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Time-ordered superoperators are used to develop a unified description of nonlinear density response and
spontaneous fluctuations of many-electron systems. Thepth-order density response functions are decomposed
into 2p+1 non-causalLiouville space pathways. Individual pathways are symmetric to the interchange of their
space, time, and superoperator indices and can thus be calculated as functional derivatives. Other combinations
of these pathways represent spontaneous density fluctuations and the response of such fluctuations to an
external field. The resolution of the causality paradox of time-dependent density-functional theorysTDDFTd is
shown to be intimately connected with the nonretarded nature of fluctuations.
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Time-dependent density-functional theorysTDDFTd is
based on the theorem of Runge and Grossf1g that maps the
interacting many-electron system onto a noninteracting sys-
tem which has the same time-dependent charge-density pro-
file nsr td, and is driven by an effective potential that includes
an exchange-correlation contributionvxcsnd. The theorem has
had remarkable successes in predicting electronic excitations
and currents of molecules and materialsf2–7g. It is desirable
to base the theory on a time-dependent action principle
which, in analogy with ordinary DFT, should allow us to
obtain the density as a functional derivative of an action

Ã(vsr td) with respect to the external potentialvsr td

nsr td =
dÃ

dvsr td
. s1d

Such action-principle could allow us to construct functionals
variationally. However, such an action does not exist. To see
the problem, consider the second derivative

d2Ã„vsr td…
dvsr tddvsr 8t8d

=
dnsr td

dvsr 8t8d
; xsr t,r 8t8d. s2d

Permutation of the space/time arguments of both sides leads
to a paradoxf3g: The right-hand side is the density response
function which must be causal, i.e., vanish fort8. t, whereas
the left-hand side is symmetric to the interchange of its space
and time arguments. van Leeuwenf8,9g has recently shown
how to construct such an action on the Keldysh loop
f10–12gwhereby an artificial pseudotimet goes forward in
one part of the loop and then backward. The actual response
can then be obtained by a transformation to realsphysicald
time. The time-dependent Kohn-Sham equations and the
time-dependent optimized potential method TDOPM were
obtained using this technique.

In this paper we provide different insight into this issue by
introducing generalized response functionswhich describe
both spontaneous density fluctuations and nonlinear response
along the same footing. DFT had shifted the focus of elec-
tronic structure theory from the many-body wave function to
the charge density. TDDFT had extended these ideas to the

time-dependent charge density created in response to an ex-
ternal potential. However, neither theory had paid much at-
tention tospontaneousdensity fluctuations which constitute
another important aspect of the charge density, perhaps since
they do not show up naturally in the standard derivations.
Such fluctuations may be observed by ultrafast x-ray diffrac-
tion f13–15g. They also play an important role in intermo-
lecular forcesf16,17g.

Small fluctuations are related to the linear response by the
fluctuation dissipation theorem and are not independent.
Therefore they are automatically built into the theory in this
regime and need not be addressed explicitly. This is no
longer the case for nonlinear fluctuations and response which
do not have a unique simple relationf18g.

We employ superoperator techniques in Liouville space
f19–22g to construct a generalized action directly in real
time. TDDFT is extended towards the computation of a gen-
erating function for multipoint correlation functions repre-
senting spontaneous fluctuations. van Leeuwen’s results are
recovered since the Keldysh and the superoperator formal-
isms can be uniquely mappedf19,23g. Denoting the space-
time coordinates asx j ; r jt j, thepth-order ordinary response
function is given byf3,24g

xspdsxp+1¯ x1d

= s− idp o
perm

ustp+1 − tpdustp − tp−1d ¯ ust2 − t1d

3kf¯ffn̂sxp+1d,n̂sxpdg,n̂sxp−1dg ¯ ,n̂sx1dgl . s3d

xspd describes the response generated at pointr p+1tp+1 to p
fields interacting with the system at pointsr 1t1¯ r ptp and n̂
is the charge-density operator. The step functionsustd which
guarantee causalityt1¯ tp, tp+1 and also keep track of time
ordering make it impossible to recast the response function
as a functional derivative.operm is a sum over thep! permu-
tations of x1¯xp. Without these permutationst1¯ tp are
chronologically ordered:t1 is the time of the first interaction,
etc. With these permutations,xspd is symmetrized.t1 is then
the interaction at pointr 1, but not necessarily the first. The
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frequency-domain susceptibility is given by thep-fold Fou-
rier transform ofxspd.

