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The third-order optical response of a system of coupled localized anharmonic vibrations is studied
using a Green’s function solution of the nonlinear exciton equations for bosonized excitons, which
are treated as interacting quasiparticles. The explicit calculation of two-exciton states is avoided and
the scattering of quasiparticles provides the mechanism of optical nonlinearities. To first-order in the
optical wave vector we find several rotationally invariant tensor components for isotropic ensembles
which are induced by chirality. The nonlocal nonlinear susceptibility tensor is calculated for
infinitely large periodic structures in momentum space, where the problem size reduces to the
exciton interaction radius. Applications are made toa and 310 helical infinite peptides. ©2005
American Institute of Physics. fDOI: 10.1063/1.1869495g

I. INTRODUCTION

Laser pulses are characterized both by their carrier fre-
quenciesv and wave vectorsk. The optical response of typi-
cal molecules, which are smaller than the wavelength of
light, can be calculated in the dipole approximation where
the wave vector only provides an overall phase for the elec-
tric field and can be set to zero. The relevant molecular in-
formation is then extracted from the frequency spectrumsor
time dependenced through the eigenstates and transition
dipole matrix. Structural information enters only indirectly
via the dependence of couplings and frequencies on the
geometry.

The wave vector does play an important role in the spec-
troscopy of extended chiral systemssthese are “handed” sys-
tems which are distinct from their mirror images1,2d, where
the phase of the electric field does vary across the molecule.
For this reason certain tensor components of the response
function, which vanish in the dipole approximation, become
finite to first order in the wave vector. A common example
for such chirally-sensitive, wave vector-induced, effects is
circular dichroismsCDd—the difference absorption of left-
and right-handed circularly polarized light which is related to
the rotation of polarization vector of the propagating optical
field—phenomenon known as optical activitysOAd.1,3–5

Due to its high sensitivity to microscopic structure, CD
spectroscopy of electronic transitions of proteinssECDd in
the visible and UV has become an important tool for struc-
ture determination.5–8 ECD of proteins in the 180–260 nm
range shows mainly two transitions: 190 nmsp−p* d and
220 nm sn−p* d.6–11 Based on the relative amplitudes of
different transitions in the CD spectrum proteins have been
classified asa-rich, b-rich, and P2 structures. A well-
developed theoretical framework relates the CD spectrum to
peptide structure. The matrix method12,13 is based on a set of
parameters describing each chromophoric group in the pro-
tein: the parameters represent the charge distributions of all
relevant ground and excited electronic states, the electric and
magnetic transition densities between different states, and the
coordinates of each chromophoric group, coupled by electro-

static interactions. The peptide group parameters are usually
computed by semiempirical techniques.10,14–16

The infrared OA of proteins shows intense peaks and
high sensitivity to peptide backbone. Vibrational circular di-
chroism sVCDd sRefs.17–19d and Raman optical activity
sROAd, which involves differential inelastic scattering of the
circularly polarized visible radiation,1,20–22 have focused
mostly on the amide I, CO stretch,s1600–1700 cm−1d and
amide II, CN stretch,s1500–1600 cm−1d transitions; the
ROA has also routinely provided protein spectra down to
,700 cm−1.23–27 The CD spectrum ofa-helical peptides in
the amide I band shows a distinct sigmoidally shaped band at
1658 cm−1 that has its negative lobe blue shifted with respect
to its positive lobe; the 1550 cm−1 amide II band shows a
negative VCD band that overlaps with a larger negative band
at 1520 cm−1.26 The other CH and NH stretching modes
s3000–3300 cm−1d give a very strong VCD signal at
3300 cm−1 with a distorted sigmoidal shape.24 310 helices
show similar spectra.23,24,26 Recent studies ofa-helix,
310-helix, b-sheet, and polysProdII helix reveal characteristic
VCD bandshapes:25 b-sheet has weak negative amide I VCD
band, while polysProdII resembles an inverteda-helix. VCD
of b-sheet hairpins is similar tob-sheets.27,28Advances inab
initio calculations of vibrational electric and magnetic tran-
sition dipoles and their interferences lead to highly accurate
determination of vibrational absorption and VCD for small
molecules.29–32 These allow the transfer of property tensors
from smaller to larger systems of coupled vibrations.33 The
VCD of dipeptides in the amide I region was calculated re-
cently and a map of VCD amplitudes as a function of dihe-
dral angles was created34 which showed very good agree-
ment with experiment for a tripeptide.19

