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I. INTRODUCTION

Ideal classical measurements can be carried out without
perturbing the system. Quantum measurements, in contrast,
are accompanied by a wave function collapse associated with
the loss of coherence �1�. The distributions of outcomes of a
series of classical measurements can be expressed in terms of
joint probabilities of the unperturbed system and their
moments—the equilibrium correlations functions. A quan-
tum measurement, in contrast, is a nonequilibrium process
which must affect the system. This difference clearly mani-
fests itself when a series of measurements is conducted on a
single-quantum object. Current interest in such measure-
ments spans many areas, including quantum computing �2,3�
which involves the controlled manipulation of coherence, de-
coherence between spatially separated objects �Schrödinger’s
cat� �4,5�, and the stochastic description of quantum propa-
gation �6�. Recent spectroscopic and mechanical measure-
ments on single-quantum objects �trapped ions, atoms, mol-
ecules, and quantum dots� had raised interest in the
interpretation of multipoint quantities obtained from the ob-
served stochastic trajectories �7–10�. These include the re-
sponse of mechanically driven single molecules �11� or pho-
ton counting statistics �12�.

Some remarkable general relations have been discovered
for the nonequilibrium thermodynamics of classical mesos-
copic systems. Fluctuation theorems connect the probabili-
ties for entropy-creating and entropy-absorbing paths
�13–20�; these distributions are closely connected to equilib-
rium free-energy differences through the Jarzynski relation
�21,22�. These relations have been verified experimentally
�11,23–30�, and extensions to the quantum domain were pro-
posed �31–41�.

In this paper we analyze the multitime distribution of a
collective harmonic coordinate linearly coupled to a bath and
compare classical measurements with von Neumann’s wave
function collapse associated with quantum measurements
�1,42–46�. Joint probability distributions and other statistical

measures are calculated using a generating functional for-
malism.

Superoperators in Liouville space provide an intuitive de-
scription of quantum evolution and the measurement act, and
allow a smooth transition to to the classical limit �47–50�.
The superoperator notation is introduced in Sec. II. Classical
measurements are discussed in Sec. III. The statistics of pos-
sible outcomes is directly connected to various correlation
and response functions. The generating functional is intro-
duced and used to calculate generalized response functions
and ordinary correlation and response functions for a Gauss-
ian bath model �51�. In the high-temperature limit, the joint
probabilities of successive measurements are expressed in
terms of the Green function solution of the Fokker-Planck
equation �52,53�. Quantum measurements introduced in Sec.
IV cause dramatic effects which are sensitive to the resolu-
tion �54–56�. The Gaussian distribution of classical measure-
ments acquires long algebraic tails which reflect the change
of the density matrix by the measurement. Finally in Sec. V
we examine some global properties of repeated quantum and
classical measurements.

II. MEASUREMENTS AND SUPEROPERATOR ALGEBRA

A quantum system is described by the density matrix
��QL ,QR� where QL �left� and QR �right� represent the ket
and bra coordinates, respectively. For a semiclassical inter-
pretation it is convenient to switch to the classical Q+
��QL+QR� /2 and quantum Q−�QL−QR variables. The
classical picture is provided by the Wigner phase-space rep-
resentation of the density matrix �57�, defined by the Fourier
transform with respect to Q−:

�W�Q+,P� �
1

2��
� dQ−��QL,QR�exp� i

�
Q−P� . �1�

The momentum P is the conjugate variable to Q−, which
carries the information about coherence, and is small in the
semiclassical �high-momentum� regime.

Time evolution and measurements may be conveniently
represented by superoperators in Liouville space. With any

Hilbert operator A we associate two superoperators Â+ , Â−
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defined through its action on another Hilbert space operator
X:

Â+X � �AX + XA�/2, Â−X � AX − XA , �2�

where the right-hand side is a combination of products of
two ordinary Hilbert space operators.

To show the relation between the variable A+ and super-

operator Â+ we provide the matrix representation in the
eigenbasis of A. An operator A with a discrete spectrum can
be spectrally decomposed in Hilbert space as

A = 	
n

an
�n���n
 . �3�

The eigenstates of A ,�n, form an orthogonal basis set in
Hilbert space. The corresponding basis in Liouville space is

��n�n����
�n���n�
, and the density matrix � can be repre-
sented as

� = 	
nn�

�nn�
�n�n��� . �4�

Spectral decomposition of the superoperators Â+ and Â−
gives

Â+ = 	
nn�

�an + an��/2
�n�n������n�n�
 ,

Â− = 	
nn�

�an − an��
�n�n������n�n�
 . �5�

Equation �5� connects to the coordinates Q+ ,Q− defined

above. Â+ involves a multiplication with a classical coordi-

nate A+, and Â− involves multiplication by the coherence
variable A−. In a similar way, multiplication by QL�QR� de-

fines superoperators acting from the left �right�, Q̂LX

�QX�Q̂RX�XQ� �58�.
Liouville space allows the direct calculation of ensemble

averages and provides a simpler description of the wave
function collapse associated with the measurement. In addi-
tion, perturbation theories in Liouville space yield time-
ordered correlation functions whereas the perturbative ex-
pansion of the bra and ket in Hilbert space involves a
combination of forward and backward time orderings.

