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Generalized time-dependent density-functional-theory response functions for spontaneous density
fluctuations and nonlinear response: Resolving the causality paradox in real time
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Time-ordered superoperators are used to develop a unified description of nonlinear density response and
spontaneous fluctuations of many-electron systems.pith@rder density response functions are decomposed
into 2°*1 non-causaliouville space pathwaysdndividual pathways are symmetric to the interchange of their
space, time, and superoperator indices and can thus be calculated as functional derivatives. Other combinations
of these pathways represent spontaneous density fluctuations and the response of such fluctuations to an
external field. The resolution of the causality paradox of time-dependent density-functional (@@ T) is
shown to be intimately connected with the nonretarded nature of fluctuations.
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Time-dependent density-functional theoffDDFT) is  time-dependent charge density created in response to an ex-
based on the theorem of Runge and Gidgshat maps the ternal potential. However, neither theory had paid much at-
interacting many-electron system onto a noninteracting sysention tospontaneouslensity fluctuations which constitute
tem which has the same time-dependent charge-density pranother important aspect of the charge density, perhaps since
file n(rt), and is driven by an effective potential that includesthey do not show up naturally in the standard derivations.
an exchange-correlation contributiog(n). The theorem has Such fluctuations may be observed by ultrafast x-ray diffrac-
had remarkable successes in predicting electronic excitatiorion [13-15. They also play an important role in intermo-
and currents of molecules and materf@s7]. It is desirable lecular forceq16,17.
to base the theory on a time-dependent action principle Small fluctuations are related to the linear response by the
which, in analogy with ordinary DFT, should allow us to fluctuation dissipation theorem and are not independent.
obtain the density as a functional derivative of an actionTherefore they are automatically built into the theory in this

A(v(rt)) with respect to the external potentialrt) regime and need not _be addresse_d explicitly. This is no
longer the case for nonlinear fluctuations and response which

SA do not have a unique simple relatiph8].

Su(rt)’ (1) We employ superoperator tephmque§ in IT|ouV|IIe_ space
[19-22 to construct a generalized action directly in real

Such action-principle could allow us to construct functionalstime. TDDFT is extended towards the computation of a gen-

variationally. However, such an action does not exist. To se€rating function for multipoint correlation functions repre-

n(rt) =

the problem, consider the second derivative senting spontaneous fluctuations. van Leeuwen’s results are
- recovered since the Keldysh and the superoperator formal-
SA(v(rt)) on(rt) " isms can be uniquely mappé¢d9,23. Denoting the space-
N oy = rtrt). 2 im rdin =rt., the pth-order ordinary r n
so(rysu(r't’) ~ du(r't) time coordinates ag;=rt;, the pth-order ordinary response

function is given by 3,24]
Permutation of the space/time arguments of both sides leads
to a paradoX3]: The right-hand side is the density response

(p)
function which must be causal, i.e., vanish fort, whereas X (XF’+1 X1)

the left-hand side is symmetric to the interchange of its space = (=P Bty —t)O(t, —t, 1) O(t,—t;)

and time arguments. van Leeuwg)9] has recently shown perm prio PR 2

how to construct such an action on the Keldysh loop - A . .
[10-12whereby an artificial pseudotime goes forward in x([---[[n(xp+l),n(xp)],n(xp_l)]--- Axp)). (3

one part of the loop and then backward. The actual response

can then be obtained by a transformation to r@dysica)  x'P describes the response generated at point,., to p
time. The time-dependent Kohn-Sham equations and thgelds interacting with the system at pointg;---r,t, and
time-dependent optimized potential method TDOPM wereis the charge-density operator. The step functié(swhich
obtained using this technique. guarantee causality- - -t,<t,,; and also keep track of time

In this paper we provide different insight into this issue by ordering make it impossible to recast the response function

introducing generalized response functiomehich describe as a functional derivativeZ e, is a sum over th@! permu-
both spontaneous density fluctuations and nonlinear respongations of x;---x,. Without these permutationt:--t, are
along the same footing. DFT had shifted the focus of elecehronologically ordered; is the time of the first interaction,
tronic structure theory from the many-body wave function toetc. With these permutationg!® is symmetrizedt, is then
the charge density. TDDFT had extended these ideas to thhe interaction at point,, but not necessarily the first. The
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frequency-domain susceptibility is given by thefold Fou- X (X %) = (TR (XA (X))
rier transform ofy!P).