Pattern recognition and decomposition algorithms for
protein structure determination allow to distinguish between
a-helical andb-sheet formations using ECDsRefs. 7, 35,
and 36d, VCD sRef. 37d, and ROAsRefs. 38 and 39d. Differ-
ent regions associated with particular structures were identi-
fied and reflect geometrical changesspeptide foldingd as a
function of external perturbations.22
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CD is a good probe of molecular chirality: it has oppo-
site signs for two enantiomers and vanishes for racemates—
equal mixtures of two mirror structures.1 CD of small mol-
ecules is usually described by including magnetic transition
dipoles.3,4 However, large biological molecules such as DNA
and proteins and chromophore aggregatesse.g., light harvest-
ing systemsd are spatially extended. Wave-vector-dependent
terms, which go beyond the dipole approximation and are
related to quadrupole and higher moments, become signifi-
cant as the molecular size is increased. Local magnetic tran-
sition dipoles can be ignored for large molecules: the ratio of
magnetic dipole and electric quadrupole moment is propor-
tional tov /c, wherev is the speed of electronssfor electronic
transitionsd or nucleisfor vibrational transitionsd andc is the
speed of light.40 ECD for molecular aggregates was calcu-
lated to first order in wave vectors41,42 by modeling them as
a collection of coupled electric dipoles. The dipole coordi-
nates enter explicitly, showing high sensitivity to the geom-
etry. This model has been successfully applied to biological
light harvesting antenna system and recently to a large class
of cylindrical aggregates.43 A more general description of
CD and optical rotation was developed using spatially non-
local electric and magnetic optical response tensors.44 Spe-
cific tensor elements of the linear response functionsxy and
yxd, which is a second rank tensor, are responsible for CD.
Nonlinear techniques which utilize circularly polarized opti-
cal fields, such as two-dimensional pump-probe were studied
as well.45,46

Third-order techniques performed with linearly polar-
ized lightstime and frequency resolvedd are routinely used to
probe isotropic systems. The experiment is depicted sche-
matically in Fig. 1. The nonlinear response functionSs3d is a
fourth rank tensor,47 which relates the third-order nonlinear
polarizationPs3d to the optical fieldEsr ,td,

Pn4

s3dsr 4,t4d = o
n3n2n1

E dr 3E dr 2E dr 1E dt3E dt2E dt1

Sn4,n3n2n1

s3d sr 4t4,r 3t3,r 2t2,r 1t1d

3 En3
sr 3,t3dEn2

sr 2,t2dEn1
sr 1,t1d, s1d

wheren=x,y,z denotes cartesian components. The polariza-
tion is measured at timet4 and positionr 4, while ther inte-
grations extend over the volume of a single molecule
V sedr ¯ =eVdxeVdyeVdz¯ d and time integrations are from
−` to +`. These integration limits are assumed throughout
this paper unless they are otherwise specified.tj with j =1,2,3
is the interaction time with the electric fieldEn j

. Note that
these time variables do not have a particular time ordering.
The response function depends parametrically on both the
coordinates of the system and the interaction times.
It carries all material properties relevant for the optical
response.

In general the third-order response function has 34 tensor
elements. However, in the dipole approximation there
are only three linearly independent components for isotropic
systems:48 xxyy, xyxy, andxyyx sxxxx is a linear combina-
tion of these elementsd. These have been successfully used
for improving of spectral resolution in two-dimensional IR
s2D IRd spectroscopies,49–53 however, they are not chirally-
sensitive.

In this paper we go one step beyond the dipole approxi-
mation and calculate the first- and the third-order response
function and the susceptibility, to first order in the optical
wave vector. The finite tensor elements of third-order re-
sponse tensors which contain an odd number ofx s or y, or z
such asxxxy, etc.d vanish for nonchiral molecules and are
therefore chirally-sensitive. We use the nonlinear exciton
equations sNEEd originally developed by Spano and
Mukamel54–56 for four-wave mixing of coupled
two-level57–60and three-level61–63molecules. The NEE were
later extended to particles with arbitrary commutation rela-
tions and to Wannier excitons in semiconductors.64 The
equations establish an exciton scattering mechanism for the
nonlinear response and avoid the expensive calculation of
multiexciton eigenstates, which is a considerable advantage
for large systems. Closed expressions are derived for infinite
periodic systems, where translational symmetry may be em-
ployed to reduce the problem size. We apply our theory toa
helical polypeptide in the amide I region.