A measurement is described by the projection superopera-

tor Ŵn:

�n� = Ŵn� ,

P�n� = Tr�Ŵn�� . �6�

���n�� denotes the density matrix right before �after� the mea-
surement, in which the nth outcome was found. This general
definition includes the classical measurement �Sec. III A�, as
well as the von Neumann measurement, and a broader class
of less precise measurements �Sec. IV�. This linear relation
between the density matrices before and after the measure-
ment immediately results in the following Liouville-space
correlation function expression for the probability density

function �PDF� P�n� for observing n1 at �1 , . . . ,nN at �N:

P�n� =T�
j=1

N

Ŵnj

H�� j�� . �7�

Ŵnj

H�� j� are projection operators in the Heisenberg picture
where all time evolution is carried by superoperators and
�¯� stands for equilibrium averaging—e.g.,

�Â��Tr Â�—with respect to the equilibrium density matrix
�. T is a time-ordering operator: when applied to a product of
superoperators it rearranges them so that their time argu-
ments increase from the right to the left. The sequence n
= �n1 , . . . ,nN�, can be viewed as a stochastic trajectory in
Liouville space.

The Liouville-space notation presented here will be ap-
plied in the following sections to describe the statistics of
outcomes of a series of repeated classical or quantum mea-
surements.

III. QUANTUM DYNAMICS WITH CLASSICAL
MEASUREMENTS

We first study quantum effects in a series of repeated mea-
surements when the system dynamics is treated quantum me-
chanically but the measurements are accounted for on a clas-
sical level. Classical measurements affect the system in the
following mild way: The density matrix is changed by the
information gained in the measurement �otherwise no corre-
lation in repeated measurements would be observed�. How-
ever, the final distribution obtained after all intermediate
measurements are completed and summed over is the same
as if no intermediate measurements have been performed.

A. Multitime classical measurements on quantum
systems

We consider an externally driven system coupled to the
driving force f�t� through a collective coordinate Q and de-
scribed by the Hamiltonian

Hf��� = H + f���Q , �8�

where H represents the nondriven system �including bath
variables�.

To describe a classical measurement �with precision �� we
simply take, in Eq. �6�,

Ŵn�q−,q+� = 1 for qn − �/2 � q+ � qn + �/2

= 0 otherwise. �9�

The measurement bins the value of q+, without affecting the
conjugate q− coordinate �Fig 1�a��. Note that since

	
n

Ŵn = 1̂,

the measurements do not alter the total density matrix; they
simply bin it according to the possible outcomes. The �
→0 �infinite precision� limit can be formally introduced
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without any difficulty. This is no longer the case for quantum
measurements, as will be discussed below.

We next introduce generalized response functions which
represent both the correlation and response function in terms
of time-ordered correlation functions of superoperators. The
joint PDF of N successive measurements q��q1 , . . . ,qn� is
obtained by combining Eqs. �7� and �9�:

P̄�q;f� = �T	„qn − Q̂+
H��n�… ¯ 	„q1 − Q̂+

H��1�…� . �10�

The average of n-time measurements is given by multi-
point correlation functions defined as moments of this distri-
bution function:

�TQ̂+
H��n� ¯ Q̂+

H��1�� � � q1 ¯ qn P̄�q;f�dq . �11�

We next switch to the interaction picture defined by the
following transformation of superoperators:

Â
�t� = exp�i�−1Ĥ−t�Â
 exp�− i�−1Ĥ−t�, 
 = + ;− .

�12�

The formal solution of the Liouville equation

d

dt
��t� = −

i

�
f�t�Q̂−�t���t� �13�

then reads

��t1� = Û�t1,t0���t0� ,

Û�t1,t0� � T exp�− i

�
�

t0

t1

Q̂−���f���d�� .

The average n-time measurement is given by

�TQ̂+
H��n� ¯ Q̂+

H��1��

� �TQ̂+��n�Û��n,�n−1� ¯ Û��2,�1�Q̂+��1�Û��1,�0��

=TQ̂+��n� ¯ Q̂+��1�exp�− i

�
�

�0

�

Q̂−���f���d��� .

�14�

When the evolution superoperator is expanded perturba-
tively, the various contributions may be expressed in terms of
generalized Liouville-space response functions

�n. . .1��n, . . . ,�1� � �TQ̂n
��n� ¯ Q̂1

��1�� , �15�

where = + ;−. These Liouville-space correlation functions
are combinations of n-point ordinary �Hilbert space� correla-
tion functions

R��n, . . . ,�1� � �Tr Q��n� ¯ Q��1����0�� . �16�

The Hilbert-space operator product in Eq. �16� is not time
ordered since it involves a positively �negatively� ordered
product for the ket �bra�. For example, the two-point func-
tions are

�+−��2,�1� = �−+��1,�2�

= �TQ̂+��2�Q̂−��1��

= ���2 − �1��R��2,�1� − R��1,�2�� ,

�++��2,�1� = �TQ̂+��2�Q̂+��1�� =
1

2
�R��2,�1� + R��1,�2�� ,

� − ��2,�1� = 0.

�+− is the ordinary �retarded� response function whereas �++

represents spontaneous fluctuations. The two are related by
the fluctuation-dissipation theorem �59�.

