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The difference frequency generation (DFG) signal from a two electronic level system with vibrational modes
coupled to a Brownian oscillator bath is computed. Interference effects between two Liouville space pathways
result in pure-dephasing-induced, excited-state resonances provided the two excitation pulses overlap and
time ordering is not enforced. Numerical simulations of two-dimensional DFG signals illustrate how the
ground and excited electronic state resonances may be distinguished.

I. Introduction

Difference frequency generation (DFG) and sum frequency
generation (SFG) are coherent, three-wave-mixing techniques
wherein two input fields with wavevectorsk1 andk2 create a
third signal field with the combination wavevectorks ) k1 (
k2. For centrosymmetric media with inversion symmetry the
second-order response vanishes in the dipole approximation,1,2

making these techniques a versatile tool for the study of oriented
crystals or surfaces and interfaces.3-7 Many frequency-domain5,6

and time-resolved8-11 applications have been made. SFG
techniques have been applied to study molecular conformations
at surfaces and interfaces, liquid interfaces, surface reactions,
catalysis, chirality of molecules on thin films, and chiral
molecules in solution.5,12-15 Classical MD simulations were
carried out for SFG from liquid/vapor interfaces of water16,17

and acetone.18 DFG has further found applications in semi-
conductors.10,11

In this paper we focus on an ultrafast DFG technique known
as coherence emission spectroscopy/optical rectification,19,20

whereby two femtosecond visible pulses resonant with an
electronic transition create vibrational coherences in both the
ground and the excited electronic states. The generated hetero-
dyne detected infrared field (both amplitude and phase) reveals
vibrational modes strongly coupled to the photoexcitation. This
technique has been applied using 11 fs pulses to study protein
vibrational motions coupled to an electronically excited cofactor
in photoactivable single crystals (The photodissociation of the
heme cofactor in ordered crystals of myoglobin19 and the retinal
transf cis photoisomerization in oriented films for bacterio-
rhodopsin20). These experiments have opened up new possibili-
ties for probing protein structure and for following concerted
motions induced by an external femtosecond trigger. The signal
is calculated for a two electronic level system whose vibrational
modes are coupled to an overdamped Brownian oscillator bath21

with an arbitrary time scale. We further show how the ground
and the excited state vibrations may be distinguished by a two-
dimensional DFG (TDDFG). Two-dimensional SFG was re-
cently demonstrated for a doubly resonant infrared-visible
technique22 and was shown to be sensitive to the vibrational

modes as well as their displacements on the electronic excited
state. In our case, 2D frequency-frequency plots from cw
experiments show clear signatures of the bath time scale.
Interference between different Liouville space pathways leads
to excited state resonances which are induced by pure homo-
geneous-dephasing and therefore vanish in the slow bath limit
where the line broadening is strictly inhomogeneous. Similar
dephasing-induced resonances (DIR) were observed more than
two decades ago in third order, coherent Raman spectroscopies
(CRS) for atoms in the gas phase23 and molecular crystals.24,25

It has been recognized26 that DIR carry information about the
effect of the electronic dephasing rates on vibrational dynamics.
Such resonances were recently observed in DOVE (doubly
vibrationally enhanced) four wave mixing experiments on
mixtures of acetonitrile, deuterionitrile and deuteriobenzene.27

Since these resonances have pronounced spectral signatures, they
can be used to probe vibrational dynamics following electronic
excitation. We show that excited-state DFG resonances have
long tails ∝Γ̂/ωvib, whereas the ground-state resonances vary
as 1/ωvib, whereΓ̂ denotes the pure dephasing rate and 1/ωvib

denotes a vibrational resonance. Impulsive experiments with
well-separated pulses do not show these interferences.21 How-
ever, a combination of two impulsive signals can reproduce the
frequency-domain interference. In section II, we calculate the
second-order nonlinear response of a multilevel system coupled
to a harmonic bath. In section III, we present the double sided
Feynman diagrams and expressions for the DFG signals from
a two electronic level/vibronic system. We then consider various
cases of pulse durations corresponding to pure frequency-domain
(cw) (section IV), time-domain (impulsive) (section V), and
finite pulse experiments (section VI). Closed expressions are
derived for the signal in the limiting cases of fast and slow baths
for both cw and impulsive experiments.

II. Second-Order Response of a Multilevel System
Coupled To a Gaussian Bath

The second-order polarization is related to the external fields
through the second-order response functionS(2)(t2, t1)

* To whom correspondence should be addressed.

P(2)(r, t) )

∫0

∞
dt2 ∫0

∞
dt2 dt1 E(r, t - t2)E(r, t - t2 - t1)S

(2)(t2, t1) (1)
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wheret1 is the time interval between the two interactions with
the input fields andt2 is the time interval between the second
interaction and detection of the signal (Figure 1(A)).S(2) is given
by21

with

HereV(t) is the dipole operator in the Heisenberg picture

whereH is the molecular Hamiltonian.