In Sec. II we present the Hamiltonian and the NEE for
vibrational excitons. In Sec. III we introduce the notation and
parameters and calculate the linear susceptibility, recovering
the well known expressions of linear absorption and circular
dichroism. We then derive in Sec. IV expressions for the
third-order susceptibility of oriented systems using the same
assumptions and approximations, and extend them to isotro-
pic ensembles in Sec. V using a universal tensor averaging
procedure. Simplified expressions for periodic systems are
derived in Sec. VI. The linear and the nonlinear signals are
calculated fora and 310 helices in Sec. VII. We pay particu-
lar attention to two-exciton resonance and compare the re-

FIG. 1. sColor onlined Third-order four-wave mixing experiment. The three
incoming pulses with wave vectorsk1, k2, andk3 generate a signal atk4

= ±k1±k2±k3 sad. Interaction events and the definitions of time intervals in
Eqs. s1d, sC4d, and sF3d–sF6d sbd. Quasiparticle picture of the coherent re-
sponse with respect to Eq.s26d scd. Three interactions with the optical fields
sred points or peaksd create one-exciton particles. They evolve according to
their Green’s functions. The two excitons are scattered byG sblue dashed
areasd. Finally two excitons annihilate and the remaining exciton generates
the signal.
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sults within and beyond the dipole approximation. Various
aspects of nonlinear spectroscopy beyond the dipole approxi-
mation are discussed in Sec. VIII.

Derivations of the expressions used in the main text are
given in the Appendices. Appendix A introduces the exciton
basis, the exciton Green’s functions, and the scattering ma-
trix. The reduced expressions for the scattering matrix for
special models of nonlinearities are given in Appendix B.
The optical response is derived from the NEE in Appendix
C. General expressions for the susceptibilities in periodic
systems are derived in Appendix D. Reduced scattering ma-
trix expressions for periodic systems are given in Appendix
E, and the time ordered optical response functions required
for time-domain short pulse experiments are presented in
Appendix F.

II. THE VIBRATIONAL EXCITON HAMILTONIAN AND
THE NONLINEAR EXCITON EQUATIONS

We considerN coupled anharmonic local vibrational
modes described by the exciton Hamiltonian

Ĥ = o
m

«mB̂m
† B̂m + o

mn

mÞn

Jm,nB̂m
† B̂n

+ o
mn,m8n8

Umn,m8n8B̂m
† B̂n

†B̂m8B̂n8 −E drP̂sr d ·Esr ,td.

s2d

The creation,B̂m
† , and annihilation,B̂m, operators for modem

satisfy the bosonfB̂m,B̂n
†g=dmn commutation relation. The

first two terms represent the free-boson Hamiltonian:«m de-
notes the harmonic frequency of modem and the quadratic
intermode coupling,Jm,n, is calculated in the Heitler–London

approximation where we neglectB̂m
† B̂n

† andB̂mB̂n terms. The
third term represents a quartic anharmonicity and the fourth
term is the interaction with the optical fieldEsr ,td where

P̂sr d = o
m

dsr − r mdmmsB̂m
† + B̂md s3d

is the polarization operator andmm is the transition dipole
moment, a vector with the componentssmm

x ,mm
y ,mm

z d, for
modem located atr m.