B. Generating superoperator functional

We now show how the physical quantities defined in the
previous section may be calculated using a classical generat-
ing functional. We start by introducing the following equa-
tion of motion in the interaction picture:

d

dt
��t� = − iJ−�t�Q̂−�t���t� − iJ+�t�Q̂+�t���t� . �17�

This is a generalization of Eq. �13� to include a new field J+

conjugated to Q̂+. The generating functional is defined as the
equilibrium average of the solution of Eq. �17�:

S�J+,J−� � T exp�− i�
0

�

d��J+���Q̂+��� + J−���Q̂−������ .

�18�

The generalized response functions, Eq. �15�, can be ob-
tained by functional derivatives of S:

FIG. 1. �a� Binning the density matrix in a classical measure-
ment. Each stripe defines a region where the classical coordinate

�Q̂+� is assumed constant �with � resolution�. Considering the nor-
malization condition

1 =� ��QL,QR�	�OL − QR�dQLdQR =� ��Q+,Q−�	�Q−�dQ+dQ−,

the value on the left-up-to-right-down diagonal shows the probabil-
ity to measure the value q, while the off-diagonal elements describe
the phase relation �entanglement�. �b� Following a quantum mea-
surement the density matrix reflects von Neumann’s collapse of the
wave function. The solid squares denote the part unaffected by the
measurement, while the remaining part is discarded. � is the reso-
lution of measurement. The density matrix becomes block diagonal.
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�n. . .1��n, . . . ,�1� = in� 	S�J+,J−�
	Jn

��n� ¯ 	J1
��1��

J±=0

. �19�

Nonequilibrium correlation functions �Eq. �11�� are calcu-
lated by setting J+=0 and keeping the driving force f:

�TQ̂+
H��n� ¯ Q̂+

H��1�� = in� 	S�J+,J−�
	J+��n� ¯ 	J+��1�

�
J+=0,J−=f�−1

.

�20�

The joint probability density �Eq. �10�� may then be calcu-
lated using the integral form of the 	 function:

P̄�q;f� =T�
j=1

N

	„qj − Q̂+�� j�…Û��,0��
=� �

j=1

N
dpj

2�
exp�− i	

j=1

N

pjqj�
�T exp�	

j

ipjQ̂+�� j� − i�
0

�

d��−1f���Q̂−����� .

�21�

The term that contains Q̂−��� accounts for the effects of the
driving force on the system dynamics. The PDF for a sto-
chastic �continuous� trajectory q��� can be represented in a
path-integral form where the integrand is expressed in terms
of a Liouville-space correlation function:

P̄�q; f� =� Dp exp�− i�
0

t

d�p���q����S�− p;�−1f� .

�22�

Equation �22� is a natural generalization of Eq. �21�: The
path integral over the functions p��� constitutes a Fourier-
transform representation of the functional 	 function that col-
lapses the classical coordinate trajectory Q+��� to the sto-
chastic �observed� trajectory q���.

C. Application to a driven harmonic system

We assume a harmonic oscillator Q coupled to a harmonic
bath with coordinates qj and described by the Hamiltonian

H =
P2

2M
+

M�2Q2

2
+ 	

j
� pj

2

2mj
+

mj� j
2

2
�qj −

cj

mj� j
2Q�2� .

�23�

The oscillator is further driven by an external force �Eq. �8��.
Q may be viewed as a collective coordinate given by a linear
combination of the normal modes of H �39�.

This model is exactly solvable; all relevant information is
contained in the spectral density C��� of the collective coor-
dinate which determines the two-point Liouville-space corre-
lation functions G+�t� and i�G−�t� of the free �nondriven�
system:

G+��� − ��� � �++��� − ���

= ��
−�

� d�

2�
cos����� − ����coth� ��

2kT
�C��� ,

i�G−��� − ��� � �+−��� − ���

= − 2i����� − ����
−�

� d�

2�
sin����� − ����C��� .

�24�

Here,

C��� =
1

M
�����

��2 + ����� − �2�2 + �2�2���
�25�

is the spectral density �51,60,61�, where T is the temperature,

���� =
�

M	
j

cj
2

2mj� j
2 �	�� − � j� + 	�� + � j�� , �26�

and � is related to � by the Kramers-Kronig relation

���� = −
1

�
p . p . �

−�

�

d��
�����
�� − �

. �27�

Equation �24� results in the fluctuation-dissipation theorem

G+��� = − � coth���

kT
�Im G−��� , �28�

where

G±��� � �
−�

�

ei��G±�T�dy .