We consider a multilevel system interacting with a bath,
described by the Hamiltonian

Here |ν〉 (ν ) m, n, k...) are the system eigenstates with
eigenvaluespων and inverse lifetimeγν. The bath consists of
harmonic modes andqν

(c) are collective Brownian oscillator
bath coordinates.21 The dipole operator is

whereµν′ν is the transition dipole between the statesν′ andν.
The three-point correlation functions can be calculated exactly
for this model using the second-order cumulant expansion
following the procedure of28

whereWm is the equilibrium population of level m, andγmn )
1/2(γm + γn). The line shape function for the transition between
levels m and ngmn is given by

whereCmn is the two time correlation function of the collective
bath coordinateqmn

(c)(t) ) qm
(c)(t) - qn

(c)(t)

The spectral density of the collective coordinatesqmn
(c) is

defined as

Hereafter we use the overdamped Brownian oscillator model
for the spectral density21

whereλmn is the coupling strength of the mn transition with the
bath andΛmn is the relaxation rate. In the high-temperature limit

Figure 1. (A) Pulse sequence for a DFG experiment. (B) All Liouville
space pathways contributing to the second-order response within the
RWA. For well separated impulsive pulses wherek1 comes first,k I )
k1 - k2 selects pathwaysSca andSbd, whereask II ) - k1 + k2 selects
pathways S′ca and S′bd. For coincident pulses all four pathways
contribute. (C) level scheme for the electronically resonant DFG
experiment.

S(2)(t2, t1) ) ( i

p)2

θ(t2)θ(t1)∑
R)1

2

[QR(t2, t1) + QR
/(t2, t1)] (2)

Q1 ) 〈V(t1 + t2)V(t1)V(0)〉 (3)

Q2 ) -〈V(t1)V(t1 + t2)V(0)〉 (4)

V(t) ) exp( i
p
Ht)V exp(- i

p
Ht) (5)

H ) p∑
ν

|ν〉 (ων - i
γν

2
+ qν

(c))〈ν| (6)

V ) ∑
νν′

|ν′〉µν′ν〈ν| (7)

Q1(t2, t1) ) ∑
mnk

µkmµnkµmnWm exp(-iωnmt1 - γnmt1)

exp(-iωkmt2 - γkmt2) exp(-
1

2
(gkm(t1 + t2) + gmn(t1 + t2) -

gkn(t1 + t2) - gmn(t2) + gmk(t2) + gkn(t2) - gkm(t1) +

gkn(t1) + gnm(t1))) (8)

Q2(t2, t1) ) - ∑
mnk

µkmµnkµmnWm exp(- iωnmt1 - γnmt1)

exp(- iωnkt2 - γnkt2) exp(-
1

2
(gkm(t1) + gmn(t1) - gkn(t1) -

gmn
/ (t2) + gmk

/ (t2) + gmn
/ (t2) - gkm(t1 + t2) + gkn(t1 + t2) +

gnm(t1 + t2))) (9)

gmn(t) ) ∫0

t
dt′ ∫0

t′
dt′′ Cmn(t′′) (10)

Cmn(t) ) 1
p

〈qmn
(c)(t)qmn

(c)(0)〉 (11)

C′′mn(ω) ) i
2∫-∞

∞
dt exp[iωt] 〈[qmn

(c)(t), qmn
(c)(0)]〉 (12)

C′′mn(ω) ) 2λmn

ωΛmn

ω2 + Λmn
2

(13)
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(KBT . Λ) the two time correlation function for this model is
given by21

where λmn represents the coupling strength of frequency
fluctuations for the transition between levelsm and n to the
bath andΛmn is the relaxation rate of these fluctuations. Eq 10
then gives for the line shape function

The dimensionless parameterκmn ) Λmn/∆mn [where ∆mn )
(2KBTλmn/p)1/2] represents the bath time scale. The total line
width (fwhm) Γmn of the mn transition is given by the fol-
lowing Pade approximant in terms of the parameters∆mn and
κmn:21,29

In the κ . 1 (motional narrowing, fast bath) limit,gmn(t) )
Γ̂mnt - iλmnt whereΓ̂mn ≡ λmnKBT/pΛmn is the homogeneous
dephasing rate. In the oppositeκ , 1 (inhomogeneous, slow
bath) limit, we havegmn(t) ) ∆mn

2t2/2 and∆mn is the line width.

III. Application to Electronically Resonant DFG

We now apply these results to a two electronic level model
system: the ground (g) and the excited (e) levels, coupled to
several vibrational modes (Figure 1C). This system can be
represented by our multilevel Hamiltonian, where|ν〉 now
represents vibronic states. Hereafter, the indicesν ) a, c will
denote ground vibronic states andν ) b, d will denote excited
vibronic states. We consider a resonant DFG experiment,
whereby the two optical fieldsk1 andk2 are resonant with the
electronic transition. The infrared signal generated atks ) k1

- k2 probes the dynamics of both ground and excited-state
vibrational coherences induced in the system.

The applied electric field is

Herek j, ωj, andεj are the wavevector, frequency, and envelope
of the pulsej. Pulses 1 and 2 peak at times-τ1 and -τ2,
respectively, and the signal is detected aroundt ) 0. We assume
τ1 > τ2 (pulse 1 comes first) and definet1 ) τ1 - τ2 and t2 )
τ2 as the time intervals between the pulse centers (see Figure
1A). The pulses may overlap so that time ordering is not
enforced. Substituting eq 17 in eq 1 gives

or

where

We next invoke the rotating wave approximation (RWA)21 by
neglecting off resonant terms with the field frequencies in eq
18. This gives

Double-sided Feynman diagrams for the four Liouville space
pathways (Sca, Sbd, S′ca, andS′bd) are given in Figure 1B, and the
corresponding expressions are derived in Appendix A. DFG
experiments can be performed with either ultrashort (broad-
bandwidth) pulses or continuous wave (monochromatic) fields.
These correspond to time-domain and frequency-domain experi-
ments. The expressions simplify considerably for these limiting
cases which are discussed in the following sections.

