We denote a state, where the first mode (a)
is excitedn times and the second mode (b) is excitedm
times (n,m). m, n50,1,2. The time evolution of the exciton
system is determined by the Liouville equation

]

]t
r~ t !52

i

\
L ~ t !r~ t !2

i

\
L int~ t !r~ t !, ~10!

wherer is the density matrix describing the state of the two
mode system.L (t)r(t)52 i /\ @H0(t),r(t)# is the Liouvil-
lian for the isolated system, while L int(t)r(t)
52 i /\ @Hint(t),r(t)# represents the coupling with the ra-
diation field.

L(t) does not couple states in different excitation mani-
folds (g, e, andf !. Density matrix elements that do not have
the same number of excitations in both the ket and the bra
can then be treated separately. The density matrix can be

FIG. 2. Solid line—the energy difference between the two amide I eigen-
states. Dashed line—the absolute value of the nonadiabatic coupling.

FIG. 3. Energy level diagram for the two amide I modes in trialanine. The
excitation number of each mode is shown in parenthesis below each state.
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divided into independent blocks denotedrk j, wherek is the
number of excitations in the ket andj the number of excita-
tions in the bra,k, j 50,1,2. The Liouville operator corre-
sponding to the density matrix blockrk j will be denoted
L k j ,k j:

]rk j

]t
52

i

\
L k j ,k jrk j. ~11!

For our model a total of eight blocks are needed to de-
scribe the third-order response,rgg, reg, rge, ree, r f g, rg f,
r f e, andre f. Of those only five are independent, sincernn8

andrn8n are Hermitian conjugates. The ground state density
matrix rgg(t)5rgg(t) evolves with the Liouville matrix

Lgg,gg5@0#. ~12!

The density matrix elements with one excitation in the ket
and the bra in the ground state,

reg~ t !5S re1g~ t !

re2g~ t !D , ~13!

evolves according to the Liouville matrix

Leg,eg5Fva J

J vb
G . ~14!

The evolution of the density matrix elements where both the
ket and the bra are singly excited,

ree~ t !5S re1e1
~ t !

re1e2
~ t !

re2e1
~ t !

re2e2
~ t !

D , ~15!

is determined by the Liouville matrix

Lee,ee5F 0 2J J 0

2J va2vb 0 J

J 0 vb2va 2J

0 J 2J 0

G . ~16!

The evolution of the density matrix elements with a doubly
excited ket and a ground state bra,

r f g~ t !5S r f 1g~ t !

r f 3g~ t !

r f 2g~ t !
D , ~17!

is determined by the Liouville matrix

L f g, f g5F 2va2Ka 0 &J

0 2vb2Kb &J

&J &J va1vb

G . ~18!

When the ket is doubly excited and the bra is singly excited
the density matrix elements

r f e~ t !5S r f 1e1
~ t !

r f 3e1
~ t !

r f 1e2
~ t !

r f 3e2
~ t !

r f 2e1
~ t !

r f 2e2
~ t !

D , ~19!

the time evolution is determined by the Liouville matrix

L f e, f e53
va2Ka 0 2J 0 &J 0

0 2vb2Kb2va 0 2J &J 0

2J 0 2va2Ka2vb 0 0 &J

0 2J 0 vb2Kb 0 &J

&J &J 0 0 vb 0

0 0 &J &J 0 va

4 . ~20!

The Liouville space dipole operator matrix elements are

Mab,cd5macdbd2mbddac . ~21!

The time evolution of the density matrix elements with
one excitation in the bra or the ketrge andreg determine the
first time interval in the third-order nonlinear response~see
Figs. 4–6!. The second time interval is determined byrgg,
ree, andr f g and the third time interval depends on the den-
sity matrix elementsreg andr f e.

IV. THE STOCHASTIC LIOUVILLE EQUATION

Many infrared experiments have been performed on the
amide I band of trialanine. The absorption spectrum in D2O
has been measured at differentpD values.25,32,60,62 Wout-
ersen and Hamm have reported the 2D IR pump probe spec-
trum of trialanine in D2O at pD 1, where the molecule is
fully protonated.25,32 13C isotope labeling was used to further
simplify the 2D IR spectrum.26,28,32These experiments sug-
gested that trialanine primarily exists in the polyglycine II
(PII ) structure in solution, a conformation characterized by
Ramachandran angles of (c,f)5(260°,1140°).25,26How-
ever, significanta-helix like (aR) composition was sug-
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gested based on the spectral inhomogeneity of the amide I
band.28 In addition, theb strand conformation was suggested
by polarized Raman and Fourier transform infrared~FTIR!
experiments.60,62

Response functions expressed in terms of frequency
fluctuation correlation functions of various functional forms
were fitted to reproduce the experimental spectra.25,28 The
dephasing rate, central frequencies, and coupling constant
were used as fitting parameters. The model assumes that the
fluctuation of the coupling is so fast that motional narrowing
ensures that the value can be approximated by the average
value. Molecular dynamics simulations with various force
fields61,70,71support the observation of a dominantPII struc-
ture. However, different force fields predict the presence of
both b strand andaR structure as well and the relative sta-
bilities of the different structures were found to be very sen-
sitive to the force field parameters.

Our molecular dynamics simulation of trialanine in D2O
includes all the atoms of the trialanine and water. The ami-
noterminus group was protonated~see Fig. 1! to account for
the experimentalpD value of 1.61,61 A chlorine counter ion

FIG. 4. Feynman diagrams and coupling schemes@~1! R2 , ~2! R3 , and~3!
R1* ] for the photon echo (kI). The ground state is denotedg. The single
excited manifold is denotede and the doubly excited manifold are
denotedf .

FIG. 5. Feynman diagrams and coupling schemes@~1! R1 , ~2! R4 , and~3!
R2* ] for the kII technique. The ground state is denotedg. The single excited
manifold is denotede and the doubly excited manifold is denotedf .

FIG. 6. Feynman diagrams and couplings schemes@~1! R3* and~2! R4] for
the kIII technique. The ground state is denotedg. The single excited mani-
fold is denotede and the doubly excited manifold is denotedf .
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was added to the simulation box to keep the system neutral.
The initial trialanine structure was obtained from theMAE-

STRO package.72 The velocity Verlet algorithm73 was used to
describe the motion of the system. TheCHARMM27 force field
was employed for all interactions with a cutoff of 10 Å for
the nonbonded interactions. The Ewald Sum74 was used to
calculate the long range electrostatic interactions. The simu-
lation was carried using theCHARMM package.75 The struc-
ture was first refined in vacuum using a 3000 step energy
minimization procedure,PRCGfrom theMAESTRO package.72

The molecule was then embedded in a cubic unit cell of TIP3
water76 with the length of box 32 Å. The cutoff distance for
the Lennard-Jones forces was set to 12 Å. All the water
molecules overlapping with the trialanine were removed. The
system includes one trialanine and 971 water molecules. To
release the internal tension, a 10 000 steps Adopted Basis
Newton-Raphson75 energy minimization was performed. The
system was then equilibrated underNPT ensemble with 1/fs

time step for 1 ns to get the right density and box size, the
extended system method77–79 was used to keep the tempera-
ture and pressure constant, the final box length is 30.4 Å.
This was followed by an equilibration of the system in the
NVE ensemble with 1 fs time step for 1 ns. After the equili-
bration phase, a 10 ns analysis trajectory was obtained by
applying the NVE ensemble with 1 fs time steps. The struc-
ture was saved for every 10 fs giving a total of 106 sample
points.