The exact generating functional �Eq. �18�� is obtained by
the second-order cumulant expansion:

S�J+;J−� = exp��
0

�

d���
0

�

d���−
1

2
G+��� − ���J+����J+����

− i�G−��� − ���J+����J−������ . �29�

To describe discrete measurements performed at times � j
we take

J+��� = 	
j

pj	�� − � j� . �30�

We further denote:

M̄ jk
�+� � G+�� j − �k�, M̄ jk

�−� � G−�� j − �k� ,

uj�f� � �
0

�j

d��G−�� j − ���f����

and introduce the variables

�Q̂+
H��k� � Q̂+

H��k� − �Q̂+
H��k��, �Q̂+

H��k�� = uk�f� . �31�

The correlation function may be computed using Eq. �20�:

CHERNYAK, ŠANDA, AND MUKAMEL PHYSICAL REVIEW E 73, 036119 �2006�

036119-4



�T�Q̂+
H��k��Q̂+

H��l�� = M̄kl
�+�,

�T�Q̂+
H��k��Q̂+

H��l��Q̂+
H��m�� = 0,

�T�Q̂+
H��k��Q̂+

H��l��Q̂+
H��m��Q̂+

H��n��

= M̄kl
�+�M̄mn

�+� + M̄km
�+�M̄ln

�+� + M̄kn
�+�M̄lm

�+�. �32�

Combining Eqs. �21�, �18�, and �29� we get, for the joint
probability distributions,

P̄�q;f� = �
i
�

−�

� dpi

2�
exp�− i	

j

pjqj −
1

2	
jk

M̄ jk
�+�pjpk

+ i	
j
�

0

�

d��G−�� j − ���pjf�����
=

1

��2��N det M̄�+�
exp�−

1

2	
jk

�M̄�+�� jk
−1�qj − uj�f��

��qk − uk�f��� . �33�

The driving force simply shifts the center of the Gaussian
profile.

We next discuss the force-free case. Equation �33� holds
for an arbitrary spectral density and temperature. Quantum
effects �and �� enter only through the fluctuation-dissipation
relation, Eq. �28�. Generally this is a Gaussian non-
Markovian process. However, in the overdamped �����
high-temperature limit, the distribution of Q satisfies a Mar-
kovian master equation known as the Smoluchowski equa-
tion �see Appendixes A and B� �53�. Equation �33� then sim-
plifies considerably and may be factorized as

P̄�q;f = 0� = g�q1��
j=1

n−1

g�qj;qj+1� , �34�

where

g„qk+1�tk+1�;qk�tk�… �� M�2

2kT��1 − e−2��tk+1−tk��

�exp�− M�2�qk+1 − e−��tk+1−tk�qk�2

2kT�1 − e−2��tk+1−tk�� �
�35�

are the transition probabilities and

g�q1� =�M�2

2kT�
exp�− M�2

2kT
q1

2� �36�

is the initial canonical distribution.

IV. DISTRIBUTIONS OF REPEATED QUANTUM
MEASUREMENTS

In contrast to the classical measurements treated so far,
repeated quantum measurements strongly affects the system

and the final distributions are substantially altered even after
summing over all possible intermediate measurement out-
comes. This implies that an observer that does measurements
can figure out whether someone has been performing mea-
surements on the system at some earlier times.

According to von Neumann’s principle �1�, a strong mea-
surement collapses the wave function. In Liouville space this
involves the collapse of both the left QL and right QR com-
ponents �or equivalently Q+ and Q−�. Since Q− is conjugated
to the momentum, measuring the coordinate affects not only
the particle coordinate, but its momentum as well, as ex-
pected from the Heisenberg principle. In contrast a classical
coordinate measurement only bins the classical coordinate
Q+ but does not affect the quantum variable Q−.

The effect of measurement is described by a projection

operator for the particular outcome Ŵn. Assuming that the
measured quantity is associated with an operator with a dis-
crete spectrum �Eq. �3�� we get

Ŵn = 
�n�n���n�n
 .

We define a superoperator

Ŵ � 	
n

Ŵnan = 	
n


�n�n���n�n
an,

which plays a similar role to Â+ in the classical measure-
ment. The correlation function for an n-point measurement is
given by

�TŴH��n� ¯ ŴH��1��

� �TŴ�tn�Û�tn,tn−1� ¯ Û�t2,t1�Ŵ�t1�Û�t1,t0�� . �37�

In analogy with the classical case �Eq. �18��, we introduce
the generating functional

S�JW;J−� =T exp�− i�
0

�

d��JW���Ŵ���

+ �−1J−���Q̂−������ . �38�

The correlation function is finally given by

�TŴH��n� ¯ ŴH��1��

= in� 	S�JW,J−�
	JW��n�	JW��n−1� ¯ 	J+��1�

�
JW=0,J−=�−1f

.

�39�

The measurement of an observable with a continuous
spectrum requires the introduction of a finite error bar �. A
precise measurement ��→0� is not properly defined in the
quantum case. We introduce a generalized von Neumann pic-
ture of a measurement by considering a set M of outcomes
and associating a set of measured values qn for n�M. The
measurement effect on the system is described by a set of
functions ��n�n�M of the collective coordinate Q that satisfy
the property of the unit decomposition which guarantees that
the total probability is conserved:
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n�M


�n�Q�
2 = 1. �40�

The effect of a measurement with an outcome n�M on
the wave function 
�� is given by the action of the operator

�̂n �multiplication by �n�Q� followed by a proper normaliza-

tion�, whereas the outcome probability P�n�= ��
�̂n
†�̂n
�� is

given by the aforementioned norm. The wave function 
�n��
after the measurement is given by


�n�� =
�̂n
��

���
�̂n
†�̂n
��

. �41�

These can be recast using the density matrix:

�̂n� =
�̂n�̂�̂n

†

Tr��̂n�̂�̂n
†�

=
Ŵn�̂

Tr�Ŵn�̂�
, Ŵn = �̂nL�̂nR

† ,

Wn�QL,QR� = �n�QL��n
*�QR� ,

P�n� = Tr�Ŵn�̂� . �42�

The measurement outcomes at times �1 , . . . ,�N are given by
the Liouville-space correlation function expression for the
PDF P�n� of the stochastic trajectory n= �n1 , . . . ,nN�:

P�n� =T�
j=1

N

Ŵnj
�� j�Û��,0�� . �43�

The von Neumann prescription corresponds to the follow-
ing special choice of the collapsing functions �Fig. 1�b��:
M=Z, qn=�n,

�n�Q� = 1 for Q � �− �/2 + qn,�/2 + qn�

= 0 otherwise. �44�

In contrast to classical measurements, the total density

matrix is changed by the measurement since 	nŴn� 1̂.
We start with the microscopic expression for P�n ; f�:

P̄�n;f� = �
j=1

N � dQLjdQRjWnj
�QL,QR�

�T�
j=1

N

	„Q̂L�� j� − QLj…	„Q̂R�� j� − QRj…Û��,0�� .

Substituting the von Neumann measurement, Eq. �44�, gives

P̄�n;f� = �
j=1

N � dpLjdpRj

�2��2 F��pLj�F��pRj�exp�i�njpj−�

�T exp�− i	
j=1

N

�pj−Q̂+�� j� + pj+Q̂−�� j��

−
i

�
�

0

t

d�f���Q̂−����� , �45�

where we have introduced the variables p+= �pL+ pR� /2, p−

= pL− pR, and the auxiliary function

F��p� = �
−�/2

�/2

dQ exp�ipQ� =
2 sin�p�/2�

p
. �46�

F� describes the momentum uncertainty introduced by a
measurement of the coordinate with precision �. For our har-

monic model, Eq. �23�, P̄ can be calculated using the
second-order cumulant expansion:

P̄�n;f� = �
j=1

N � dpLjdpRj

�2��2 F��pLj�F��pRj�exp�i�njpj−�

�exp�−
1

2	
jk

M̄ jk
�+�pj−pk− − i�M̄ jk

�−�pj−pk+

− i	
j

pj−uj�f�� . �47�

We next consider possible generalizations of the von Neu-
mann measurement for a nondriven system �f=0�:

P�n� =� dq+dq−�
j=1

N

Wnj
�qj−,qj+�X�q−,q+� , �48�

with

X�q−,q+� =� dp+dp−

�2��2N exp�−
1

2	
jk

M̄ jk
�+�pj−pk−

− i�	
jk

k�j

M̄ jk
�−�pj−pk+ + i	

j

�pj+qj− + pj−qj+�� .

The PDF P�q� for the classical measurement of a stochastic
trajectory q= �q1 , . . . ,qN� can be obtained from Eq. �48� by
substituting Wq�q− ,q+�=	�q+−q�:

P�q� =� dq−X�q−,q�

=� dp−

�2��N exp�−
1

2	
jk

M̄ jk
�+�pj−pk− + i	

j

pj−qj�
=

1

��2��N det M̄�+�
exp�−

1

2	
jk

�M̄�+�� jk
−1qjqk� . �49�

This agrees with Eq. �33� for f=0.
An integral coordinate representation for the PDF is ob-

tained by performing the momentum integrations in Eq. �48�,
which gives

P�n� =
1

�2���N−1�2�
��M̄11

�+� det M̄�−��−1

�� dq1− ¯ dq�N−1�−dq1+ ¯ dqN+

�WnN
�0,qN+��

j=1

N−1

Wnj
�qj−,qj+�
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�exp�−
1

2�2 	
jk=1

N−1

Mjk
�+�qj−qk−

+
i

�
	
j=2

N

	
k=1

N−1

Mjk
�−�qj+qk−

−
1

2M̄11
�+�
�q1+ +

i

�
	
j=2

N

	
k=1

N−1

M̄1j
�+�Mjk

�−�qk−�2� , �50�

with

Wn�q−,q+� = �n�q+ +
q−

2
��n

*�q+ −
q−

2
� �51�

and the matrices defined as

Mkj
�+� = 	

rs=2

N

�M̄�−��kr
−1M̄rs

�+�
„�M̄�−��†

…sj
−1, Mjk

�−� = „�M̄�−��†
… jk

−1.

�52�

�M̄ jk
�−� is considered as an lower-triangle �N−1�� �N−1� ma-

trix with indices j=2, . . . ,N, k=1, . . . ,N−1. Inverse �M̄�−�� jk
−1

must have indices j=1, . . . ,N−1, k=2, . . . ,N.�
For N=2 �two measurements� Eq. �50� gives

P�n1,n2� =
1

2���2�
��M̄�+�M̄�−��−1

�� dq1−dq1+dq2+Wn2
�0,q2+�Wn1

�q1−,q1+�

�exp�−
1

2�2�
�q1−�2

+
i

�M̄�−�
q1−�q2+ − �q1+� −

1

2M̄�+�
�q1+�2� ,

M̄�+� = M̄11
�+� = M̄22

�+�, M̄�−� = M̄21
�−�,

� =
M̄12

�+�

M̄�+�
, � =

�M̄�−��2M̄�+�

�M̄�+��2 − �M̄12
�+��2

. �53�

We note that applying the von Neumann measurement
and integrating over q1+ and q2+ leads to a continuous func-
tion of q1− with discontinuous jumps of the first derivative at
q1−=0 and q1−=�1 /�2 �note that in the semiclassical limit
the second jump is negligible compared to the first�. This
gives the asymptotic form P�n1 ,n2���n2�−2. Computing the
first derivative jump at q1− yields the following asymptotic
expressions for large n1 and n2:

P�n1,n2; f� �
�M̄�−�

���2n2 + ��1n1 + uf�2

�2

�2�M̄�+�

�exp�−
1

2M̄�+�
��1n1�2� . �54�

Equation �53� may be integrated numerically. For a von
Neumann measurement �Eq. �44�� the q2+ integration may be
performed analytically. Alternatively, we can perform the in-
tegrations over pj+ in Eq. �47� using F��pL�F��pR�
=2�cos��p− /2�−cos��p+�� / �p+

2 − p−
2 /4� and dpLjdpRj

=dpj+dpj− and

�
−�

�

dp+
exp i
p+

p+
2 − p−

2/4
= − 2�

sin�


p−/2�
p−

.

This gives

P̄�n;f� =
2

�2��2�
−�

� �
−�

�

dp2−dp1−
sin��p2−/2�

p2−

�exp�i��n1 − u1�f��p1− + i��n2 − u2�f��p2−�

�exp�− �M̄11
�+�p1−

2 /2 + M̄22
�+�p2−

2 /2 + M̄12
�+�p1−p2−��

� � sin�
� − �M̄21
�−�p2−
p1−/2�

p1−

+
sin�
� + �M̄21

�−�p2−
p1−/2�
p1−

− 2
sin��
M̄21

�−�p2−
p1−/2�cos��p1−/2�
p1−

� . �55�

Equation �55� was calculated using the overdamped
Brownian oscillator Green functions �Eqs. �B3� and �B4��
and setting f =0. The effect of the force is a simple shift of
the q2 variable �Eq. �55��. In the left column of Fig. 2 we
show the time evolution of the PDF following a quantum
measurement when the effect of quantum collapse is not
strong �large ��. We see gradual equilibration: shortly after
the measurement �top panel� the particle is still near its pre-
viously measured position and the density is localized along
q1=q2. With increasing time delay �from top to bottom� the
memory of the initial state is erased, and for �t�1 the
equilibration is complete and we have P�q1 ,q2 ,��
= P�q1 ,��P�q2 ,��. In the middle column, the first measure-
ment is made with a higher precision and the effect of quan-
tum collapse is more pronounced. A precise measurement
induces an uncertainty in the momentum, and the particle has
a large probability to be found at long distances in the second
measurement. In the right column the precision is increased
further. Due to the very large uncertainty in momentum in-
troduced by the first measurement, the position becomes un-
correlated with the first measurement after a very short time.

We have further examined the long tails of the probability
to find the particle at long distances in the second measure-
ment. The three panels of Fig. 3 show the density for the
second measurement �starting at the center q1=0� for the
three precisions used in Fig. 2. The log-log plots confirm the
1/q2

2 behavior of Eq. �54�. This power-law envelope is
modulated by oscillations �middle panel� whose magnitude
increases as � is decreased �higher precision, lower panel�.
These oscillations result from the coherent motion induced
by the precise measurement.
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V. GLOBAL ANALYSIS OF QUANTUM MEASUREMENTS

An additional insight into the effect of multitime measure-
ments is obtained by examination of the collective multitime
variable:

Z̄ � �	
j=1

N

Z�� j�Q�� j� , �56�

where � is the time between successive measurements and Z
is an arbitrary smooth function of time. For a given trajectory
n this yields

Z̄�f,n� = ��	
j=1

N

Zjnj, Zj � Z�� j� .

The PDF of Z̄ is

P�Z̄;f� = 	
n

	„Z̄�f,n� − Z̄…P̄�n;f�

= �
−�

� d�

2�
exp�+ i�Z̄�S��;f� ,

S��;f� = 	
n

exp�− i�Z̄�f,n��P̄�n;f� . �57�

P�n ; f� is the probability of measuring n in the driven sys-

tem, and S��� is the generating function for P�Z̄�.
For classical measurements we can take the continuous

measurement limit �→0 in Eq. �56� and set Z̄
=�Z���Q���d�. The PDF can be then represented in a path-
integral form where integration runs over stochastic trajecto-
ries q��� obtained as a result of continuous measurements of
the collective coordinate. Substituting J+���=�Z��� in Eq.
�18� we obtain

FIG. 2. �Color online� Left column: the joint probability density
P�q1 ;q2 ;�� �Eq. �55�� for two successive quantum measurements
on a harmonic oscillator in contact with a Gaussian bath. q1, q2, and
� are given in units of �0��kT /2M�2. �=0.1 and the time delays
�from top to bottom� �t=0.5, 1.0, 2.0, and 4.0. Middle column: the
same as the left column but with higher precision �=0.01. Right
column: the same as the left column but with �=0.001.