IV. Frequency-Domain (cw) Signals

In an ideal frequency-domain experiment, we assume mono-
chromatic fields and eq 19 gives

Using the RWA to pair up the various Liouville space
contributions with the field permutations (as in eq 21), eq 20
gives

where

Figure 2. Linear absorption spectra for model I and model II as a
function of the bath time scale parameterκ. Shown is the origin (left
panel) and theω1 - ωeg)1070 cm-1 resonance (right panel).

ø(2)(ω2 - ω1; - ω2,ω1) ) ∫0

∞
dt′2 ∫0

∞
dt′1 S(t′2, t′1)exp[i(ω1 -

ω2)t′2][exp(iω1t′1) + exp(- iω2t′1)]

ε(ω) ) ∫-∞

∞
dτ ε(τ) exp(iωτ) (20)

P(k1 - k2, t) )

( i
p)2 ∫0

∞
dt′2 ∫0

∞
dt′1 exp[i(ω1 - ω2)t′2][(Sca(t′2, t′1) +

Sbd(t′2, t′1))exp[iω1t′1]ε1(t + τ1 - t′2 - t′1)ε2
/(t + τ2 - t′2) +

(S′ca(t′2, t′1) + S′bd(t′2, t′1)) exp[- iω2t′1] ×
ε2
/(t + τ2 - t′2 - t′1)ε1(t + τ1 - t′2)] (21)

P(k1 - k2, t) )

ø(2)(ω2 - ω1; - ω2,ω1)ε1ε2
/ exp[-i(ω1 - ω2)t] (22)

ø(2)(ω2 - ω1; - ω2,ω1) ) øca
(2) + øbd

(2) (23)

Cmn(t) ) [2KBTλmn

p
- iλmnΛmn]exp(- Λmnt) (14)

gmn(t) ) (2λmnKBT

pΛmn
2

- i
λmn

Λmn)[exp(- Λmnt) + Λmnt - 1] (15)

Γmn

∆mn
)

2.355+ 1.76κmn

1 + 0.85κmn + 0.88κmn
2

(16)

E(r, t) ) ε1(t + τ1) exp(iω1t - ik1‚r) +
ε2(t + τ2) exp(iω2t - ik2‚r) + c.c. (17)

P(k1 - k2, t) ) ∫0

∞
dt′2 ∫0

∞
dt′1 exp(i(ω1 - ω2)t′2)S(t′2, t′1)

[exp(iω1t′1)ε1(t + τ1 - t′2 - t′1)ε2
/(t + τ2 - t′2) +

exp(- iω2t′1)ε2
/(t + τ2 - t′2 - t′1)ε1(t + τ1 - t′2)] (18)

P(k1 - k2, t) ) ∫-∞

∞
dω2 ∫-∞

∞
dω1ø

(2)(ω2 - ω1; - ω2,ω1)

ε1(ω1)ε2
/(- ω2) exp[-i(ω1 - ω2)t] (19)
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with the double Fourier transform

Sca and S′ca (Sbd and S′bd) given in Appendix A represent

contributions to the response with ground state (excited state)
resonances. In the fast bath limit (κ . 1), the line broadening
function is given by: gmn(t) ) Γ̂mnt - iλmnt andSm are given
by eq B1. We then get (see Appendix B)

Figure 3. (A) Logscale 2D plots of frequency-domain homodyne signal (ø(2), eq 23) showing resonances in the fast (κ ) 5) and slow (κ ) 0.0001)
bath limits, (B) The ground-state contribution (øca

(2) in eq 23). (C) The excited state contribution (øbd
(2) in eq 23).

øca
(2)(ω2 - ω1; - ω2,ω1) ) ( i

p)2
[Sca(ω1 - ω2,ω1) +

S′ca(ω1 - ω2, - ω2)] (24)

øbd
(2)(ω2 - ω1; - ω2,ω1) ) ( i

p)2
[Sbd(ω1 - ω2,ω1) +

S′bd(ω1 - ω2, - ω2)] (25)

Sm(ω′2,ω′1) ) ∫0

∞
dt′2 ∫0

∞
dt′1 exp[iω′2t′2] exp[iω′1t′1]Sm(t′2, t′1)

(26)

øca
(2)(ω2 - ω1; - ω2, ω1) )

( i

p)2

∑
b

1

(ω1 - ω2) - ωca + i(γca + Γ̂ca)

[ Wa

ω1 - ωba + i(γba + Γ̂ba)
+

Wc

- ω2 - ωcb + i(γcb + Γ̂cb)]
(27)
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This expression shows that, if the system is initially in the
vibrational ground state (γa ) 0), the excited state “bd”
resonance will vanish in the absence of pure dephasing (Γ̂ba +
Γ̂ad - Γ̂bd ) 0). Pure dephasing is absent for our model in the
slow bath limitκ , 1, which is also derived in Appendix B.
For intermediateκ, the excited-state resonances will show a
partial cancellation. The line shapes of excited-state resonances
thus carry information about the bath time scales.