The joint distribution of the Ramachandran angles is
shown in Fig. 7. The two peaks correspond to aPII and an
aR configuration. Configurations with2120°,c,0° were
assigned asaR , while all other configurations were taken as
PII . These boundaries between the two configurations are
indicated by black lines in Fig. 7. Interconversion between
the two species takes place whenc crosses the barrier around
2120°. We found thePII configuration for 70% of the time
andaR for the remaining 30%. These are comparable to the
similar simulations of Stock and co-workers.61 Those authors
found, however, a large variation in the relative abundance of
different configurations of trialanine with different force
fields ~AMBER, CHARMM, GROMOS, andOPLS!. This discrep-
ancy was also reported for other small peptides.80,81The cal-
culated abundance should thus be treated with some caution
and spectra will therefore be presented both for the indi-
vidual configurations and the mixture.

The distribution functions of the Ramachandran angles
obtained for each configuration were fitted to Gaussians. The
simulations and fits are shown in Fig. 8. The average values
and variancesD2 are reported in Table I. The average angle
between the CO transition dipoles~Q! is reported in Table I

FIG. 8. The distribution of the Ramachandran angles. Solid lines are simu-
lated data and dotted lines are Gaussian fits. Upper panel—thec distribu-
tion, PII is the left peak around 180°.aR is the small right peak at260°.
Lower panel—thef distribution, both configurations now peak around 80°.
The larger peak (PII configuration! the small peak (aR configuration!.

FIG. 7. ~Color! The joint distribution of the Ramachan-
dran angles. The nine coloured equidistant contour lines
are plotted. The horizontal black lines atc50° andc
52120° indicate the boundary used to distinguish be-
tween thePII and aR configurations.PII is centered
around c5170° while aR is centered aroundc
5260°. To the right is the close up of thePII ~top! and
aR ~bottom! areas of the Ramachandran angle joint dis-
tribution plot. Angles between 180° and 240° in the
plot for PII correspond to angles between2180° and
2120° equivalent to a full 360° rotation.

TABLE I. Distribution parameters for the two configurations of trialanine.

Configurations
^f&

~deg!
Df

(deg2)
^c&

~deg!
Dc

(deg2)
Q

~deg! Pop.

PII 286.0 14.3 167.4 20.1 113.9 70%
aR 282.9 14.1 262.7 18.3 85.4 30%
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as well. The distribution of Ramachandran angles are super-
imposed on the Tasumiab initio map64 for the couplingJab

in Fig. 9. In Fig. 10 the distributions of the coupling in the
two configurations are shown along with the distribution of
the frequencies.

The two configurations are found to be quite stable and
only 38 transitions occur during the 10 ns simulation. This
indicates that the lifetimes of the two species are a few hun-
dred picoseconds. The slow exchange between the two con-
figurations should not affect line shapes. We thus neglected
this dynamics and calculated the response as the inhomoge-
neous average of the response of the individual species. The
correlation functions of the Ramachandran angles were cal-
culated for 350 ps pieces of the trajectory, where the system
was in the same configuration all the time. The correlation
functions were well fitted by biexponentials with a fast 100
fs decay and a slower 4 ps decay as shown in Fig. 11~see
Table II!.

The probability distributionP(V,t) is assumed to sat-
isfy the Markovian master equation~see Appendix A!

]P~V,t !

]t
52G~V!P~V,t ! ~22!

with V15dva , V25dvb , V35df, andV45dc. G~V! is
the relaxation operator for the stochastic variablesV. The
Smoluchowski equation for our Brownian oscillator model is

]P~V,t !

]t
52(

j 51

4

g j

]

]V j
S V j1D j

2 ]

]V j
D P~V,t !. ~23!

Four independent collective coordinates were chosen to rep-
resent the relevant bath motion. Each coordinate is modeled
as a Brownian oscillator and has two parametersD ~distribu-
tion! andg ~relaxation constant!. The frequency shifts from
the average value of the fundamental frequency for each
mode (dva and dvb) are treated as independent stochastic

FIG. 9. ~Color! Ramachandran plot of coupling constant from Ref. 64. The
black contour lines are drawn for 25% of the peak value of the joint distri-
bution of the Ramachandran angles.

FIG. 10. Top: distribution of the frequencies for the low~solid! and high
~dashed! frequency CO stretch. Bottow: distribution of the coupling forPII

~solid! andaR ~dashed!.

FIG. 11. The calculated correlation functions of the Ramachandran angles.
Solid lines and dash-dotted lines are the calculated and fitted correlation
functions off. Dashed and dotted lines are the calculated and fitted corre-
lation functions ofc. The fitting parameters are given in Table II.

TABLE II. Parameters for the SLE.

PII aR fit A fit B

va (cm21) 1652 1652 1647.41 1649.48
vb (cm21) 1668 1668 1672.18 1672.54
gva

(ps21) 4.545 4.545 4.344 6.281
Dva

(cm21) 16.1 16.1 19.614 22.951
gvb

(ps21) 4.545 4.545 4.916 4.909
Dvb

(cm21) 16.1 16.1 19.836 20.826
^f& ~deg! 286.0 282.9 280.5 283.6
gf (ps21) 13.53 14.57 11.474 ¯

Df (deg2) 14.3 14.1 9.886 ¯

^c& ~deg! 167.4 262.7 165.9 163.8
gc (ps21) 9.55 10.08 4.315 ¯

Dc (deg2) 20.1 18.3 19.014 ¯
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variables. These fluctuations are dominated by the interaction
with the solvent water molecules in the vicinity of each in-
dividual amide unit. The Brownian oscillator parameters for
the frequencies arega

215gb
215220 fs and Da5Db

516.1 cm21, which were found to reproduce the experi-
mental line shape for the isolated amide I mode in NMA.57

The fundamental frequencies are given byva5^va&1dva

and vb5^vb&1dvb . The average frequencies (^va& and
^vb&) for the two bands were taken to be 1652 and
1668 cm21, respectively.32,62 The difference is due to the
charge on the terminal amino group and the amide unit clos-
est to the acid group has the lowest frequency~see Fig. 1!.

The intermode couplingJ between the two modes is
determined mainly by the Ramachandran angles. The fluc-
tuations of these angles~df anddc! are a natural choice of
stochastic variables for the coupling. The couplingJ was
expanded in the Ramachandran angle fluctuations~df and
dc!,

J~df,dc!5(
i 50

2

(
j 50

2

Ci j df idc j , ~24!

whereCi j are the expansion coefficients.C00 is the coupling
at the average position of the Ramachandran angles around
which the Taylor expansion is made. We foundC00

54 cm21 in the PII configuration and 10.5 cm21 for aR .
Ci j were obtained by a fit to the Tasumi map connecting the
coupling constant and the Ramachandran angles.64 The re-
maining expansion coefficients are reported in Table III. The
stochastic variables (dva , dvb , df, anddc! are all treated
as Brownian oscillators using the relaxation operator given
in Appendix C. The parameters for the Brownian oscillator
models used for the Ramachandran angles were taken from
the fits of the Ramachandran angle auto correlation functions
as reported in Table II.

The stochastic Liouville equation is constructed by com-
bining the Liouville equation for the exciton system@Eq.
~10!# and the Markovian master equation@Eq. ~22!# for the
four collective Brownian oscillator coordinates:

ṙ~V,t !52
i

\
L ~V!r~V,t !2G~V!r~V,t !. ~25!