The connection between the response and spontaneous
fluctuations is most clearly and naturally established by in-
troducing a superoperator notationf19–22g. With every ordi-
nary operatorB we associate two superoperatorsBL andBR

which act on any other operatorX from the left and the right,
respectively,BLX;BX,BRX;XB. We further introduce their
symmetric and antisymmetric combinationsB+; 1

2sBL

+BRd ,B−;BL−BR. We then haveB+X; 1
2fBX+XBg ,B−X

;BX−XB. Another important operation is the time ordering
operator of superoperatorsT: when acting on any product of
superoperators it rearranges them so that time increases from
right to left. T is the key for the following derivations: it
allows us to remain in real time and avoid the Keldysh
forward/backward time loop. Using this notation we can re-
castxspd in the compact form

xspdsxp+1¯ xpd = s− idpkTn̂+sxp+1dn̂−sxpdn̂−sxp−1d ¯ n̂−sx1dl ,

s4d

wheren̂+ and n̂− are the superoperators corresponding to the
charge density. The entire bookkeeping of time ordering and
all the step functions and permutations in Eq.s3d now follow
naturally from the superoperator time ordering operatorT.
Causality enters in Liouville space in an interesting way:
since the trace of a commutator is zero, the last superoperator
to the far left must be a “+.” This guarantees thatt1¯ tp
ø tp+1. Since each superoperators+ or −d is a combination of
two superoperatorssL andRd, the response functionxspd, Eq.
s4d, can be decomposed into a sum of 2p+1 more elementary
objects calledLiouville space pathwayssLSPsd,

xspdsxp+1¯ x1d = s− idp o
hn jj=L,R

s− 1djxnp+1¯n1sxp+1¯ x1d,

s5d

where

xnp+1¯n1sxp+1¯ x1d ; kTn̂np+1sxp+1d ¯ n̂n1sx1dl . s6d

The indicesn j assume the valuesL or R, and j is the
number of “right” indices associated withn̂− operators.
Equations3d has 2p terms sp nested commutatorsd whereas
Eq. s4d has 2p+1 terms. Nevertheless, the two are identical by
virtue of the cyclic invariance of the tracefn̂+sxp+1d can be
replaced by eithern̂Lsxp+1d or n̂Rsxp+1d without affecting the
traceg. The extra permutation provides for a more symmetric
representation. It should be emphasized that individual LSPs
are noncausal. In fact they aresymmetricwith respect to the
permutation of any pair of their space/time andn indices
x jn j ↔x j8n j8. It is this superoperator symmetry that makes it
possible to work in realsphysicald time and will allow us to
recast the response in terms of functional derivatives. To il-
lustrate this supersymmetry and how the time ordering pre-
scription for superoperators works, let us consider the four
pathways contributing to the linearsp=1d response,

xLLsx2,x1d = kTn̂Lsx1dn̂Lsx2dl
= ust1 − t2dkn̂sx1dn̂sx2dl + ust2 − t1dkn̂sx2dn̂sx1dl ,

s7d

xRRsx2,x1d = kTn̂Rsx1dn̂Rsx2dl
= ust1 − t2dkn̂sx2dn̂sx1dl + ust2 − t1dkn̂sx1dn̂sx2dl ,

s8d

xRLsx2,x1d = kTn̂Rsx1dn̂Lsx2dl = kn̂sx1dn̂sx2dl , s9d

xLRsx2,x1d = kTn̂Lsx1dn̂Rsx2dl = kn̂sx2dn̂sx1dl . s10d

Combining all four terms yields the linear-response func-
tion

xs1dsx2,x1d ; x+−sx2,x1d

= 1
2sxLL − xRR+ xRL − xLRd

= − iust1 − t2dkfn̂sx1d,n̂sx2dgl . s11d

For completeness we also give the other combination rep-
resenting spontaneous fluctuations,