To demonstrate these effects, we have performed numerical
simulations. We first consider an electronic two-level system
with a single vibrational mode (model I). All electronic and
vibrational transitions are allowed and their dipole strength is
set to 1.0. The 0-0 “g” to “ e” transition frequency isωeg. The
vibrational mode frequency is 1225 cm-1 in “g” and 1070 cm-1

in “e”. All states, excluding the ground vibrational state in “g”
have the same inverse lifetime ofγ ) 4 cm-1. The system is
initially in the ground state (a ) 0, γa ) 0 cm-1) in “g”. The
fwhm for all vibrational transitions (eq 16) isΓ ) 5 cm-1 and
for all electronic transitions isΓ ) 30 cm-1. The mode
frequencies were chosen to match those observed in recent DFG
experiments on myoglobin.19 Other parameters such as the
lifetime and dephasing rates represent typical literature values.
All simulations were performed at room temperature (300 K)
whereWa vanishes fora * 0. Figure 2 (top row) displays the
linear absorption for this model showing two peaks correspond-
ing to the vibrational levels in e showing the effect of the bath
time scale on the line shape. Asκ is decreased, the line shape
changes from a Lorentzian to a Gaussian. Figure 3 displays 2D
frequency-frequency contour plots of the absolute value cw
signals (eq 23) with the difference frequencyω1 - ω2 along
thex axis and the excitation frequencyω1 along they axis. The
plots show an excited-state resonance at (ω1 - ωeg, ω1 - ω2)
) (1070, 1070) cm-1 and two ground-state resonances at (1070,
1225) cm-1 and (1225, 1225) cm-1. Eqs 27 and 28 show
that in the fast bath limit (κ ) 5.0) øca

(2) ∝ 1/(ω1 - ω2 - ωca)
and øbd

(2) ∝ Γ̂/(ω1 - ω2 - ωbd). In the slow bath limit, eq B3
shows that the excited-state contributionøbd

(2) does not contain a
vibrational resonance. This implies that as the visible pulse
frequency ω1 - ωeg is detuned away from the electronic
resonance the signal must vanish alongω1 - ω2)1070 cm-1

(Figure 3, parts A and C).The ground-state resonances do not
show this cancellation (Figure 3, parts A and B). In Figures 4
and 5, we present sections of the contour plots to show the
variation of DIR withκ. Figure 4 shows a slice of the 2D contour
plot alongω1 - ω2 at ω1 - ωeg ) 1200 cm-1 for different
values ofκ. Figure 5 depicts slices alongω1 whenω1 - ω2 is
tuned to the ground/excited-state resonances for different values
of κ. These show the sensitivity of the excited-state resonance
line shape to the bath time scale. Figure 4 shows that the excited-
state resonance becomes weaker asκ is decreased. In Figure 5
the excited-state line shape shows a much sharper drop in the
tails with decreasingκ as compared with the ground-state
resonance.

We next consider model II with two vibrational modes (1070
and 1225 cm-1) with identical frequencies in state “g” and “e”.

It has the same pair of frequencies as model I, but the origin of
the two frequencies is different (ground vs excited state
coherences). All other parameters are the same. Figure 2 (bottom
row) shows the linear absorption for this model. Figure 6 shows
the (A) absolute value and (B) real parts of frequency-
frequency contour plots for the cw signal in the fast bath limit.
The negative ground state resonances can be easily distinguished

Figure 4. Slices of the 2D contour plots in Figure 3 atω1 - ωeg )
1200 cm-1 taken at different values ofκ.

Figure 5. Logscale plots of the frequency-domain signal as a function
of the excitation frequencyω1 whenω1 - ω2 is tuned to ground (dotted
lines) and excited (solid lines) state vibronic resonances. The lower
panel shows the signal at the tail of the excited-state resonance atω1

- ωeg ) 1070 cm-1.

øbd
(2)(ω2 - ω1; - ω2,ω1) )

- ( i

p)2

∑
a [1 +

i(γa + Γ̂ba + Γ̂ad - Γ̂bd)

(ω1 - ω2) - ωbd + i(γbd + Γ̂bd)]
Wa

(ω1 - ωba - i(γba + Γ̂ba))(-ω2 - ωad + i(γad + Γ̂ad))
(28)
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Figure 6. (A) Absolute value (logscale) and (B) real 2D plots for the CW signal (eq 23) in the fast bath limit as applied to the two model systems
described in the section IV.

Figure 7. Absolute value (logscale) 2D plots ofPI(Ω2, Ω1) and PII(Ω′2, Ω′1) (eq 32 with eqs 30 and 31) showing ground and excited-state
resonances in the fast (κ ) 5) and slow (κ ) 0.0001) bath limits. The pulse frequencies are centered atω1 ) ωeg andω1 - ω2 ) 0 cm-1. Signals
for two time-domain experiments and their superposition are displayed: (A)k I ) k1 - k2; (B) k II ) k2 - k1; (C) PII(Ω2, Ω2 - Ω1); and (D) (A)
+ (C).
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from the positive excited-state resonances. The signals for the
two models are different. For model I, the ground and the
excited-state resonances have comparable magnitudes, but for
model II, the excited-state resonances are weaker due to a partial
cancellation with ground-state resonances. In the positive (ω1

- ω2, ω1) quadrant, we expect a single peak alongω1 axis for
each excited resonance alongω1 - ω2 and two peaks for each
ground state resonance. Model I clearly shows two different
frequencies corresponding to the ground and excited states. For
model II, we see that both resonances alongω1 - ω2 originate
from ground and excited electronic states.