The frequencies and coupling for the exciton system de-
scribed in Sec. III undergo fluctuations depending on the

collective bath coordinatesV defined in Sec. IV whose cou-
pling with the system is given by theV dependence of
L ~V!. Fluctuations of the anharmonicitiesKa and Kb are
neglected and we setKa5Kb516 cm21.31,58,82The transi-
tion dipoles for the two modes were placed at the C–O bond
0.8268 Å from the carbon atom forming an angle of 20° with
the bond.83 Fluctuation of the transition dipoles of the local
modes were neglected and their magnitude was set to unity.

V. THE LINEAR ABSORPTION

The solution of the stochastic Liouville equation is out-
lined in Appendix A. The evolution of thek j block of the
SLE is expressed in terms of the Green’s function
G k j(V,V8,t),52

rk j~V,t !5E G k j ,k j~V,V8,t !rk j~V8,0!dV8. ~26!

The procedure used to obtain the Green’s function in the
frequency domain is given in Appendix E. The response
functions are given in terms of the Green’s function in Ap-
pendix B.

The absorption line shapes@Eq. ~B1!# were simulated at
four levels of sophistication. At the highest level~i!, fluctua-
tions of all four collective bath coordinates as described in
Sec. IV are included. At this level the Liouvillian is con-
structed in the local basis and the coupling between the two
local modes fluctuates depending on the Ramachandran
angles. The local mode frequencies fluctuate as well. At the
next level ~ii ! the coupling is held fixed and only the local
mode frequencies are fluctuating. The importance of the Ra-
machandran angle fluctuations is revealed by comparing
these two levels. At the third level~iii ! the Liouvillian is
constructed in the fixed average Hamiltonian eigenbasis and
only the eigenvalues are allowed to fluctuate. The fourth
level ~iv! is identical to~iii ! except the fluctuations of the
diagonal elements in the exciton basis are taken to be very
slow. In practice, as the frequency fluctuations become slow
a larger basis is needed to ensure the convergence of contin-
ued fraction solution to the SLE. For faster convergence in
the static simulations~iv! the time scale for the fluctuations
have been set an order of magnitude longer than in~iii !.

The linear absorption ofPII is given in Fig. 12 for the
four models. In model~iv! the spectrum is one broad Gauss-
ian centerd at 1660 cm21. In model ~iii ! the two peaks are
resolved. The stronger peak is around 1650 cm21 and the
weaker at 1670 cm21. Model ~ii ! is very similar to~iii !. The
low frequency peak gain a bit of intensity, while the high
frequency peak loose a bit. In model~i! the two peaks get
closer and the low frequency peak intensity decreases.

The linear response ofaR is also given in Fig. 12. In
model ~iv! a broad Gaussian line is observed around
1660 cm21. In the spectrum for model~iii ! two peaks are
visible at 1645 cm21 and 1675 cm21. Here the highest fre-
quency peak is the strongest. In model~ii ! the peaks move
slightly apart and they both gain intensity. In model the high
frequency peak gain intensity.

In model ~iii ! there is no coupling between the two
modes, the eigenstates are time independent and the nonadia-

TABLE III. The expansion coefficients for the coupling in terms of the
deviations of the Ramachandran angles from the average values in the two
configurations. The units are cm21 deg2n, wheren depends on the order of
the expansion coefficient.

PII aR

C00 4.039 94 10.5145
C10 0.143 177 0.089 882 9
C01 0.125 022 20.115 885
C11 2.831 7331023 22.946 8831023

C20 2.434 5331023 21.016131023

C02 4.443 1431024 26.869 5731024

C21 4.288 9231026 1.756 5431025

C21 21.756 1331025 27.116131026

C22 25.127 5331027 21.2963310210
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batic coupling elements vanish. In model~ii ! the coupling
between the two modes is finite and the eigenstates will be
time dependent and the nonadiabatic coupling elements is
finite. The difference between these two models illustrates
the effect of the nonadiabatic coupling, when the coupling
fluctuations are neglected. In general we expect that a weak
peak can borrow intensity from other peaks through the
nonadiabatic coupling. This is observed in the linear absorp-
tion for both configurations.

The two conformations have different linear absorption
spectra with a smaller Davydov splitting inPII . Further, the
low frequency peak is generally the most intense in thePII

conformation, while the reverse is true foraR . The two spe-
cies interchange on a 100 ps time scale. The linear absorp-
tion for a 70/30 mixture~M! of PII andaR are presented and
compared with experiment in Fig. 12. In the experimental
spectrum the low frequency peak is the strongest, while in
the combined spectrum the two peaks seem equally strong
and the simulated low frequency peak has a slightly higher
frequency compared to experiment.

The linear response was fitted using simplex
minimization84 of the root mean square deviation between a
single configuration SLE simulation and experiment.32 The
fit is not unique and two fits were obtained. All 12 param-
eters used in the SLE were optimized in fitA. Eight param-
eters were used in fitB, where the Ramachandran angles
were kept fixed. The fits are shown in Fig. 13 and the param-
eters are given in Table II. The tail of the carboxyl CO
stretch peak at 1725 cm21 observed in the high frequency
end of the spectrum was not included in the fits. The geom-

etries of the configurations obtained with the fits are similar
to the geometryPII .

VI. THE THIRD-ORDER RESPONSE

Simulations were carried out for three signals generated
in the directions:kI52k11k21k3 , kII 5k12k21k3 and
kIII 5k11k22k3 .35,85 k1 , k2 , andk3 are the wave vectors
of the three laser pulses. In Figs. 4–6 the Feynman diagrams
and coupling schemes for the three techniques are shown.
The pulse sequences for the three techniques are shown in
Fig. 14. All techniques use short laser pulses that are reso-
nant with both thege and e f transitions. The expressions
used in the simulations are given in Appendix B@Eqs.~B13!,
~B17!, and ~B21!#. The simulations were performed in the
frequency domain where all plots are presented for the
imaginary parts or the response:

FIG. 12. ~Color! The linear absorption ofPII , aR , and M. Blue model~i!
absorption; green model~ii !; red model~iii !; black model~iv!. The black
dashed line in the lower panel is the experimental spectrum~Ref. 32!.

FIG. 13. The fitted linear absorption. The solid line is experiment. The
dotted line is fit A and the dashed line is fitB. The deviation at high
frequencies is due to the carbonyl group CO stretch that is not included in
the simulation.

FIG. 14. Pulse sequences for the three techniques. From top to bottom,k I

~photon echo!, kII , andkIII ~reversed photon echo!.
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SI~v1 ,t2 ,v3!5Im E
2`

`

dv2SI~v1 ,v2 ,v3!

3exp~2 iv2t2!, ~27!

SII ~ t1 ,v2 ,v3!5Im E
2`

`

dv1SII ~v1 ,v2 ,v3!

3exp~2 iv1t1!, ~28!

SIII ~ t1 ,v2 ,v3!5Im E
2`

`

dv1SIII ~v1 ,v2 ,v3!

3exp~2 iv1t1!. ~29!

The 2D IR spectra depend on the polarization directions
of the laser pulses23,86 and were calculated for two configu-
rations. In the first all fields and the signal are parallel
(ZZZZ) and in the second pulses 1 and 2 are perpendicular

to pulse 3 and the signal (ZZYY). The spectra were calcu-
lated in the molecular frame and then averaged over the ori-
entations in the laboratory frame using Eq.~7! of Ref. 23.