The expectation value of the polarization operator which
describes the response of the system to the optical field will
be calculated using the NEE.55,57,64This hierarchy of equa-
tions of motion for exciton variables may be exactly trun-
cated order by order in the field since the molecular Hamil-
tonian conserves the number of excitons and the optical field
creates or annihilates one exciton at a time. By neglecting
pure dephasing, the only required exciton variables for the

third-order optical response areBm=kB̂ml sone-excitond and

Ymn=kB̂mB̂nl stwo excitond. The NEE then assume the
form55,56

− i
]Bm

]t
+ o

n

hm,nBn = Emstd − o
l8m8n8

Vml8m8n8Bl8
* Ym8n8, s4d

− i
]Ymn

]t
+ o

m8n8

shmn,m8n8
sYd + Vmn,m8n8dYm8n8 = EmstdBn

+ EnstdBm. s5d

Here hm,n=dm,n«m+Jm,ns1−dm,nd is an effective single exci-
ton Hamiltonian, h

mn,m8n8
sYd =dm8,mhn,n8+dn,n8hm,m8 is a two-

exciton Hamiltonian,Vmn,m8n8=Umn,m8n8+Unm,m8n8 is the an-
harmonicity matrix, and Emstd=Esr m,tdmm. The
nonlinearities in these equations originate from the anharmo-
nicity matrix. When it is neglected the two-exciton variables
can be factorized asYmn=BmBn, Eq. s5d becomes redundant,
Eq. s4d becomes linear and the nonlinear response vanishes.
The polarization is given by the expectation value of Eq.s3d

Psr ,td = o
m

mmsBmstd + Bm
* stdddsr − r md. s6d

Additional variables are required in the NEE when popu-
lation transport and pure dephasing are included.64 We shall
calculate the nonlinear polarization and explore different
limits of parameters using the Green’s function solution of
the NEE given in Appendix A.

III. LINEAR ABSORPTION AND CIRCULAR
DICHROISM OF EXCITONS IN THE MOLECULAR
FRAME

To introduce the notation and set the stage for calculat-
ing the nonlinear response we first review the nonlocal linear
response. The nonlocal linear response function,Sn2,n1

s1d

3sr 2t2; r 1t1d, is defined by the following relation between the
linear polarizationPn2

s1dsr 2,t2d and the optical electric field
En1

sr 1t1d:40,65,66

Pn2

s1dsr 2,t2d = o
n1

E dr 1E dt1Sn2,n1

s1d sr 2t2;r 1t1dEn1
sr 1t1d.

s7d

The linear susceptibility relates these quantities in the
frequency/momentum domain,

Pn2

s1dsk2,v2d =
1

s2pd4o
n1

E dk1E dv1

xn2,n1

s1d s− k2 − v2;k1v1dEn1
sk1v1d, s8d

where we use the following convention for the Fourier trans-
form

Fsk,vd =E dr E dtFsr ,tdexpsikr + ivtd. s9d

The susceptibility and the response function are connected
by

xn2,n1

s1d s− k2 − v2;k1v1d

=E
V

dr 2E
V

dr 1E dt2E dt1Sn2,n1

s1d sr 2t2;r 1t1d

3expsik2r 2 − ik1r 1 + iv2t2 − iv1t1d. s10d
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Using Eqs.sC1d, s7d, and s3d, the linear response func-
tion for our model is given by

Sn2,n1

s1d sr 2t2;r 1t1d = io
mn

dsr 2 − r mddsr 1 − r ndmm
n2mn

n1

3Gmnst2 − t1d + c . c., s11d

whereGstd is the single exciton Green’s functionfEq. sA4dg
and c.c. denotes the complex conjugate. From Eqs.s10d and
s11d we obtain the susceptibility

xn2,n1

s1d s− k2 − v2;k1v1d

= 2pidsv2 − v1d

3o
mn

expsik2r m − ik1r ndmm
n2mn

n1Gmnsv1d

+ c . c.8, s12d

where c.c.8 stands for complex conjugate with reversing the
signs of momentum and frequency:k →−k andv→−v, and
Gsvd is the frequency domain Green’s function given by Eq.
sA6d. Time translational invariance implies thatv2=v1. For
uniform systems with space translational symmetry we have
k2=k1.