V. Time-Domain (Impulsive) Signals

In time-domain experiments, the time delay between the
pulses can be controlled and scanned. We thus express the
signals in terms of the delayst1 andt2. We have calculated the
two possible signalskI ) k1 - k2 andkII ) k2 - k1

andPII(t2, t1) ) PI
/(t2, t1) In an ideal, impulsive (time-domain)

experiment the field envelopes in eqs 21 and 29 are represented
by delta functionsε1(t) ) ε2(t) ) δ(t). For well-separated pulses,
a specific time ordering is imposed leading to either technique
k I, selecting pathwaysSca and Sbd or techniquek II selecting
pathwaysS′ca andS′bd. Using eq 29 and its complex conjugate,
we have

and

In this case, only one ground-state pathway and one excited-
state pathway contribute. Eq 28 shows that DIR results from
the sum of two excited-state pathways. Thus, each indi-
vidual time-domain experiment will not show DIR. How-
ever, the frequency-domain interference can be recovered by
adding signals from impulsive, time-domain techniques:kI and

Figure 8. Same as Figure 6 but for impulsive input pulses (techniquek I (eqs 32 and 30) withω1 ) ωeg andω1 - ω2 ) 0 cm-1).

PI(t2, t1) )

( i
p)2 ∫0

∞
dt′2 ∫0

∞
dt′1 exp(i(ω1 - ω2)t′2) [(Sca(t′2, t′1) +

Sbd(t′2, t′1)) exp(iω1t′1)ε1(t1 + t2 - t′2 - t′1)ε2
/(t2 - t′2) +

(S′ca(t′2, t′1) + S′bd(t′2, t′1)) exp(- iω2t′1)ε2
/(t2 - t′2 - t′1) ×

ε1(t1 + t2 - t′2)] (29)

PI(t2, t1) ) ( i
p)2

exp(i(ω1 - ω2)t2) exp(iω1t1) [Sca(t2, t1) +

Sbd(t2, t1)] (30)

PII(t2, t1) ) ( i
p)2

exp(- i(ω1 - ω2)t2) exp(- iω1t1)

[S′ca(t2, t1) + S′bd(t2, t1)]

) PI
/(t2, t1) (31)
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kII with well separated pulses (see Appendix C) which select
mutually exclusive pathways.

We shall display these signals in the frequency-domain by
taking a Fourier transform with respect to the time intervals

and similarly forPII. Figure 7, parts A and B, shows the absolute
value (logscale) 2D contour plots (eq 32 together with 30 and
31) in the fast and slow bath limits. Since the signalsPI(t2, t1)
andPII(t2, t1) are complex conjugates, thekI signal in the positive
(Ω2, Ω1) quadrant is the same as thekII signal in the negative
(Ω′2, Ω′1) quadrant. The individual signals show no interfer-
ence. Figure 7C shows thePII(Ω′2 ) Ω2, Ω′1 ) Ω2 - Ω1)
which when added with thekI signal reproduces the frequency-
domain interference as shown in Figure 7D. In Figure 7A, the
ground-state resonances are stronger than the excited-state
resonances. Eqs A1 and A2 show that the line width of the
“ac” resonance is smaller than the “bd” resonance due to the
finite lifetime of the vibrational ground state in “e”. The reverse
is true in Figure 7C where the excited-state resonances are
stronger (the ground-state resonances cannot be seen on this
scale). Eqs A3 and A4 show that the ground-state pathways
are weighted by the populationsWc (for positive values ofΩ2,

c cannot be the ground vibrational state) which are weak at room
temperature forc * 0.

Interference effects between ground and excited-state path-
ways as seen in the cw experiments for model II can be further
analyzed by examining the impulsive signal. Figure 8 shows
the real and the absolute value (logscale) plots for the impulsive
techniquekI. Note that the real part of the signal for model II
shows only negative peaks. As discussed earlier for model I,
the ground-state resonances are narrower than the excited-state
resonances and the partial cancellation of ground and excited-
state resonances in model II leads to negative peaks. Figure 9
shows similar plots for thekII . Here the effect is the opposite:
For model II, interference between ground and excited state
pathways will necessarily lead to positive peaks. We further
note that the disparity between ground and excited-state pathway
contributions forkII is greater than that forkI, which implies
that the interference between the ground and excited-state
cw resonances will also lead to positive peaks, as observed
earlier.

VI. Temporally Overlapping Pulses

For finite pulses, both field permutations in eq 21 contribute
(with unequal weights), and it should be possible to excite
transitions within a certain bandwidth. The signal depends on

Figure 9. Same as Figure 6 but for the impulsive techniquek II (eqs 32 and 31).