The photon echo spectraSZZZZ
I @Eq. ~B14!# are shown in

Fig. 15. ForPII all four models i, ii, iii, and iv have negative
peaks above the diagonal and positive peaks below the diag-
onal. In the static limit~iv! multiple overlapping peaks are
observed, while in all other cases one peak is found above
the diagonal and one below. These peaks are stretched out
along the diagonal. While the spectra for models~iii ! and~ii !
look very similar, the model~i! spectrum has sharper peaks
that are less stretched out along the diagonal. The spectra of
aR show multiple peaks above and below the diagonal. Pairs
of positive and negative peaks are located at the diagonal
positions (v1521650 cm21,v351650 cm21) and (v1

521670 cm21,v351670 cm21). Cross peaks are located
at (v1521650 cm21,v351670 cm21) and (v1

FIG. 15. ~Color! The photon echo spectraSZZZZ
I . From left to right spectra ofPII , aR , andM are shown. From top to bottom model~i!, ~ii !, ~iii !, and~iv!.

Blue colors are negative and red colors are positive. All spectra are normalized to the most intense peak.
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521670 cm21,v351650 cm21). For model ~iv! these
peaks strongly overlap. In the spectrum for model~iii ! the
diagonal peaks are approximately equally strong, while the
low frequency diagonal peak is the strongest in the model~ii !
spectrum. For model~i! the negative part of the cross peak
above the diagonal is the most intense. The mixture (M )
spectra of the two configurations are dominated byPII , but a
series of weak extra peaks are observed at the (v1

521670 cm21,v351670 cm21) diagonal position. In the
spectra observed by Woutersen and Hamm25,32shown in Fig.
16 together with the model~i! spectrum of the mixture these
diagonal peaks are more pronounced. Note that the experi-
mental spectrum was obtained with a time delayt2 of 1.5 ps,
where the delay time in the simulation is 0 ps.

The simulatedSZZYY
I spectra are shown in Fig. 17. For

PII , model ~iv! shows a broad positive going peak with
some structure below the diagonal and a broad negative peak
is observed above the diagonal. Model~iii ! gives two sharp

FIG. 16. ~Color! The experimentalSI photon echo spectrum corresponding
~left! of trialanine ~Ref. 25! and the simulated model~i! spectrum~right!.
The spectra for parallel pulses are shown at the top and for perpendicular at
the bottom. Blue colors are negative and red colors are positive. The spectra
are normalized to the most intense peak.

FIG. 17. ~Color! Same as Fig. 15 but forSZZYY
I .
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peaks one above the diagonal and one below. The two strong
peaks are predominantly the cross peaks at (v1

521650 cm21, v351670 cm21) and (v1521670 cm21,
v351650 cm21). Between these a number of weaker fea-
tures are observed, arising from interference between the
negative part of the cross peak below the diagonal and the
positive going cross peak above the diagonal. For model~ii !
the cross peak below the diagonal and the low frequency
diagonal peak dominate the spectrum. Weaker features are
observed above the diagonal. Model~i! shows only two
peaks, one above and one below the diagonal. Located
around (v1521660 cm21,v351660 cm21) they look like
the response from one mode rather than two. ForaR the
model ~iv! response is again the broadest and dominated by
the diagonal peak around 1670 cm21. In the remaining spec-
tra the peaks are sharper and weak cross peaks are observed.
For model~ii ! the low frequency diagonal peak is the stron-
gest. For model~i! the two diagonal peaks are equally strong
again.

For M , multiple peaks are observed in all spectra. Model
~i! gives three positive peaks below the diagonal. The peaks
at the lowest and highest frequency predominantly comes
from aR , while the middle peak comes fromPII . Above the
diagonal two negative peaks are observed. The high fre-
quency peaks is a combination of peaks fromaR and PII ,
while the low frequency peak predominantly comes from
aR . In the experimental spectrum25,32 shown in Fig. 16 only
one peak is observed below the diagonal. Above the diagonal
two peaks are observed. These peaks both seem to be split
into two peaks, but this splitting is not very pronounced and
might be due to the limited time resolution in the experiment.
Below the diagonal only one peak is observed in contrast to
the three in the simulated model~i! spectrum. Note that the
experimental spectrum was obtained with a time delayt2 of
1.5 ps, where the delay time in the simulation is 0 ps.

The simulated linear response and 2D IR spectra did not
perfectly match experiment. A comparison with experiment
suggests that theaR component is overestimated by the mo-
lecular dynamics simulation. An earlier study by Stock and
co-workers61 showed that different molecular dynamics force
fields predict very different probabilities for the different
conformations of trialanine. The Ramachandran angles ob-
tained from the molecular dynamics trajectories may not be
sufficiently accurate. However, the present method need not
necessarily rely on molecular dynamics simulations. For ex-
ample parameters obtained from NMR can be used.

The SZZZZ
II spectra@Eq. ~B18!# with t150 for the four

models are shown forPII , aR , andM in Fig. 18. In all cases
the peaks are stretched along thev250 axis. Little differ-
ence is observed between the four models forPII . For aR

the main peaks are split into two when going from model~iv!
to model~iii !. In model~ii ! and model~i! spectra the lower
of the split peaks is the strongest.

TheSZZYY
II spectra witht150 for configurationPII , aR ,

andM are given in Fig. 19 for the four models. In all spectra
the peaks are stretched along the axis, wherev250. The
number of peaks varies for the different models in both the
PII andaR configurations.

The SZZZZ
III spectra@Eq. ~B22!# for PII , aR , andM are

given in Fig. 20. In this technique thef g elements show up
along thev2 axis and thef e andeg density matrix elements
along thev3 axis. The threef g elements have frequencies
around 3287 (3281) cm21 f 1g, 3326 (3337) cm21 f 2g, and
3315 (3309) cm21 f 3g for PII (aR). The f e elements have
frequencies around 1636 (1635) cm21 f 1e1 , 1675
(1690) cm21 f 2e1 , 1618 (1608) cm21 f 1e2 , 1657
(1664) cm21 f 2e2 , 1646 (1636) cm21 f 3e1 , and 1664
(1663) cm21 f 3e2 for PII (aR). The dominant peaks are
those where the system is in thef 1g state duringt2 and in
f 1e1 or e1 during t3 and those where the system is in thef 3g
state duringt2 and in f 3e2 or in e2g during t3 . Negative
peaks at thef 3g, e1g position andf 1g, e2g are observed in
some spectra as well. TheSZZYY

III spectra forPII , aR , andM
are depicted in Fig. 21. ForPII and aR the number of re-
solved peaks reduces from model~iii ! to model ~ii !. The
difference between~ii ! and ~i! is less pronounced. InPII

model~i! there are two peaks along thev2 axis. The negative
peak in the middle between the two fundamental frequencies
results from motional narrowing. The stretch alongv2 indi-
cates that all threef g elements are reached. ForaR the peaks
merge when going from model~iii ! to ~i! creating four peaks
with approximately the samev2 frequency in model~i!
again indicating motional narrowing.

VII. DISCUSSION

The simulated linear absorption showed some differ-
ences with experiment. For model~i! the intensity of the high
frequency peak is overestimated. This suggests that the MD
simulation overestimates the abundance of theaR configura-
tion, in agreement with the conclusions reached by
others.25,26,32,62By varying the relative weight of the two
configurations we found better agreement as the weight of
aR is lowered. When fitting all parameters to the linear ab-
sorption ~fits A and B) only one PII configuration was
needed.