x++sx2,x1d = 1
4sxLL + xRR+ xLR + xRLd

= 1
2fkn̂sx1dn̂sx2dl + kn̂sx2dn̂sx1dlg . s12d

Note that the four LSPsfEqs.s7d–s10dg are not symmetric
with respect to the space/timesx jd permutation alone. How-
ever, they are symmetric when permuting the superoperator
index as wellsx jn jd. The entire response function given by
the combination of LSPs is causal. The same symmetries
hold for higher-order response functions: superoperator time
ordering thus allows us to recast thepth-order response as a
combination of 2p+1 symmetric terms. LPSs have proven
very useful in nonlinear spectroscopyf24,25g. Individual
pathways can now be obtained naturally as functional deriva-
tives which can be combined at the end to yield the response
functions. The LSPs are not merely artificial constructs but
offer a physical picture of the density response based on the
single electron density matrix rather than the Kohn-Sham
orbitals. In fact, it is possible to design resonant nonlinear
optical measurements that could select individual pathways
out of the entire response through phase matchingsselection
of wave vectorsd f24g.

The physical reason why the LSPs are nonretarded is that
they describe not only the response to external perturbations
but also spontaneous charge-density fluctuations which are
obviously noncausal. The ordinary response function Eq.s4d
is only one possible combination of the 2p+1 LSP. Only that
particular combination is fully retarded. Other combinations
are generalized response functions which describe either
spontaneous fluctuations or the effects of external driving
on such fluctuationsf16g. The “all plus” combination
kn̂+sxp+1d¯ n̂+sx1dl describes pure equilibrium density fluc-
tuations. The “all-minus” combination vanishes identically
sbeing the trace of a commutatord. Other combinations may
be interpreted as the response of density fluctuations to ex-
ternal fieldsf21,18g. For example,kn̂+sx3dn̂+sx2dn̂−sx1dl rep-
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resents the linear response of the two time fluctuation
kn̂+sx3dn̂+sx2dl to an external potential acting atx1 f16g. Thus
the Liouville space functional also provides a complete char-
acterization of spontaneous fluctuations. The causality para-
dox originates from focusing solely on the response, which is
how TDDFT is traditionally derived. By formulating the
problem in Liouville space it becomes evident from the out-
set that the response and spontaneous fluctuations are insepa-
rable and should be treated along the same footing. Once this
is recognized the problem is immediately cured.

Rather than computing directly the density response we
should therefore derive a generating functional for the entire
family of LSPs. These are the elementary building blocks for
both the causal density response and the noncausal density
fluctuations, which can be constructed by proper combina-
tions of the LSPs. When the nonlinear response is computed
as a sum over the many-electron states we immediately ob-
tain the LSPsf24g. However, such expansion is impractical
for complex systems and the standard TDDFT response may
not be easily decomposed into LSPs; the bookkeeping is en-
tirely different.

The generating functional may be computed by recasting
TDDFT using the density matrix. We start with the Liouville
equation for the many electron density matrixr, driven by
two artificial external potentialsvL for the ket andvR for the
bra,

]r

]t
= − ifH,rg − i E drvLsr ,tdn̂Lsr dr + i E drrvRsr ,tdn̂Rsr d,

s13d

where H is the material Hamiltoniansincluding the static
potentialsd. The action is defined as the logarithm of the trace
of the formal solution of Eq.s13d in the interaction picture,

ÃsvL,vRd = lnKT expS− i E dxvLsxdn̂Lsxd

+ i E dxvRsxdn̂RsxdDL . s14d

It follows directly from this definition thatÃ serves as a
generating functional for all LSPs,

s− idp+1s− 1djxc
np+1¯n1sxp+1¯ x1d

=U d p+1ÃsvL,vRd
dvnp+1

sxp+1d ¯ dvn1
sx1dU

vL=vR=0

. s15d

The subscriptc denotes that these areconnectedLSPs:xc is
equal tox minus various products of lower-order LSPs. Had
we defined the action without the logarithm, Eq.s15d would
give directlyx not xc. By starting the evolution att→−` we
perform an adiabatic switching of interactions, making sure
we have the ground state of the interacting system before the
time-dependent interaction is turned on.