PI(Ω2, Ω1) ) ∫0

∞
dt2 exp(iΩ2t2)∫0

∞
dt1 exp(iΩ1t1)PI(t2, t1)

(32)
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the time delay and carrier frequency of both pulses. As the pulse
bandwidth increases from the impulsive limit to approach the
cw limit, the signal becomes increasingly independent of the
delay between the pulses and increasingly dependent on the field
frequencies. Figure 10 shows the signal for finite width Gaussian
pulses in the fast and slow bath limit for model I. The two input
pulses were assumed to have the same temporal width (σ), and
we have computed bothkI andkII signals (eq 29 and its complex
conjugate). Forσ ) 10 fs,kI andkII select mutually exclusive
pathways. We show the superposition of these two signals in
Figure 10A. In the DFG experiments on myoglobin,19 the two
interactions take place with a single input pulse. This situation
is shown in Figure 10B forσ ) 10 fs as applied to model I. As
seen from eq 21, if the pulses are coincident (t1 ) 0), all four
pathways will be selected. If the two pulses are coincident and
impulsive, then both sets of pathways would contain no
electronic coherence (since the system would not have time to
evolve between the two interactions). The two excited-state
contributions should be equivalent (in Figure 1BSbd and S′bd
differ only by the electronic coherence in the first time interval).

The time-resolved signals in Figure 10B show beats at the
frequency difference between ground and excited-state mode
frequencies. Multidimensional plots of experiments carried out
with well separated pulses (Figure 10A) give additional
information about the bath time scale.

In conclusion, we have computed the DFG signal for a model
level scheme of a two electronic level system with several
vibrational modes coupled to a harmonic bath represented by
the overdamped Brownian oscillator model. Our calculations
show that the bath time scales have clear signatures in DFG
experiments when the pulses overlap, due to the cancellation
of excited-state vibrational resonances by interference of
Liouville space pathways. Time-domain (impulsive) techniques
do not show this interference as these experiments impose a
specific pulse ordering. The interference is recovered by
combining two impulsive experimentskI and kII with well
separated pulses. Experiments with coincident pulses should also
show DIR interference effects provided the pulse width is of
the order of the electronic dephasing time scale of the system.
Comparison of time- and frequency-domain DFG signals for

Figure 10. Absolute value (logscale) 2D plots for Gaussian input pulses with a finite pulse width,σ ) 10 fs (eq 29 and its complex conjugate)
in the fast (κ ) 5) and slow (κ ) 10-4) bath limits. The input pulses are centered atω1 ) ωeg andω1 - ω2 ) 0 cm-1. (A) 2D frequency-frequency
contour plots of the superpositionk I + k II for well separated pulses. (B) Time-domain signal for a single input pulse (t1 ) 0).
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two different model systems highlights the sensitivity of the
DFG signal to the ground and excited-state coherences.
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Appendix A: Second-Order Response Function

Using eqs 8 and 9 and Figure 1B, we can separate the terms
with ground and excited-state resonances

Appendix B: Frequency-Domain (cw) Signal

Below we derive closed expressions for the frequency-domain
signal in the fast and the slow bath limits of the overdamped
Brownian oscillator model

1. Fast Bath.Forκ . 1, the line broadening function is given
by g(t) ) Γ̂t + iλt. Substituting this in eqs A1-A4, we get
(assuming the temperature is high enough to neglect the stokes
shift)

Substituting this into eqs 24 and 25 we get

and

Assuming that “a” is the ground state (γa ) 0), eq B3 can be
rearranged21 to give eq 28 which shows that the excited state
“bd” resonance vanishes in the absence of pure dephasing. The
ground-state term does not show such cancellation.

2. Slow Bath.For κ , 1, the line broadening function has
the form: g(t) ) ∆2t2/2 Substituting this into eqs A1-A4 gives

where

Sca(t2, t1) ) ∑
abc

Waµcaµbcµab exp(-iωbat1 - γbat1)

exp(-iωcat2 - γcat2) exp(-
1

2
(gca(t1 + t2) + gab(t1 + t2) -

gcb(t1 + t2) - gab(t2) + gac(t2) + gcb(t2) - gca(t1) + gcb(t1) +

gba(t1))) (A1)

Sbd(t2, t1) ) - ∑
abd

Waµdaµbdµad exp(-iωbat1 - γbat1)

exp(-iωbdt2 - γbdt2) exp(-
1

2
(gda(t1) + gab(t1) - gdb(t1) -

gab
/ (t2) + gad

/ (t2) + gdb
/ (t2) - gda(t1 + t2) + gdb(t1 + t2) +

gba(t1 + t2))) (A2)

S′ca(t2, t1) ) ∑
abc

Wcµcaµbcµab exp(-iωcbt1 - γcbt1)

exp(- iωcat2 - γcat2) exp(-
1

2
(gca(t1 + t2) + gbc(t1 + t2) -

gba(t1 + t2) - gbc(t2) + gac(t2) + gba(t2) - gca(t1) +

gba(t1) + gcb(t1))) (A3)

S′bd(t2, t1) ) - ∑
abd

Waµdaµbdµad exp(- iωadt1 - γadt1)

exp(-iωbdt2 - γbdt2) exp(-
1

2
(gab(t1) + gda(t1) - gdb(t1) -

gda
/ (t2) + gba

/ (t2) + gdb
/ (t2) - gab(t1 + t2) + gdb(t1 + t2) +

gad(t1 + t2))) (A4)

Sca(t2, t1) ) ∑
abc

Waµcaµbcµab exp(- iωbat1 - γbat1 -

Γ̂bat1) exp(- iωcat2 - γcat2 - Γ̂cat2)

Sbd(t2, t1) ) - ∑
abd

Waµdaµbdµad exp(- iωbat1 - γbat1 -

Γ̂bat1) exp(- iωbdt2 - γbdt2 - Γ̂bdt2)