The total simulatedSZZZZ
I spectrum has two equally

strong peaks, while in the experimental spectrum shown in
Fig. 12 the lowest frequency peak is slightly stronger, more
resemblingPII than theaR configuration. The experimental
spectrum shown in Fig. 16 was reproduced reasonably well
in the full simulation. The weak peak observed experimen-
tally around (v1521670 cm21,v351670 cm21) is, how-
ever, missing. The simulatedSZZYY

I spectrum shows multiple
positiveaR peaks below the diagonal that are not observed
in the experimental spectrum.

Several factors contribute to the differences between the
simulated and experimental spectra. First the 30% probabil-
ity of finding the system inaR may be too high. In the light
of the recent study by Stock and co-workers61 reporting very
strong population dependence of the different conformations
on the force fields this is likely. However, the simulatedPII

spectrum does not provide a perfect match either. The low
frequency peak has a slightly higher frequency in the simu-
lated spectrum. These might be due to some of the simplifi-
cations in the model such as the neglect of coupling to other
modes as the carbonyl stretch in the acid group. Furthermore,
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we have neglected fluctuations of the anharmonicity and
transition dipole moments. The stochastic variables are
treated as Gaussian with the Brownian oscillator model. The
distributions of the Ramachandran angles are not perfectly
Gaussian, as can also be seen in Fig. 7, where the contours
for the configuration distributions are not perfectly elliptical
and in Fig. 8, where the Gaussian fits are shown. However,
these are small deviations and the model accounts for the
major part of distribution.

We therefore believe that the majority of the difference
between experiment and simulations are due to the param-
eters obtained from the molecular dynamics simulations than
deficiencies in the SLE. It is clear that accounting for the
dynamics of the Ramachandran angles even within each con-
figuration is very important. Whether this affects the spectra
of larger and more rigid peptide systems still remains to be
seen.

The SZZZZ
II and SZZYY

II spectra have not been measured

yet. The four models give different spectra also for this tech-
nique. This means that also for this technique the fluctuations
of the Ramachandran angles and the difference between a
model with a fixed exciton basis and a local basis cannot be
neglected. Since all peaks havev2 close to zero this tech-
nique does not resolve well.

The SZZZZ
III and SZZYY

III spectra show the greatest differ-
ence between the different models. Especially for theSZZYY

III

spectrum going from model~iii ! to model~ii ! and introduc-
ing the fluctuations of the Ramachandran angles gave rise to
a clear reduction in the number of peaks due to motional
narrowing.SIII provides the clearest way of distinguishing
between the different models and is the most sensitive of the
three presented techniques.

The SLE response for one configuration was fitted to the
experimental linear absorption spectrum. Good fits were ob-
tained by either including fluctuations of the Ramachandran

FIG. 18. ~Color! Same as Fig. 15 but forSZZZZ
II .
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angles~fit A) or excluding them~fit B). The parameters were
restricted to the vicinity of the those obtained by molecular
dynamics simulation forPII . We did not fit the 2D IR spec-
trum. The fitting procedure requires the calculation of numer-
ous spectra with different values for the fitting parameters.
The fits show that only one configuration is needed to repro-
duce the linear spectrum and that the same linear spectra can
be fitted well regardless on whether the fluctuations of the
Ramachandran angles are included; the linear absorption is
not sensitive to Ramachandran angle fluctuations.

The linear absorption fits are not unique. TheSI spectra
for the two fits are shown in Fig. 22. TheSZZZZ

I spectra for
the two fits are virtually identical. This spectrum is therefore
not sensitive to the fluctuations of the Ramachandran angles.
The SZZYY

I spectra are on the other hand very different. The
negative peak is below the diagonal for fitB, while it is
clearly above the diagonal for fitA. The positive overtone

peaks are less sensitive. The two different fits can clearly be
distinguished in this spectrum.

Distinct differences between theA and B fits are also
observed in theSZZZZ

III andZZYY
III spectra shown in Fig. 23. In

the ZZZZ spectrum fitA shows more peaks thanB. The B
peaks correspond to pathways involving either only the low
frequency mode or the high frequency node. The extra peaks
correspond to pathways involving thee1e2 coherence during
time t2 . Similarly, more peaks are observed in the perpen-
dicular polarized spectra going from fitB to fit A.

The fluctuations of the coupling between the two amide
I oscillators were directly connected to the fluctuations of the
Ramachandran angles determining the peptide structure,
which in turn were obtained from molecular dynamics simu-
lations. The fluctuations of the fundamental frequencies were
not directly connected to the motion of a specific structural
element. However, if a specific set of collective coordinates

FIG. 19. ~Color! Same as 15 but forSZZYY
II .
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responsible for these fluctuations can be identified, as for
example the coordinates describing the hydrogen bonding, it
should be possible to establish such a direct connection.

In summary, a stochastic Liouville equation approach for
the linear and nonlinear infrared spectra accounts for the ef-
fect of the fluctuations of collective bath coordinates on the
line shapes by describing the evolution for the bath and sys-
tem coordinates simultaneously. At the same time the nona-
diabatic coupling is accounted for. Four collective coordi-
nates were used to account for the effect of the bath on the
two amide I modes for trialanine. We showed that the fluc-
tuations of the Ramachandran angles are important in a flex-
ible peptide such as trialanine.

The nonadiabatic coupling between the two states aris-
ing from the fluctuations of the local mode frequencies only
separated by only about 20 cm21 is important both in the
linear and nonlinear spectra transferring intensity between
the peaks.

In the present formalism the Green’s functions describ-
ing the time evolution of the collective and system coordi-
nates are computed directly in the frequency domain. In this
way the two-dimensional Fourier transforms needed in the
cumulant expansion of Gaussian fluctuations CGF are
avoided.35,37
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APPENDIX A: GREEN FUNCTION SOLUTION
OF THE STOCHASTIC LIOUVILLE EQUATION

The right eigenfunction are defined as

G~V!fn~V!5lnfn~V! ~A1!

FIG. 20. ~Color! Same as Fig. 15 but forSZZZZ
III .
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and the left eigenfunctions as

fn8~V!G~V!5lnfn8~V!. ~A2!

The right eigenfunction with eigenvalue 0 is the equilibrium
distribution according to the equilibrium condition

]Peq

]t
52G~V!Peq~V!50. ~A3!

The left eigenfunction with eigenvalue 0 is the unit vector.
The nth right eigenfunction has the same eigenvalue as the
nth left eigenfunction. The right and left eigenfunctions are
orthonormal (̂fn8(V)ufm(V)&5dnm).

To solve Eq.~25! we first expand the density matrix in
terms of the~right-hand! eigenfunctions of the relaxation op-
erator:

r~V,t !5(
n

Cn~ t !fn~V!. ~A4!

FIG. 21. ~Color! Same as Fig. 15 but forSZZYY
III .

FIG. 22. ~Color! SZZZZ
I spectra~upper row! andSZZYY

I ~lower row! for the
two fits. Models A~right column! and B ~left column!.
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Insetting the expansion of Eq.~A4! into the SLE@Eq.
~25!# gives

(
n

Ċn~ t !fn~V!5(
m

F2
i

\
L ~V!Cm~ t !fm~V!