Using the exciton basiscjm seigenstates of the single
exciton block of the molecular Hamiltoniand defined in Eq.
sA1d, Eq. s11d reads

Sn2,n1

s1d sr 2t2;r 1t1d = io
j

dj
n2sr 2ddj

n1*sr 1dIjst2 − t1d + c . c.,

s13d

where the sum now runs over the one-exciton eigenstatesj
and Ijstd is the single exciton Green’s function,

Ijstd = ustdexps− iVjt − gjtd, s14d

whereVj andgj are the frequency and dephasing rate of the
j exciton state, respectively,ustd is the Heaviside step func-
tion sustd=0 for t,0 andustd=1 for tù0d and the transition
dipole is

dj
nsr d = o

m

dsr − r mdmm
n cjm. s15d

The susceptibility is similarly given by

xn2,n1

s1d s− k2 − v2;k1v1d

= 2pidsv2 − v1do
j

dj
n2sk2ddj

n1*sk1dIjsv1d + c . c.8, s16d

where, the nonlocal exciton transition dipoles are trans-
formed to momentum space

dj
nskd = o

m

eikr mmm
n cjm s17d

and the frequency domain Green’s function

Ijsvd =
i

v − Vj + igj

s18d

is the Fourier transform of Eq.s14d.
The linear response functionsand the susceptibilityd de-

scribes all linear properties of an ensemble of oriented mol-
ecules in the lab frame.

The linear absorption of the field is given by67,68

sA =E dr E dtSo
n

]Pn
s1dsr ,td
]t

Ensr ,tdD , s19d

Transforming to the momentum/frequency domain we obtain

sA =
− i

s2pd4 E dk E vdvo
n

Ens− k,− vdPn
s1dsk,vd. s20d

We next consider a monochromatic optical field

Esr ,td = 1
2E0sen1 + aen2e−if0dexpsik0r − iv0td + c . c. s21d

Here en is a unit vector alongn=x,y,z, a is a ratio of two
perpendicular amplitudes alongn1 andn2, f0 is a phase dif-
ference between them andE0 is the overall amplitude. The
vectorsen1,en2,k0 form a right-handed orthogonal axis sys-
tem. Equations21d represents linearly polarized light along
en1 when a=0; right-handed circularly polarized light when
a=1 and f0= +p /2 and left-handed witha=1 and f0

=−p /2. Combining Eq.s8d, s20d, ands21d, we obtain for the
linear absorption

sAsv0d = i
E0

2v0

4
fxn1n1

s1d s− k0,v0;k0,− v0d − xn1n1

s1d sk0,− v0;− k0,v0d + a2xn2n2

s1d s− k0,v0;k0,− v0d − a2xn2n2

s1d sk0,− v0;− k0,v0d

+ aeif0xn1n2

s1d s− k0,v0;k0,− v0d− ae−if0xn1n2

s1d sk0,− v0;− k0,v0d + ae−if0xn2n1

s1d s− k0,v0;k0,− v0d

− aeif0xn2n1

s1d sk0,− v0;− k0,v0dg. s22d

By settinga=0 we obtain the absorption of linearly polarized light. The circular dichroism spectrum is defined as a difference
of absorption of left-circularly polarized lightsa=1,f0=−p /2d and right-circularly polarized lightsa=1,f0=p /2d,

sCDsv0d = − i
E0

2v0

2
fixn1n2

s1d s− k0,v0;k0,− v0d + ixn1n2

s1d sk0,− v0;− k0,v0d − ixn2n1

s1d s− k0,v0;k0,− v0d − ixn2n1

s1d sk0,− v0;− k0,v0dg.

s23d
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The linear absorptionscircular dichroismd depends on
diagonal soff diagonald tensor components of the response
function. Settingn1=x, n2=y giving k0=ezkz, the absorption
of a linearly polarized light is

sAsv0d = 2p
E0

2v0

4 o
mn

mm
x mn

xRefexps− ikzr mn
z dGmnsv0dg

and the circular dichroism signal

sCDsv0d = 2p
E0

2v0

2 o
mn

fmm 3 mngz

3Refiexps− ikzr mn
z dGmnsv0dg.

These results are exact for coupled dipoles with arbitrary
geometry and a fixed orientation with respect to the optical
field.