S′ca(t2, t1) ) ∑
abc

Wcµcaµbcµab exp(- iωcbt1 - γcbt1 -

Γ̂cbt1) exp(- iωcat2 - γcat2 - Γ̂cat2)

S′bd(t2, t1) ) - ∑
abd

Waµdaµbdµad exp(-iωadt1 - γadt1 -

Γ̂adt1) exp(- iωbdt2 - γbdt2 - Γ̂bdt2) (B1)

øca
(2)(ω2 - ω1; - ω2,ω1) )

( i

p)2

∑
b

1

(ω1 - ω2) - ωca + i(γca + Γ̂ca)

[ Wa

ω1 - ωba + i(γba + Γ̂ba)
+

Wc

- ω2 - ωcb + i(γcb + Γ̂cb)]
(B2)

øbd
(2)(ω2 - ω1; - ω2,ω1) ) -

( i

p)2

∑
a

Wa

(ω1 - ω2) - ωbd + i(γbd + Γ̂bd)

[ 1

ω1 - ωba + i(γba + Γ̂ba)
+

1

- ω2 - ωad + i(γad + Γ̂ad)]
(B3)

Sca(t2, t1) ) ∑
abc

Waµcaµbcµab exp(- iωbat1 - γbat1)

exp(- iωcat2 - γcat2)f1(t2, t1)

Sbd(t2, t1) ) -∑
abd

Waµdaµbdµad exp(- iωbat1 - γbat1)

exp(- iωbdt2 - γbdt2)f2(t2, t1)

S′ca(t2, t1) ) ∑
abc

Wcµcaµbcµab exp(-iωcbt1 - γcbt1)

exp(- iωcat2 - γcat2)f3(t2, t1)

S′bd(t2, t1) ) - ∑
abd

Waµdaµbdµad exp(- iωadt1 - γadt1)

exp(-iωbdt2 - γbdt2)f4(t2, t1) (B4)
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in this limit the expressions reduce to the isolated molecule
(no pure dephasing) averaged over a Gaussian bivariate dis-
tribution of frequencies. Substituting this in eqs 24 and 25,
we can express the ground and excited-state signals as a
convolution of the single molecule transform and a bivariate
distribution

and

where

and theG’s are double Fourier transforms of the Gaussian
bivariate distributions (eq B5)

substituting eqs B5 in eq B9 we get

and

with

Using the above andωad ) ωbd - ωba, we obtain for the
excited-state signal

The expression in the square brackets is the same as eq 28 with
no pure dephasing. This implies that there is no “bd” resonance
in the slow bath limit.

Appendix C: Time-Domain (Impulsive) Signal

In this section, we show expressions for the time-domain
signalskI andkII in the limiting cases of fast and slow baths.
As with the frequency-domain expressions, we separate the
ground and excited-state contributions

1. Fast Bath (K . 1). Case 1.When the input pulses are
time coincident, eq 29 along with eqs A1-A4 leads to

Case 2.For the case where the input pulses are well separated
in time, the Fourier transformed ground and excited-state time-
domain signals are given by eq 32 along with eqs 30, 31, and

G2(ω′, ω′′) ) G4(ω′, ω′′)

) (4π2

δe
2) exp[- 1

2δe
2
(∆ba

2(ω′)2 + ∆bd
2(ω′′)2 -

(∆ba
2 + ∆bd

2 - ∆ad
2)ω′ω′′)] (B11)

δg
2 ) 4∆ca

2∆ba
2 - (∆ca

2 + ∆ba
2 - ∆cb

2)2

δe
2 ) 4∆bd

2∆ba
2 - (∆bd

2 + ∆ba
2 - ∆ad

2)2 (B12)

øbd
(2)(ω2 - ω1; - ω2,ω1) )

- ∑
a
∫-∞

∞
dω′ ∫-∞

∞
dω′′ WaIbd(ω1 - ω2 - ω′)

[ 1

ω1 - ω′′ - ωba + iγba

+

1

(ω1 - ω2 - ω′ - ωbd) - (ω1 - ω′′ - ωba) + iγad
]

G2(ω′, ω′′) (B13)

PI(t2, t1) ) Pca(k1 - k2, t2, t1) + Pbd(k1 - k2, t2, t1) (C1)

PII(t2, t1) ) Pca(k2 - k1, t2, t1) + Pbd(k2 - k1, t2, t1) (C2)

Pca(k1 - k2, t2, 0) )

exp(i(ω1 - ω2)t2)2Re[( i

p)2

∑
abc

µcaµbcµabWa

exp(- iωcat2 - γcat2 - Γ̂cat2)] (C3)

Pbd(k1 - k2, t2, 0) )

-exp(i(ω1 - ω2)t2)2Re[( i

p)2

∑
abd

µadµbdµbaWa

exp(- iωbdt2 - γbdt2 - Γ̂bdt2)] (C4)

PII(t2, 0) ) PI
/(t2, 0) (C5)

f1(t2, t1) ) exp[- 1
2
(∆2

bat1
2 + ∆2

cat2
2 +

(∆ba
2 + ∆ca

2 - ∆cb
2)t1t2)]

f2(t2, t1) ) exp[- 1
2
(∆2

bat1
2 + ∆2

bdt2
2 +

(∆ba
2 + ∆bd

2 - ∆ad
2)t1t2)]

f3(t2, t1) ) exp[- 1
2
(∆2

cbt1
2 + ∆2

cat2
2 +

(∆cb
2 + ∆ca

2 - ∆ba
2)t1t2)]

f4(t2, t1) ) exp[- 1
2
(∆2

adt1
2 + ∆2

bdt2
2 +

(∆ad
2 + ∆bd

2 - ∆ba
2)t1t2)] (B5)