2G~V!Cm~ t !fm~V!G . ~A5!

Using thatfm(V) is a right eigenfunction ofG~V!, multi-
plying with a left eigenfunctionfm(V), and integrating over
V the equation becomes

(
n

Ċn~ t !^fk8~V!ufn~V!&

5(
m

F2
i

\
^fk8~V!uL ~V!ufm~V!&Cm~ t !2lmCm~ t !

3^fk8~V!ufm~V!&G . ~A6!

Using the orthonormality of the eigenfunctions leads to the
final equation

Ċk~ t !52lkCk~ t !

2
i

\ (
m

^fk8~V!uL ~V!ufm~V!&Cm~ t !. ~A7!

The matrix elementŝfk8(V)uL (V)ufm(V)& depend on both
the relaxation operator and on how the Liouville operator
depend on the stochastical bath variablesV. The formal
Green’s function solution to Eq.~A7! is

Cn~ t !5 (
m50

`

Gn,m~ t !Cm~0!. ~A8!

The matricesCn(t) can be found from the coefficients at
earlier times by numerical integration of Eq.~A7!, when the
eigenfunction expansion is truncated at an appropriate level.

The system density matrix is then found by tracing over
the bath coordinates

r~ t !5E r~V,t !dV

5E (
n

Cn~ t !fn~V!dV

5(
n

Cn~ t !^f0~V!ufn~V!&5C0~ t !. ~A9!

The Green’s function operator in the joint system and
bath space is denotedG(V8,V,t) with matrix elements
Gi , j

ab,cd(t), wherei and j relate to the bath andab andcd to
the system in Liouville space. The bath space matrix element
of G(V8,V,t) is denotedGn,m(t) and is operating on the
system coordinates only. The system space matrix element of
G(V8,V,t) is denotedG ab,cd(V8,V,t).

The linear and nonlinear responses can be obtained from
the Green’s functions as shown in Appendix B. The Green’s
functions are calculated numerically in frequency domain us-
ing the continued fraction51 as described in Appendix E.

APPENDIX B: THE LINEAR AND THE THIRD-ORDER
RESPONSE

The linear spectrum is determined by the time evolution
of density matrix elementsreg , wheree denotes an excited
state andg the ground state. For the linear response the bath
initially has the equilibrium distribution andCn(t) is zero for
n.0. The trace of the density matrix at timet only depends
on C0(t). Therefore we only need to findG0,0(t). The linear
response in time domain is

S(1)~ t !5ReS i

\ (
a,b

mgbG0,0
bg,ag~ t !magD , ~B1!

wheremgb is the transition dipole from the excited stateb to
the ground stateg. G0,0

bg,ag(t) is a matrix element of the
Green’s functionG0,0(t). This Green’s function is the upper
left matrix element of the Green’s function matrixG0,0(t).

The third-order response is given by the sum of four
Liouville space pathways.~and their complex conjugates!:

S(3)~ t3 ,t2 ,t1!5S i

\ D 3

(
i

4

@Ri~ t3 ,t2 ,t1!2Ri* ~ t3 ,t2 ,t1!#.

~B2!

A Fourier transform is often performed of the time variables
t1 andt3 giving the frequency domain variablesv1 andv3 .
A Fourier transform of the time variablet2 gives the fre-
quency domain variablev2 .

In the SLE formulation the first Liouville pathway is
given by

R1~v3 ,v2 ,v1!5E E E E (
abcde f gh jk

mkk, jk~V-!

3Gjk, f h~V-,V9,v3!m f h, f g~V9!

3Gf g,de~V9,V8,v2!mde,dc~V8!

3Gdc,ba~V8,V,v1!mba,aa~V!

3W~V!P~a!dV- dV9 dV8 dV, ~B3!

FIG. 23. ~Color! SZZZZ
III spectra~upper row! andSZZYY

III ~lower row! for the
two fit models A~right column! and B ~left column!.
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whereW(V) is the equilibrium distribution of the bath co-
ordinates.P(a) is the population of quantum statea. Intro-
ducing a shorthand notation, where^¯& denotes the integra-
tions over the bath coordinates and the sums over quantum
states this can be written as

R1~v3 ,v2 ,v1!5^m̂kk, jkĜjk, f h~v3!m̂ f h, f gĜf g,de~v2!

3m̂de,dcĜdc,ba~v1!m̂ba,aa&. ~B4!

The remaining three of the four independent Liouville space
pathways are in this notation

R2~v3 ,v2 ,v1!5^m̂kk, jkĜjk, f h~v3!m̂ f h, f gĜf g,ed~v2!

3m̂ed,cdĜcd,ab~v1!m̂ab,aa&, ~B5!

R3~v3 ,v2 ,v1!5^m̂kk, jkĜjk,h f~v3!m̂h f ,g fĜg f ,de~v2!

3m̂de,dcĜdc,ab~v1!m̂ab,aa&, ~B6!

R4~v3 ,v2 ,v1!5^m̂kk, jkĜjk,h f~v3!m̂h f ,g fĜg f ,ed~v2!

3m̂ed,cdĜcd,ba~v1!m̂ba,aa&. ~B7!

Using the Green’s function matricesG~v! and transition
dipole matricesM, with the matrix elements in the basis of
the eigenfunctions ofG~V! defined as

M i j
ab,cd5E f i8~V!mab,cd~V!f j~V!dV, ~B8!

the response functions can be recast as

R1~v3 ,v2 ,v1!5 (
abcde f gh jk

@M kk, jkG jk, f h~v3!

3M f h, f gG f g,de~v2!

3M de,dcG dc,ba~v1!M ba,aa#00P~a!,

~B9!

R2~v3 ,v2 ,v1!5 (
abcde f gh jk

@M kk, jkG jk, f h~v3!

3M f h, f gG f g,ed~v2!

3M ed,cdG cd,ab~v1!M ab,aa#00P~a!,

~B10!

R3~v3 ,v2 ,v1!5 (
abcde f gh jk

@M kk, jkG jk, f h~v3!

3M h f ,g fG g f ,de~v2!

3M de,dcG dc,ab~v1!M ab,aa#00P~a!,

~B11!

R4~v3 ,v2 ,v1!5 (
abcde f gh jk

@M kk, jkG jk, f h~v3!

3M h f ,g fG g f ,ed~v2!

3M ed,cdG cd,ba~v1!M ba,aa#00P~a!.

~B12!

Here@¯#00 denote the 00 matrix element of the matrix prod-
uct in the bath space. The Green’s function matricesG are
calculated using the continued fraction as described in chap-
ter 9 of Ref. 51. The transition dipole matrix elements are
evaluated by expanding the transition dipole operators
mab,cd(V) in the bath coordinatesV and evaluating the ma-
trix elements using Eq.~B8!.

When considering a specific experiment like the photon
echo some of the Liouville space pathways are forbidden by
the rotating wave approximation52 and will not contribute to
the spectrum. In the photon echo experiment, the Liouville
space pathways corresponding to the Feynman diagrams in
Fig. 4 are the only ones contributing. When the Hamiltonian
is not coupling different excitation manifolds as the Hamil-
tonian used here@Eq. ~1!#, the Green’s functions contributing
for a specific time interval can be characterized by the den-
sity matrix blocks of which they describe the evolution as
described in Sec. III. Denoting states by the number of exci-
tations they havee and an indexi asei one can keep track of
the excitation manifolds. Using this notation a Green’s func-
tion matrix describing the time evolution of each of the den-
sity matrix blocks described in Sec. III can be constructed
independently. The Green’s function matrix governing the
time evolution of the density matrix blockreg is denoted
G eg,eg(v). In a similar way the time evolution of the first
density matrix blockrgg is described by the Green’s function
matrix G gg,gg(v). The time evolution of the third density
matrix blockree is described by the Green’s function matrix
G ee,ee(v). The fourth density matrix element blockr f g is
described by the Green’s function matrixG f g, f g(v). The
Green’s function matrixG f e, f e(v) describes the time evolu-
tion of the fifth density matrix blockr f e .