FIG. 3. The joint probability density P�q1=0;q2 ;�� �Eq. �55��
for �t=0.5 and various precisions ��=0.1 �top panel�, 0.01
�middle�, 0.001 �bottom��. � and q2 are given in units of �0. The
power law 1/q2

2 of Eq. �54� shows up as straight lines in asymptotic
region.
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S0��;f� =T exp�− i��
0

t

d�Z���Q̂+���

− i�−1�
0

t

d�f���Q̂−����� . �58�

Using Eq. �29� we get

S0��;f� = exp �
0

t

d���
0

t

d���− �2

2
G+��� − ���Z����Z����

− i�G−��� − ���Z����f����� .

Equation �57� shows that the distribution profile of Z is
Gaussian:

P�Z̄;f� =
1

��2�
exp�−

�Z̄ − �Z̄��2

2�2 � , �59�

where

�Z̄� = �
0

t

d���
0

��
d��G−��� − ���Z����f���� ,

�2 = 2�
0

t

d���
0

t

d��G+��� − ���Z����Z���� .

We note two important differences between repeated
quantum and classical measurements. �i� The limiting case of
infinitely short intervals between successive measurements is
not physically meaningful for the quantum case. �ii� The loss
of coherence in the quantum measurement implies that the
choice of measured quantity affects the overall dynamics of
the system.

Substituting Eq. �45� into Eq. �57�, making use of Eq.
�56�, and performing the summation over nj by applying the
relation

	
n=−�

�

exp�ipn� = 2� 	
m=−�

�

	�p − 2�m� �60�

leads to the following integral representation of the generat-
ing functional:

S��;f� = �
j=1

N

	
mj=−�

� �
−�

� dpj

2�
�−1F��pj +

��Zj

2
+

�mj

�
�

�F��pj −
��Zj

2
−

�mj

�
�

�T exp�− i	
j=1

N ����Zj +
2�mj

�
�Q̂+�� j�

+ pjQ̂−�� j�� −
i

�
�

0

t

d�f���Q̂−����� . �61�

For the harmonic model we use Eq. �29� and get

S��;f� = �
j=1

N

	
mj=−�

� �
−�

� dpj

2�
�−1F��pj +

��Zj

2
+

�mj

�
�

�F��pj −
��Zj

2
−

�mj

�
�exp�	

kj=1

N

−
1

2
G+��k − � j�

����Zk +
2�mk

�
����Zj +

2�mj

�
� − i�G−��k − � j�

����Zk +
2�mk

�
�pj�exp�	

k=1

N

− i�
0

t

d�G−��k − ��

����Zk +
2�mk

�
� f���� . �62�

The pj integrations in Eq. �62� can be performed, resulting in

S��;f� = 	
m

�
j=1

N

�−1F̄�
�2�� 	

k=j+1

N

�G−��k − � j����Zk +
2�mk

�
�,

��Zj

2
+

�mj

�
�

�exp�−
1

2 	
kj=0

N

G+��k − � j����Zk +
2�mk

�
�

����Zj +
2�mj

�
��

�exp�− i	
k=1

N �
0

t

d�G−��k − ����Zk +
2�mk

�
� f���� ,

�63�

where we have introduced the auxiliary function

F̄�
�2��x,k� = �

−�

� dp

2�
F��p + k�F��p − k�exp�ipx�

=
sin�k�� − 
x
��

k
��� − x���� + x� .

F̄�
�2��x ,k� is a joint phase-space �coordinate and momentum�

distribution associated with the uncertainty of the measure-
ment. Equation �63� may be used to develop semiclassical
approximations.

VI. DISCUSSION

We have analyzed the distributions of repeated measure-
ments on a driven quantum system coupled to a harmonic
bath. The superoperator formulation of wave function col-
lapse allows the generalization of von Neumann’s prescrip-
tion for the measurement. Multipoint classical correlation
functions are moments of the joint distribution functions and
as such are most suitable for the interpretation of experi-
ments. An ideal classical measurement does not influence the
system: We found Gaussian probability densities for a driven
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harmonic system, and the Fokker-Planck equation is recov-
ered in the high-temperature limit.

Quantum measurements, in contrast, induce dramatic ef-
fects. Measurements of dynamical variables, such as the co-
ordinate, introduce a broad distribution of the conjugate mo-
mentum variables; the more precise the measurement, the
broader the distribution. A very precise measurement prohib-
its the prediction of the outcome of the next measurement
even for short time delays, causing long algebraic tails of the
distribution functions.
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APPENDIX A: MARKOVIAN DYNAMICS—THE
SMOLUCHOWSKI EQUATION

Markovian master equations can be derived from the
Liouville equation �13� in the high-temperature limit. In this
appendix the PDF of joint measurements is calculated using
the Smoluchowski equation �53�. We start with the Fokker-
Plank equation �52�

���QL;QR;t�
�t

= � i�

2M� �2

�QL
2 −

�2

�QR
2 � −

iM�2

2�
�QL

2 − QR
2�

−
�

2
�QL − QR�� �

�QL
−

�

�QR
�

− �−2�MkT�QL − QR�2���QL;QR;t� �A1�

�����−2; see �52,60,61� for details�. It can be recast in the
Q+ ,Q− variables:

���Q+;Q−;t�
�t

= � i�

M
�

�Q+

�

�Q−
−

iM�2

�
Q+Q− − �Q−

�

�Q−

−
�MkT

�2 �Q−�2���Q+;Q−;t� . �A2�

Fourier transform of Eq. �A2� to the Wigner phase-space
representation �Eq. �1�� gives