The connection between the response and spontaneous = 6ty ~ ) (AXDAXR) + Bt ~ t) (X2 (X)),
fluctuations is most clearly and naturally established by in- (7)
troducing a superoperator notatigk®—22. With every ordi-
nary operatoB we associate two superoperat@'sand BR YRR(%0,%1) = (TAR(X)AR(X,))
which act on any other operatirfrom the left and the right, o o
respectivelyB-X=BX,BRX= XB. We further introduce their = 0(t; — t)(AX)A(XD)) + Bty — t)(AXA(X)),
symmetric and antisymmetric combinationB*= %(B'— (8)
+BR),B"=B--BR We then haveB*X= [BX+XB],B"X
=BX-XB. Another important operation is the time ordering XX %1) = (TAR(X AL (X)) = (A(XDA(XR)),  (9)
operator of superoperatofs when acting on any product of
superoperators it rearranges them so that time increases from X-R(Xp,Xq) = <Tﬁ'—(x1)ﬁR(X2)> = <ﬁ(x2)ﬁ(xl)>_ (10)

right to left. T is the key for the following derivations: it o ) ]
allows us to remain in real time and avoid the Keldysh Combining all four terms yields the linear-response func-
forward/backward time loop. Using this notation we can re-tion

®) -
casty'? in the compact form YD (X, X1) = X (X, X1)

X(p)(xp+l .. Xp) =(- i)p<T’h+(Xp+1)ﬁ_(Xp)ﬁ_(Xp—l) . ﬁ_(X1)>, = %(X'—L - )(RR+ )(RL— )(LR)
@ = —i6(t; - t){[ Axy),A(xp) ]). (11)

For completeness we also give the other combination rep-
wheref* andfh™ are the superoperators corresponding to thgesenting spontaneous fluctuations,
charge density. The entire bookkeeping of time ordering and " 1, L. RR. .LR. RL
all the step functions and permutations in E2).now follow X T X)) =3 X T X
naturally from the superoperator time ordering operdtor =1 {aw A YR,
Causality enters in Liouville space in an interesting way: 2[(n(x1)n(x2)>+<n(x2)n(x1)>]. (12
since the trace of a commutator is zero, the last superoperator Note that the four LSPEEQs.(7)—(10)] are not symmetric
to the far left must be a “+.” This guarantees that--t,  with respect to the space/tinig;) permutation alone. How-
<t,.1. Since each superoperateror -) is a combination of ~ ever, they are symmetric when permuting the superoperator
two superoperatord. andR), the response functiog®, Eq.  index as well(x;v). The entire response function given by
(4), can be decomposed into a sum 8f2more elementary the combination of LSPs is causal. The same symmetries
objects called_iouville space pathwayd SP9, hold for higher-order response functions: superoperator time
ordering thus allows us to recast thth-order response as a
combination of 2*! symmetric terms. LPSs have proven
very useful in nonlinear spectroscof24,25. Individual
pathways can now be obtained naturally as functional deriva-
(5 tives which can be combined at the end to yield the response
functions. The LSPs are not merely artificial constructs but
where offer a physical picture of the density response based on the
single electron density matrix rather than the Kohn-Sham
X Xy e Xg) = <Tﬁup+1(xp+l)...ﬁvl(xl)>_ (6)  Orbitals. In fact, it is possible to design resonant nonlinear
optical measurements that could select individual pathways
The indicesy; assume the values or R, and § is the  out of the entire response through phase matctsetection
number of “right” indices associated with™ operators. of wave vectors [24].
Equation(3) has 2 terms(p nested commutatorsvhereas The physical reason why the LSPs are nonretarded is that
Eq. (4) has 2*! terms. Nevertheless, the two are identical bythey describe not only the response to external perturbations
virtue of the cyclic invariance of the tra¢@*(x,.1) can be but also spontaneous charge-density fluctuations which are
replaced by eitheﬁL(xp+1) or ﬁR(xp+1) without affecting the  obviously noncausal. The ordinary response function(&yg.
tracd. The extra permutation provides for a more symmetricis only one possible combination of th&*2 LSP. Only that
representation. It should be emphasized that individual LSPgarticular combination is fully retarded. Other combinations
are noncausal. In fact they asgmmetricwith respect to the are generalized response functions which describe either
permutation of any pair of their space/time andndices spontaneous fluctuations or the effects of external driving
X;vj <X vj. Itis this superoperator symmetry that makes iton such fluctuations[16]. The *“all plus” combination
possible to work in realphysica) time and will allow us to  (R*(xp.1)- - A*(X)) describes pure equilibrium density fluc-
recast the response in terms of functional derivatives. To iltuations. The “all-minus” combination vanishes identically
lustrate this supersymmetry and how the time ordering pre¢being the trace of a commutajoOther combinations may
scription for superoperators works, let us consider the foube interpreted as the response of density fluctuations to ex-
pathways contributing to the line@p=1) response, ternal fields[21,18. For example{fi*(x3)N* (X)) (X,)) rep-