IV. NONLOCAL THIRD-ORDER RESPONSE FUNCTION
IN THE MOLECULAR FRAME

Four-wave-mixing processes are described by the third-
order polarization,40

Pn4

s3dsk4,v4d

=
1

s2pd12 o
n3n2n1

E dk3E dv3E dk2E dv2

E dk1E dv1xn4,n3n2n1

s3d s− k4 − v4;k3v3,k2v2,k1v1d

3En3
sk3,v3dEn2

sk2,v2dEn1
sk1,v1d. s24d

The susceptibilityfEq. s24dg and the response functionfEq.
s1dg are connected by

xn4,n3n2n1

s3d s− k4 − v4;k3v3,k2v2,k1v1d

=E dr 4E dt4E dr 3E dt3E dr 2E dt2E dr 1E dt1

Sn4,n3n2n1

s3d sr 4t4,r 3t3,r 2t2,r 1t1d

3expFisk4r 4 + v4t4d − io
l

3

sk lr l + vltldG . s25d

The response function is directly observed in time domain
experiments with ultrashort optical pulses where the time
integration in Eq.s1d can be eliminated whereas the suscep-
tibility is observed in the opposite CW limit when thev
integrations in Eq.s24d can be eliminated.

A Green’s function expression forSs3d obtained by solv-
ing the NEE is given in Eq.sC4d. Applying the transform of
Eq. s25d we obtain

xn4,n3n2n1

s3d s− k4,− v4;k3,v3,k2,v2,k1,v1d

= 2pidsv4 − v3 − v2 − v1dP
nkv

3 o
n4n3n2n1

expsik4r n4
− ik3r n3

− ik2r n2
− ik1r n1

dM n4n3n2n1

n4n3n2n1

3 o
n48n38n28n18

Gn48n38,n28n18
sv1 + v2dGn4,n48

sv4dGn38,n3

† s− v3d

3Gn28,n2
sv2dGn18,n1

sv1d + c . c.8, s26d

where the frequency domain Green’s functionsGsvd and the
scattering matrixGsvd are given by Eqs.s18d and sA16d,
respectively. M n4n3n2n1

n4n3n2n1=mn4

n4mn3

n3mn2

n2mn1

n1 is the orientational
tensor andP

nkv
denotes the sum over the six permutations of

n1k1v1, n2k2v2, andn3k3v3. Sincexs3d is already symmetric
with respect to 1 and 2 we only need to permute 1 with 3 and
2 with 3. We therefore need only three permutations.

Equations26d leads to the following physical picture for
the response.64 Each of the three optical fields interacts with
the system at pointsn1t1, n2t2, andn3t3 as shown in Fig. 1.
The two excitons generated at pointsn1 andn2 have positive
frequency and evolve independently ton18 andn28 where they
are scattered, changing their positions ton38 andn48. The ex-
citon atn48 evolves ton4 and generates the signal, while the
exciton generated atn38 evolves ton3 and is annihilated by
the third field. In this representation the scattering matrix is
the only source for the nonlinear polarization. For harmonic
oscillators the matrixV, the scattering matrix, and, conse-
quently,xs3d vanish. The susceptibility depends on the orien-
tation of the molecule in the laboratory frame and has a
nontrivial dependence on the wave vectors.

In the exciton basisfEq. sA1dg we substitute Eq.sA4d
into Eq. s26d to obtain

xn4,n3n2n1

s3d s− k4,− v4;k3,v3,k2,v2,k1,v1d

= 2pidsv4 − v3 − v2 − v1dP
nkv

3 o
j4j3j2j1

dj4

n4sk4ddj3

n3s− k3ddj2

n2*sk2ddj1

n1*sk1d

3Gj4j3,j2j1
sv2 + v1dIj4

sv4dIj3

* s− v3d

3Ij2
sv2dIj1

sv1d + c . c.8, s27d

where the exciton transition dipoles were defined in Eq.s17d,
the exciton Green’s function in the eigenstate basis is given
by Eq.s18d and the scattering matrixGsvd is obtained by the
Fourier transform of Eq.sC6d.

V. THE RESPONSE OF ISOTROPIC ENSEMBLES

The optical fields, wave vectors, and space coordinates
are defined in the lab frame, while the transition dipoles and
their position vectors are given in the molecular frame. Ro-
tational averaging,k¯l, needs to be performed over the rela-
tive orientation of the two frames to calculate the response
functions for isotropicsrandomly orientedd ensembles of
molecules.48 Equations16d then becomes
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xn2,n1

s1d s− k2 − v2;k1v1d = 2pidsv2 − v1d

3o
j

kdj
n2sk2ddj

n1*sk1dlIjsv1d

+ c . c.8, s28d

with

kdj
n2sk2ddj

n1*sk1dl = o
n2n1

cjn2
cjn1

* keik2r n2
−ik1r n1mn2

n2mn1

n1l,

s29d

k i, and the tensor componentsni are lab frame quantities,
while the transition dipolesmn and coordinatesr n are mo-
lecular properties defined in the molecular frame. This type
of averaging required formm size macromolecules was cal-
culated by Craig and Thirunamachandran for linear absorp-
tion and for CD.69