Using this notation to keep track of the numbers of ex-
citations the three Liouville space pathways contributing to
the photon echo signal are then written as

SI~v3 ,v2 ,v1!5S i

\ D 3

@R2~v3 ,v2 ,v1!1R3~v3 ,v2 ,v1!

2R1* ~v3 ,v2 ,v1!#, ~B13!

where

R2~v3 ,v2 ,v1!5@M gg,egG eg,eg~v3!M eg,eeG ee,ee~v2!

3M ee,geG ge,ge~v1!M ge,gg#00,

~B14!

R3~v3 ,v2 ,v1!5@M gg,egG eg,eg~v3!M eg,gg

3G gg,gg~v2!M gg,geG ge,ge~v1!

3M ge,gg#00, ~B15!

R1* ~v3 ,v2 ,v1!5@M ee, f eG f e, f e~v3!M f e,eeG ee,ee~v2!

3M ee,geG ge,ge~v1!M ge,gg#00.

~B16!

This expression allows utilizing the block diagonal structure
of the density matrix and thereby the overall Green’s func-
tion.
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To obtain the 2D IR spectrum the frequencyv2 need to
be transformed to the time domain. Alternatively the Green’s
function involving t2 can be evaluated directly in time do-
main by integration of the SLE. In the special case, wheret2

is zero the Green’s functionG(t2) is a unit matrix. The
Green’s function matrixG(v2) can in this case simply be
ignored.

For thekII technique the response is determined by the
Liouville space pathways~see Fig. 5!

SII ~v3 ,v2 ,v1!5S i

\ D 3

@R1~v3 ,v2 ,v1!

1R4~v3 ,v2 ,v1!2R2* ~v3 ,v2 ,v1!#,

~B17!

R1~v3 ,v2 ,v1!5@M gg,egG eg,eg~v3!M eg,eeG ee,ee~v2!

3M ee,egG eg,eg~v1!M eg,gg#00, ~B18!

R4~v3 ,v2 ,v1!5@M gg,egG eg,eg~v3!M eg,ggG gg,gg~v2!

3M gg,egG eg,eg~v1!M eg,gg#00, ~B19!

R2* ~v3 ,v2 ,v1!5@M ee, f eG f e, f e~v3!M f e,eeG ee,ee~v2!

3M ee,egG eg,eg~v1!M eg,gg#00. ~B20!

For the calculations of thekII spectra the time delayt1 was
kept fixed and the Green’s functionG(v1) was ignored
analogous to what was done for the photon echo spectrum.

For thekIII technique the response is determined by two
Liouville space pathways~see Fig. 6!

SIII ~v3 ,v2 ,v1!5S i

\ D 3

@R4~v3 ,v2 ,v1!2R3* ~v3 ,v2 ,v1!#,

~B21!

R4~v3 ,v2 ,v1!5@M gg,egG eg,eg~v3!M eg, f gG f g, f g~v2!

3M f g,egG eg,eg~v1!M eg,gg#00, ~B22!

R3* ~v3 ,v2 ,v1!5@M ee, f eG f e, f e~v3!M f e, f gG f g, f g~v2!

3M f g,egG eg,eg~v1!M eg,gg#00. ~B23!

For the calculations of thekIII spectra the time delayt1 was
kept fixed.

APPENDIX C: THE BROWNIAN OSCILLATOR

The relaxation operator for the Brownian oscillator is
given by the Smoluchowski equation39

G~V!5g
]

]V S D2
]

]V
1V D . ~C1!

The right eigenfunctions are

fn~V!5
1

2nA2pn!D
expS 2

V2

2D2DHnS V

D&
D , ~C2!

and the left eigenfunctions are

fn8~V!5HnS V

D&
D . ~C3!

Hn(x) are Hermite polynomials fulfilling the recurrence re-
lation

Hn11~x!52xHn~x!22nHn21~x!. ~C4!

The eigenvalues areng. From the recurrence relation the
following integrals needed in order to calculate the matrix
elements ofL ~V! can be evaluated

^fn8~V!ufm~V!&5dm,n

^fn8~V!uVufm~V!&5D&@dm,n11/21ndm,n21#

^fn8~V!uV2ufm~V!&52D2@dm,n12/41~n11/2!dm,n

1n~n21!dm,n22#. ~C5!

APPENDIX D: THE RESPONSE IN THE ADIABATIC
REPRESENTATION

The expansion in the dynamic basis@Eq. ~6!# is substi-
tuted into the time dependent Schro¨dinger equation in order
to obtain the time evolution of the expansion coefficients
ci(t):

(
i

S ]@ci~ t !uc̃ i~ t !&#

]t
D 52

i

\ (
i

ci~ t !H~ t !uc̃ i~ t !&. ~D1!

The derivative of the product on the left side is taken and on
the right side the fact thatc i(t) is the eigenfunction ofH(t)
with the eigenvaluee i(t) is used. A dot denotes a time de-
rivative:

(
i

uċ i~ t !&ci~ t !1(
i

ċi~ t !uc̃ i~ t !&)

52
i

\ (
i

ci~ t !e i~ t !uc̃ i~ t !&. ~D2!

The first term on the left-hand side is moved to the right-
hand side and the equation is multiplied with one of the
eigenfunctionsc j (t) from the left:

(
i

ċi~ t !^c̃ j~ t !uc̃ i~ t !&52
i

\ (
i

ci~ t !e i~ t !^c̃ j~ t !uc̃ i~ t !&

2(
i

^c̃ j~ t !uc8 i~ t !&ci~ t !. ~D3!

This leads to the final expression for the time evolution of
the expansion coefficients in the adiabatic basis

ċ j~ t !52
i

\
cj~ t !e j~ t !2(

i
^c̃ j~ t !uc8 i~ t !&ci~ t !. ~D4!

Defining the matrixK,

K jk~ t ![e j~ t !d jk2 i\Sjk~ t !, ~D5!

the general solution to Eq.~7! can be written in matrix form
assuming that the vector of expansion coefficientsc are
known at some timet0 :

c~ t ![Uc~ t,t0!c~ t0!5exp1F2E
t0

t i

\
K~ t8!dt8Gc~ t0!.

~D6!
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Uc which describes the time evolution of the expansion co-
efficients depends on the nonadiabatic coupling matrixS and
the diagonal eigenvalue matrixe. exp1 is the time ordered
exponential.52

The time evolution of the wave function in the adiabatic
representation is

uf~t1!&5(
ab

uc̃a~t1!&Fexp1S 2E
t0

t1 i

\
K~t!dt D G

ab

3^c̃b~t0!uf~t0!&. ~D7!

Generally this is not easier to evaluate than in a fixed
basis. It still involves a time ordered exponential of a time
dependent matrix withN2 elements, whereN is the number
of relevant eigenfunctions and expansion coefficients. How-
ever, if the nonadiabatic coupling is negligible or only in-
volves a few eigenstates the time evolution can be simplified
considerably.