øca
(2)(ω2 - ω1; - ω2,ω1) )

( i

p)2

∑
b
∫-∞

∞
dω′ ∫-∞

∞
dω′′ [(Ica(ω1 - ω2 - ω′) ×

Iba(ω1 - ω′′))WaG1(ω′, ω′′) + (Ica(ω1 - ω2 - ω′) ×
Icb(- ω2 - ω′′))WcG3(ω′, ω′′)] (B6)

øbd
(2)(ω2 - ω1; - ω2,ω1) )

- ( i

p)2

∑
a
∫-∞

∞
dω′ ∫-∞

∞
dω′′ Wa[(Ibd(ω1 - ω2 - ω′) ×

Iba(ω1 - ω′′))G2(ω′, ω′′) + (Ibd(ω1 - ω2 - ω′) ×
Iad(- ω2 - ω′′))G4(ω′, ω′′)] (B7)

Iνν′(ω) ) 1
ω - ωνν′ + iγνν′

(B8)

Gi(ωm,ωn) ) ∫-∞

∞ ∫-∞

∞
fi(t2, t1) exp(iωmt2) exp(iωnt1) dt2 dt1

(B9)

G1(ω′, ω′′) ) G3(ω′, ω′′)

) (4π2

δg
2) exp[- 1

2δg
2
(∆ba

2(ω′)2 + ∆ca
2(ω′′)2 -

(∆ba
2 + ∆ca

2 - ∆cb
2)ω′ω′′)] (B10)
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A1-A4. In the fast bath limit, these lead to

These show thatPI(Ω2, Ω1) + PII(Ω2, Ω2 - Ω1) leads to the
form in eq 28 for the excited-state signal, showing a DIR.

2. Slow Bath (K , 1). Case 1.When the input pulses are
time coincident we have from eqs 29 and A1-A4

Case 2.For well separated pulses eqs 32, 30, and A1-A4
lead to
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Pca(k2 - k1, Ω2, Ω1) )

( i

p)2

∑
abc
∫-∞

∞
dω′ ∫-∞

∞
dω′′ Ica(Ω2 + ω1 - ω2 - ω′) ×

Icb(Ω1 + ω1 - ω′′)WcG1(ω′, ω′′) (C12)

Pbd(k1 - k2, Ω2, Ω1) )

- ( i

p)2

∑
abd

∫-∞

∞
dω′ ∫-∞

∞
dω′′ Ibd(Ω2 + ω1 - ω2 - ω′) ×

Iba(Ω1 + ω1 - ω′′)WaG2(ω′, ω′′) (C13)

Pbd(k2 - k1, Ω2, Ω1) )

- ( i

p)2

∑
abd

∫-∞

∞
dω′ ∫-∞

∞
dω′′ Ibd(Ω2 + ω1 - ω2 - ω′) ×

Iad(Ω1 + ω1 - ω′′)WaG2(ω′, ω′′) (C14)

Pca(k1 - k2,Ω2,Ω1) )

( i

p)2

∑
abc

Wa

Ω2 - (ωca - ω1 + ω2) + i(γca + Γ̂ca)
1

Ω1 - (ωba - ω1) + i(γba + Γ̂ba)

Pca(k2 - k1,Ω2,Ω1) )

( i

p)2

∑
abc

Wc

Ω2 - (ωca - ω1 + ω2) + i(γca + Γ̂ca)
1

Ω1 - (ωcb - ω1) + i(γcb + Γ̂cb)

Pbd(k1 - k2,Ω2,Ω1) )

- ( i

p)2

∑
abd

Wa

Ω2 - (ωbd - ω1 + ω2) + i(γbd + Γ̂bd)
1

Ω1 - (ωba - ω1) + i(γba + Γ̂ba)
(C6)

Pbd(k2 - k1,Ω2,Ω1) )

-( i

p)2

∑
abd

Wa

Ω2 - (ωbd - ω1 + ω2) + i(γbd + Γ̂bd)
1

Ω1 - (ωad - ω1) + i(γad + Γ̂ad)
(C7)

Pca(k1 - k2, t2, 0) )

exp(i(ω1 - ω2)t2)2Re[( i

p)2

∑
abc

µcaµbcµabWa

exp(- iωcat2 - γcat2 -
∆ca

2t2
2

2
)] (C8)

Pbd(k1 - k2, t2, 0) )

- exp(i(ω1 - ω2)t2)2Re[( i

p)2

∑
abd

µadµbdµbaWa

exp(-iωbdt2 - γbdt2 -
∆db

2t2
2

2
)] (C9)

PII(t2, 0) ) PI
/(t2, 0) (C10)

Pca(k1 - k2, Ω2, Ω1) )

( i

p)2

∑
abc
∫-∞

∞
dω′ ∫-∞

∞
dω′′ Ica(Ω2 + ω1 - ω2 - ω′) ×

Iba(Ω1 + ω1 - ω′′)WaG1(ω′, ω′′) (C11)
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