For an isotropic ensemble of molecules we should treat
each molecule as identical system with its collection of tran-
sition dipoles having unique orientation with respect to the
lab frame. The coordinate of each mode in the lab frame
depends on the position of the molecule. Therefore, in gen-
eral we should replace the coordinatesr m with R+r m, where
R is the molecular positionsan origin of the molecular co-
ordinate systemd in the lab frame andr m is the coordinate
of modem with respect to that origin. Taking into account
the positions of molecules in the ensemble, factors
such as expsik2r n2

− ik1r n1
d will change to exp(iRsk2

−k1d)expsik2r n2
− ik1r n1

d, where now exp(iRsk2−k1d) is an
overall phase factor which leads to phase-matching condition
for the optical fields when integrated over an isotropic bulk
sample. The second factor, expsik2r n2

− ik1r n1
d, is now re-

sponsible for the variation of phase within the molecule.
Hereafter we keep the phase-matching condition and neglect
the exp(iRsk2−k1d) factor. The coordinatesr m vary only
within one molecule and for molecules smaller than the
wavelength of light we havekr m!1, and the exponential
functions in Eq.s29d can be expanded to first order,

keik2r n2
−ik1r n1mn2

n2mn1

n1l = kmn2

n2mn1

n1l + io
k

k2
kkr n2

k mn2

n2mn1

n1l

− io
k

k1
kkr n1

k mn2

n2mn1

n1l, s30d

wherek=x,y,z. This expansion allows to transform vectors
back to the exciton basis. Substituting Eq.s30d in Eq. s29d
and performing the summations over modes we obtain

kdj
n2sk2ddj

n1*sk1dl = kdj
n2dj

n1*l + io
k

k2
kkdj

k,n2*dj
n1*l

− io
k

k1
kkdj

k,n1*dj
n2*l, s31d

where we had defined the transition dipole vector for the zero
momentum exciton state

dj
n ; dj

nsk = 0d = o
m

mm
n cj,m, s32d

and the tensor

dj
k,n = o

m

r m
k mm

n cj,m. s33d

Proceeding along the same steps we obtain average
third-order response. Rotational averaging of Eq.s27d gives