If the time variation of the adiabatic basis function is
slow (uḟc(t)&'0) the nonadiabatic coupling can be ne-
glected. This adiabatic approximationwill break down,
when the instantaneous eigenvalues cross. When the nona-
diabatic coupling is neglected the time evolution operator
becomes diagonal and each expansion coefficient in Eq.~D6!
evolves independently of the others. This allows us to follow
the time evolution of each adiabatic state separately.

If the nonadiabatic coupling is negligible only the diag-
onale(t8) matrix is left over in Eq.~D6! and the evolution of
each expansion coefficient is independent of the others. In
this adiabatic approximation the time evolution of the expan-
sion coefficients is simply

cj~t1!5expF2E
t0

t1 i

\
e j~t8!dt8Gcj~t0![I j~t10!cj~t0!,

~D8!

which means that each expansion coefficient simply acquire
a phase@ I j (t10)# as time evolves.

The time dependent wave function in the adiabatic ap-
proximation is

uf~t1!&5F(
j

uc̃ j~t1!&

3expS 2
i

\ E
t0

t1
e j (t)dt D ^c̃ j~t0!uG uf~t0!&

[U~t10!uf~t0!&. ~D9!

In the adiabatic representation, the linear response is

S(1)~ t1!5
i

\ (
abcd

mdc~ t1!Ucb
c ~ t1!mba~0!Uda

c†~ t1!P~a!

1c.c. ~D10!

When the adiabatic approximation is evoked the expression
simplifies to

S(1)~ t1!5
i

\ (
ab

mab~ t1!Ubb~ t1!mba~0!Uaa
† ~ t1!P~a!

1c.c. ~D11!

The four point correlation function in Eq.~9! determining the
nonlinear response is in the adiabatic basis given by

^m~t1!m~t2!m~t3!m~t4!&

5 (
a¯m

^f~t0!uc̃a~t0!&^c̃m~t0!uf~t0!&Ual
c†~t10!m lk~t1!

3Uk j
c ~t10!U ji

c†~t20!m ih~t2!Uhg
c ~t20!Ug f

c†~t30!m f e~t3!

3Ued
c ~t30!Udc

c†~t40!mcb~t4!Ubm
c ~t40!. ~D12!

The probability @P~a!# of being in state~a! at time t0 is
determined by the Boltzmann distribution. The four time cor-
relation function can then be recast as

^m~t1!m~t2!m~t3!m~t4!&

5 (
a¯h

P~a!mhg~t1!Ug f
c ~t12!m f e~t2!Ued

c ~t23!mdc~t3!

3Ucb
c ~t34!mba~t4!Uah

c ~t41!. ~D13!

This general expression including the nonadiabatic coupling
has eight summation indices in contrast to the less computa-
tionally demanding adiabatic approximation expression in
Eq. ~9! with only four summation indices. It should be noted
that for the summations both in Eqs.~9! and ~D12! the ma-
trix nature of the expressions can be utilized allowing more
efficient computation, when the associative law is employed.
This expression for the four time correlation function in the
adiabatic representation is computationally just as expensive
as in a fixed basis and when the adiabatic approximation is
not made the adiabatic representation need not be used.

APPENDIX E: MATRIX CONTINUED FRACTION
SOLUTION OF THE SLE

The stochastic Liouville equation as given in Eq.~A7!
can be solved in frequency domain using a matrix continued
fraction. Following chapter 9 of Risken51 the general recur-
rence relation withL nearest neighbor coupling

Ċn~ t !5 (
l 52L

L

An
l Cn1 l~ t ! ~E1!

can be cast into a tridiagonal vector recurrence relation

Ċn~ t !5Q n
2Cn21~ t !1Qn1Q n

1Cn11~ t !. ~E2!

Cn(t) is a L component vector of matricesCm(t):

Cn~ t !5S CLn~ t !
CLn11~ t !

]

CLn1L21~ t !
D . ~E3!

The matricesQ n
2 , Qn , andQ n

1 are defined by their matrix
elements

@Q n
6#qr5ALn1q21

r 2q6L , ~E4!
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@Qn#qr5ALn1q21
r 2q , ~E5!

setting An
l 50 for u l u.L. This allows solving the general

equation using the solution of the tridiagonal vector recur-
rence relation, i.e., Eq. ~E2!. In Eq. ~A7!
^fk8(V)uL (V)ufm(V)&5Am

k2m .
The general solution of Eq.~E2! can be expressed in

terms of the Green’s function matrixGn,m(t):

Cn~ t !5 (
m50

`

Gn,m~ t !Cm~0!. ~E6!

The initial value isGn,m(0)5Idnm , whereI is the unit ma-
trix. Using this identity and taking the Laplace transform

G̃n,m~s!5E
0

`

exp~2st!Gn,m~ t !dt ~E7!

leads to the equation

sG̃n,m~s!2Idnm5Q n
2G̃n21,m~s!1QnG̃n,m~s!

1Q n
1G̃n11,m~s!. ~E8!

Defining Q̂n5Qn2sI gives

2Idnm5Q n
2G̃n21,m~s!1Q̂nG̃n,m~s!1Qn

2G̃n11,m~s!.
~E9!

Matrices connecting neighboring Green’s functions are intro-
duced:

G̃n61,m~s!5S̃n
6~s!G̃n,m~s!. ~E10!

WhennÞm this allow writing Eq.~E9! as

Q n
2G̃n21,m~s!1~Q̂n

21Q n
1S̃n

1~s!!G̃n,m~s!5O

@Q n
2S̃n

2~s!1Q̂n#G̃n,m~s!1Q n
1G̃n11,m~s!5O,

whereO is the zero matrix. This leads to the relation

S̃n
6~s!5@sI2Qn612Q n61

6 S̃n61
6 ~s!#21Q n61

7 ~E11!

that allows expressingS̃n
1(s) in terms of all matrices with

highern and S̃n
2(s) in terms of all matrices with lowern.

For m5n Eq. ~E9! reads

@Q m
2S̃m

2~s!1Q̂m1Q m
1S̃m

1~s!#G̃m,m~s!52I. ~E12!

The Green’s function matrices can now be written as

G̃m,m~s!5@Q m
2S̃m

22Q̂m2Q m
2S̃m

1~s!#21. ~E13!

For m50 this becomes

G̃0,0~s!5@Q̂m2Q m
2S̃m

1~s!#21, ~E14!

which can be expressed as the continued fraction

G̃0,0~s!

5
I

sI2Q02Q 0
1

I

sI2Q12Q 1
1

I
sI2Q22¯

Q 2
2

Q 1
2

.

~E15!

The remaining Green’s functions matricesG̃0,0(s) can be
found in a similar way. The Green’s function matrices with
nÞm can be found by multiplying with
S̃n21

1 (s)S̃n22
1 (s)¯S̃m

1(s) or S̃n11
2 (s)S̃n12

2 (s)¯S̃m
2(s).

The full Green’s functionG̃(s) can be calculated using
Eq. ~E11! to find the connection matricesS̃6. Using thatS̃0

2

is zero and truncating the recurrence relation forS̃1 at some
level n by setting S̃n

1 equal to zero, any matrix element
G̃(s)mm are then be obtained using Eq.~E13!. All other ma-
trix elementsG̃(s)nm are obtained from Eq.~E10!.
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