��W�Q;P;t�
�t

= �−
1

M
�

�Q
P + M�2� �

�P
�Q + �

�

�P
P

+ �MkT
�2

�P2���Q;P;t� . �A3�

In the overdamped ��� limit this reduces to the Smolu-
chowski equation for the distribution of Q:

���Q;t�
�t

= �
�

�Q
�Q +

kT

M�2

�

�Q
���Q;t� . �A4�

The Green function solution of Eq. �A4� with the initial con-
dition ��Q , t=0�=	�Q−q0� gives �53�

g�Q;q0� � ��Q;t�

=� M�2

2kT��1 − e−2�t�
exp�− M�2�Q − e−�tq0�2

2kT�1 − e−2�t� � .

�A5�

Taking the time variable in Eq. �A5� to be the interval be-
tween successive measurements for g�qj ;qj+1�→ t= tj+1− tj

we get Eq. �35�. In the long-time limit, the equilibrium
Gaussian distribution, Eq. �36�, is reached irrespective of the
initial state. The joint distribution of the repeated measure-
ments can be computed using Eq. �34�.

APPENDIX B: MARKOVIAN DYNAMICS-HIGH
TEMPERATURE LIMIT OF THE OVERDAMPED

BROWNIAN OSCILLATOR

At high temperatures the overdamped Brownian oscillator
model can be combined with the results of Sec. III C to yield
the Smoluchowski equation �Appendix A�. We assume the
Brownian oscillator spectral density obtained from Eq. �25�
in the overdamped limit ���; ����2y−1�

C��� =
1

M�2

��

�2 + �2 . �B1�

The PDF is obtained by combining Eq. �33� with Eq. �24�
At high temperatures we have

� coth� ��

2kT
� =

2kT

�
+

�2�

6kT
−

�4�3

360�kT�3 + ¯ . �B2�

In this limit, we only retain the first term of Eq. �B2� and
Eqs. �24� yield

M̄�+���� =
kT

M�2 exp�− �
�
� �B3�

and

M̄�−���� = − ����
�

M�2 exp�− �
�
� . �B4�

The correlation matrix can be factorized as

M̄�+� =
kT

M�2�
1 M1 M1M2 M1M2M3 ¯

M1 1 M2 M2M3 ¯

M1M2 M2 1 M3 ¯

M1M2M3 M2M3 M3 1 ¯

¯ ¯ ¯ ¯ ¯

� ,

�B5�

where Mj depend on the time intervals between successive
measurements,

Mj = exp�− ��� j+1 − � j�� ,

and the correlation matrix can be inverted to yield a tridiago-
nal matrix with elements:
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�M̄�+��1,1
−1 =

M�2

kT

1

1 − M1
2 , �M̄�+��n,n

−1 =
M�2

kT

1

1 − Mn−1
2 ,

�M̄�+�� j,j
−1 =

M�2

kT

1 − Mj
2Mj+1

2

�1 − Mj
2��1 − Mj+1

2 �
,

�M̄�+�� j,j+1
−1 = − �M̄�+�� j+1,j

−1 M�2

kT

Mj

1 − Mj
2 . �B6�

Making use of the identity

1 − Mj
2Mj+1

2

�1 − Mj
2��1 − Mj+1

2 �
=

1

2
�1 + Mj

2

1 − Mj
2 +

1 + Mj+1
2

1 − Mj+1
2 � ,

the joint distribution, Eq. �34�, is factorized as

P̄�q� = g�q1�g�qN��
j=1

N−1

g�qj;qj+1� , �B7�

where

g�qj+1,qj� =� M�2

2kT��1 − Mj
2�

�exp�− M�2

4kT
�1 + Mj

2

1 − Mj
2 �qj

2 + qj+1
2 �

−
4Mj

1 − Mj
2qjqj+1��exp�− M�2

4kT
�qj

2 − qj+1
2 ��

are the transition probabilities and

g�q1� =�M�2

2kT�
exp�− M�2

2kT
q1

2�, g�qN� = 1, �B8�

represents the equilibrium distribution. The factorization
�B7� is a manifestation of the Markovian dynamics and
agrees with Eq. �34�. It implies that the values of physical
quantities at a given time point are sufficient to determine the
future dynamics without further knowledge of the past �his-
tory�. In general, Eq. �33� may not be recast in the form of
Eq. �B7�. Eliminating information regarding system-bath en-
tanglement gives memory effects. Equations of motion with
memory may be used to compute the two-point quantities in
the non-Markovian case but do not carry enough information
to compute multipoint correlation functions.

Note that the factorization �B7� does not define the coef-
ficients g uniquely. We can make a different choice of g��q1�
and transform to new transition probabilities

g��q1� = g�q1�h�q1� ,

g��qk;qk−1� = h�qk−1�g�qk;qk−1�h−1�qk� ,

g��qN� = g�qN�h−1�qN� .

Our choice g�qn�=1 allows us to interpret g�q1� as the initial
equilibrium distribution and g�qj ,qj+1� are the �forward�
transition probabilities, and the final summation is not
weighted. The other possible choice g�q1�=1 corresponds to
the time-reversed process.
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