P (g X) = (1P S (= D 4Ky %),
{Vj}:L,R
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resents the linear response of the two time fluctuation ~

(A*(x9)A*(x,)) to an external potential acting &t [16]. Thus AN, NR) == Alv,vR) + f dxn (x)v(x) +f dxng(X)vg(X),
the Liouville space functional also provides a complete char-
acterization of spontaneous fluctuations. The causality para- (16)

dox originates from focusing solely on the response, which igyheren, = (At) andng=(A%). Similarly we define the corre-

how TDDFT is traditionally derived. By formulating the . .
problem in Liouville space it becomes evident from the out-SPonding Kohn-Sham actions(v ,vr) and A(n,,ng) by
%t_)lacmg the HamiltoniarH in Eq. (13) with the single-

set that the response and spontaneous fluctuations are insepa- : hn-Sham Hamiltonian. Th h lati
rable and should be treated along the same footing. Once th rt'(? e Ko n-sham Ham tonian. The exchange correlation
unctional A,; is then defined as

is recognized the problem is immediately cured.

Rather than computing directly the density response we 1
should therefore derive a generating functional for the entire A(n,ng) = AdN.,NR) — = J dxdx'n_(ro)n (r " OW(r —r")
family of LSPs. These are the elementary building blocks for 2

both the causal density response and the noncausal density 1

fluctuations, which can be constructed by proper combina- ‘EJdXdX'nR(ft)nR(f't')W(r -r’)

tions of the LSPs. When the nonlinear response is computed

as a sum over the many-electron states we immediately ob- = A(NLNR). (17)

tain the LSP424]. However, such expansion is impractical HereW(r —r')=1/|r —r'| is the two-particle Coulomb poten-

for complex systems and the standard TDDFT response m . . ; S
not be easily decomposed into LSPs; the bookkeeping is e?f}-/al' Using th? chain rule for funcno_nal derivatives, 6] we
can then derive Dyson-type equations for LSPs by double

tirely different. . - .
T¥1e generating functional may be computed by recastin ifferentiation of Eq(17) with respect tosn. To lowest-order
the fields we obtain

TDDFT using the density matrix. We start with the Liouville
equation for the many electron density matpixdriven by . .
two artificial external potentials, for the ket andvy for the X172(Xq,X0) = XPA(Xq, X0) + 2 f J dX3dXsxs"*(X1,X3)

bra, v3vy
X[WI(x3=X4) 8(t3 = 14),.,,,
J . . o . o
,y_,t) =—i[H,p]-i f dro(r,t)Ak(r)p +i f dr pug(r,t)aR(r), + £13"(X3,X4) [ 4"2(X 4,X5) (18
(13) Here x¢" is the LSP of the noninteracting<ohn-Sham
system and
where H is the material Hamiltoniar{including the static A (N, NR)
potential$. The action is defined as the logarithm of the trace f13"4(X3,Xq) = # (19
of the formal solution of Eq(13) in the interaction picture, v5(X3) AN, (Xa)