The exchange correlation potential can be obtained by
using the Legendere transform of Eq.s14d,

AsnL,nRd = − ÃsvL,vRd +E dxnLsxdvLsxd +E dxnRsxdvRsxd,

s16d

wherenL;kn̂Ll andnR;kn̂Rl. Similarly we define the corre-

sponding Kohn-Sham actionsÃssvL ,vRd and AssnL ,nRd by
replacing the HamiltonianH in Eq. s13d with the single-
particle Kohn-Sham Hamiltonian. The exchange correlation
functionalAxc is then defined as

AsnL,nRd = AssnL,nRd −
1

2
E dxdx8nLsr tdnLsr 8tdWsr − r 8d

−
1

2
E dxdx8nRsr tdnRsr 8t8dWsr − r 8d

− AxcsnL,nRd. s17d

HereWsr −r 8d=1/ur −r 8u is the two-particle Coulomb poten-
tial. Using the chain rule for functional derivativesf3,6g we
can then derive Dyson-type equations for LSPs by double
differentiation of Eq.s17d with respect todn. To lowest-order
in the fields we obtain

xn1n2sx1,x2d = xs
n1n2sx1,x2d + o

n3n4

E E dx3dx4xs
n1n3sx1,x3d

3fWsx3 − x4ddst3 − t4ddn3n4

+ fxc
n3n4sx3,x4dgxn4n2sx4,x2d. s18d

Herexs
n1n2 is the LSP of the noninteractingsKohn-Shamd

system and

fxc
n3n4sx3,x4d =

d2AxcsnL,nRd
dnn3

sx3ddnn4
sx4d

. s19d

This matrix generalization of the Dyson equation which is
normally written for the responsef3g couples the contribu-
tions of the various LSPs and coincides with the nonequilib-
rium Green-function formulation of Keldyshf10g.

The deeper root of the causality paradox is that response
to external fields and spontaneous fluctuations are fundamen-
tally connected and inseparable. In the linear regime this
relation is known as the fluctuation dissipation theorem,
which using the present notation states thatx++ andx+− are
not independentf18g. This is no longer the case in higher
order where we have many possible response functions de-
scribing various types of spontaneous fluctuationsf16,18g
and there is no simple relation between fluctuations and re-
sponse. The two external fieldsvL andvR are needed in order
to generate and control both the response and the fluctua-
tions. Constructing a functional which will give the entire
response function in “one shot”fEq. s2dg, is prohibited by the
causality paradox but there is no difficulty to construct a
functional for multipoint equilibrium fluctuations represented
by the LSPs. The response is then obtained as a specific
combination of these fluctuations. The Keldysh formalism
accomplishes the same goal by using an artificial time con-
tour f10,11g. In Liouville space we achieve that through an
artificial field vL−vR that controls the fluctuations, all ele-
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ments of the theory thus have a physical significance. Note
that sincekn̂−l=0 we cannot consider it a dynamical variable
conjugate toU− in the same way thatkn̂+l is conjugate toU+.
However, we can think ofkn̂Ll as conjugate tovL andkn̂Rl as
conjugate tovR. It is thus better to construct the functional in
L /R space. Physical +/− quantities can then be simply ob-
tained as linear combinations. Liouville space provides an
intuitive picture since it allows us to stay in real time and its
building blocks may be individually measured by carefully
designed coherent resonant nonlinear techniquesf24,25g.
Rather than introducing an artificial pseudotime, we keep
track of “left” and “right” labels which control the bra and
the ket of the many-electron density matrix. The contour is
replaced by a simple time-ordering operation in Liouville
space, making it possible to obtain the functional from an
ordinary differential equation for the density matrix.

Finally we note that there aresp+1d! multipoint correla-
tion functions ofsp+1dth order which differ by the permu-
tations of their time/space arguments. Thepth order

response, Eq.s5d, depends on only a subset of 2p+1 of these
permutations; these are the Liouville space pathways. Since
they describe equilibrium fluctuations, they are nonretarded.
If we do not keep track of the relative time ordering of the
left and right interactions, just follow the number of left and
right type, some of the pathways may be combined and the
response will only havep+1 terms. In the frequency domain
we further need to sum over the permutations of the various
fields acting from the right and the left. When coupling the
electronic system to an external bathse.g., phononsd a more
detailed bookkeeping will result in new contributions to the
response functions. Such “dephasing induced” processes are
well known in nonlinear spectroscopyf24,26g. The LSP for-
mulation makes it possible to extend the TDDFT expressions
of nonlinear response by including additional dephasing
mechanisms. These could break the left/right symmetry and
give rise to interesting resonances.
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