This matrix generalization of the Dyson equation which is
~ _ . AL normally written for the responge3] couples the contribu-
AloL,ve) = In<T exy{ ! f oo ()00 tions of the various LSPs and coincides with the nonequilib-

rium Green-function formulation of KeldydgH.0].
+i f dXvR(X)ﬁR(X)> _ (14) The deeper root of the causality paradox is that response
to external fields and spontaneous fluctuations are fundamen-
) ) o ~ tally connected and inseparable. In the linear regime this
It follows directly from this definition thaA serves as a yg|ation is known as the fluctuation dissipation theorem,

generating functional for all LSPs, which using the present notation states tgit and x*~ are
not independenf18]. This is no longer the case in higher
(=P = DEXEPH T Xy - Xg) order where we have many possible response functions de-

scribing various types of spontaneous fluctuatiph§,1§
(15) and there is no simple relation between fluctuations and re-

sponse. The two external fields andvg are needed in order

to generate and control both the response and the fluctua-
The subscript denotes that these acennected_SPs:x.is  tions. Constructing a functional which will give the entire
equal toy minus various products of lower-order LSPs. Hadresponse function in “one shdtEq. (2)], is prohibited by the
we defined the action without the logarithm, Ef5) would  causality paradox but there is no difficulty to construct a
give directly y not y.. By starting the evolution a@t— -« we  functional for multipoint equilibrium fluctuations represented
perform an adiabatic switching of interactions, making sureby the LSPs. The response is then obtained as a specific
we have the ground state of the interacting system before theombination of these fluctuations. The Keldysh formalism

5P AL, vR)
v,  (Xper) ** 5UV1(X1)

Vp+1

v =vR=0

time-dependent interaction is turned on. accomplishes the same goal by using an artificial time con-
The exchange correlation potential can be obtained byour [10,11]. In Liouville space we achieve that through an
using the Legendere transform of HG4), artificial field v, —vg that controls the fluctuations, all ele-
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ments of the theory thus have a physical significance. Noteesponse, Eq5), depends on only a subset df2 of these
that since(i”)=0 we cannot consider it a dynamical variable permutations; these are the Liouville space pathways. Since
conjugate tdJ_ in the same way thafi*) is conjugate tdJ,.  they describe equilibrium fluctuations, they are nonretarded.

. . o If we do not keep track of the relative time ordering of the
L R
However, we can think off") as conjugate to, and(f") as left and right interactions, just follow the number of left and

conjugate tapg. It i_s thus better tc_) .construct the funcjtional in right type, some of the pathways may be combined and the
L/R space. Physical +/- quantities can then be simply obresponse will only have+1 terms. In the frequency domain
tained as linear combinations. Liouville space provides anwe further need to sum over the permutations of the various
intuitive picture since it allows us to stay in real time and itsfields acting from the right and the left. When coupling the
building blocks may be individually measured by carefully electronic system to an external bathg., phononsa more
designed coherent resonant nonlinear techniqs25. detailed bookkeeping will result in new contributions to the
Rather than introducing an artificial pseudotime, we keepesponse functions. Such “dephasing induced” processes are
track of “left” and “right” labels which control the bra and well known in nonlinear spectroscop24,26. The LSP for-

the ket of the many-electron density matrix. The contour isnulation makes it possible to extend the TDDFT expressions
replaced by a simple time-ordering operation in Liouville Of nonlinear response by including additional dephasing
space, making it possible to obtain the functional from anmechanisms. These could break the left/right symmetry and
ordinary differential equation for the density matrix. give rise to interesting resonances.

Finally we note that there arg+1)! multipoint correla- The support of the Chemical Sciences, Geosciences, and
tion functions of(p+1)th order which differ by the permu- Biosciences Division, Office of Basic Energy Sciences, Of-
tations of their time/space arguments. Thmh order fice of Science, U.S. Department of Energy, Grant No. DE-

FG02-04ER15571, is gratefully acknowledged.
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