xn4,n3n2n1

s3d s− k4,− v4;k3,v3,k2,v2,k1,v1d

= 2pidsv4 − v3 − v2 − v1dP
nkv o

j4j3j2j1

kdj4

n4sk4ddj3

n3s− k3d

3dj2

n2*sk2ddj1

n1*sk1dlGj4j3,j2j1
sv2 + v1dIj4

sv4d

3Ij3

* s− v3dIj2
sv2dIj1

sv1d + c . c.8, s34d

with

kdj4

n4sk4ddj3

n3s− k3ddj2

n2*sk2ddj1

n1*sk1dl

= o
n4n3n2n1

cj4n4
cj3n3

cj2n2

* cj1n1

*

3keik4r n4
−ik3r n3

−ik2r n2
−ik1r n1mn4

n4mn3

n3mn2

n2mn1

n1l, s35d

where

keik4r n4
−ik3r n3

−ik2r n2
−ik1r n1mn4

n4mn3

n3mn2

n2mn1

n1l

= kmn4

n4mn3

n3mn2

n2mn1

n1l + io
k

k4
kkr n4

k mn4

n4mn3

n3mn2

n2mn1

n1l

− io
k

k3
kkr n3

k mn4

n4mn3

n3mn2

n2mn1

n1l

− io
k

k2
kkr n2

k mn4

n4mn3

n3mn2

n2mn1

n1l

− io
k

k1
kkr n1

k mn4

n4mn3

n3mn2

n2mn1

n1l. s36d

In the exciton basis we finally obtain

kdj4

n4sk4ddj3

n3s− k3ddj2

n2*sk2ddj1

n1*sk1dl = kdj4

n4dj3

n3dj2

n2*dj1

n1*l

+ io
k

k4
kkdj4

k,n4dj3

n3dj2

n2*dj1

n1*l − io
k

k3
kkdj3

k,n3dj4

n4dj2

n2*dj1

n1*l

− io
k

k2
kkdj2

k,n2*dj3

n3dj4

n4dj1

n1*l

− io
k

k1
kkdj1

k,n1*dj3

n3dj2

n2*dj4

n4l, s37d

Eqs. s31d and s37d require second to fifth rank rotational
averagings. The first terms in these equations correspond to
the dipole approximation. The remaining terms which con-
tain the transition dipole and a coordinate represent a first-
order correction to the dipole approximation. These terms do
not depend on the coordinate origin of the molecular frame
providedk4=k3+k2+k1, which is the phase-matching con-
dition.

The projection of a molecular vector such asr m or mm

onto the lab coordinate system can be represented as a scalar
producten ·r m sanden ·mmd, whereen is a unit vector in the
lab frame. These products have simple transformations be-
tween coordinate systems, and rotational averages can be

134305-6 D. Abramavicius and S. Mukamel J. Chem. Phys. 122, 134305 ~2005!

Downloaded 08 Aug 2005 to 128.200.11.135. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



easily calculated. For ansth rank product of any system vec-
tors a we have the following transformation1 between the
molecular and the lab frames:

kas
ns
¯ a1

n1l ; ksens ·asd ¯ sen1 ·a1dl

= o
as¯a1

Tns. . .n1,as. . .a1

ssd as
as
¯ a1

a1, s38d

whereTns. . .n1,as. . .a1

ssd =klnsas
. . .ln1a1

l is the average of the trans-
formation tensor wherelna is the cosine of the angle between
laboratory frame axisn=x,y,z and molecular frame axisa
=x,y,z. The averages of ranks two to five transformation
tensors, which are universal quantities independent of system
geometry are given in Table I.48

Using Table I, the rotational averages of the transition
dipoles in Eq.s31d are

kdj
n2dj

n1*l =
1

3
dn2n1

udju2, s39d

kdj
k,n2dj

n1*l =
1

6
ekn2n1 o

a3a2a1

ea3a2a1
dj

a3,a2dj
a1* . s40d

For the averages in Eq.s37d we give only the first two terms

kdj4

n4dj3

n3dj2

n2dj1

n1l = o
a4a3a2a1

Tn4n3n2n1,a4a3a2a1

s4d dj4

a4dj3

a3dj2

a2*dj1

a1* ,

s41d

kdj4

k,n4dj3

n3dj2

n2*dj1

n1*l = o
a5. . .a1

Tkn4n3n2n1,a5a4a3a2a1

s5d

3dj4

a5,a4dj3

a3dj2

a2*dj1

a1* . s42d

The remaining averages differ only by permutation of
indices.

Our final expressions, Eqs.s28d and s34d together with
Eqs.s31d and s31d, allow to calculate all tensor components

of the susceptibilities. The linear susceptibilityfEq. s28dg in-
volves second and third rank rotational averages, while the
third-order susceptibilityfEq. s34dg requires fourth and fifth
rank averages. Within the dipole approximation we only
need second and fourth rank rotational averages involving
products of the transition dipoles. Third and fifth rank rota-
tional averages are required when we go beyond the dipole
approximation to first order in the wave vector. These aver-
ages explicitly include one translational coordinate and, thus,
contain qualitatively new information about the molecular
geometry. Based on Table I, we find that different ranks in
the linear and nonlinear susceptibilities have different sym-
metry properties: second rank averages in the linear suscep-
tibility are related to a Kroneckerd symbol, while third rank
averages are related to a Levi Civitae symbol; these aver-
ages and, thus, different orders of the susceptibility in the
wave vector can be measured independently with different
field configurations. The third-order optical response shows
similar trends: the susceptibility in the dipole approximation
is related to the fourth rank rotational average, which is pro-
portional to a product ofd functions; to first order in the
wave vector the susceptibility is related to the fifth rank ro-
tational average, which containse. Thus, different orders in
the wave vector appear in different tensor components: the
dipole approximation givesxxyyand other components with
even number of repeating indices, whilexxxyand other odd
number components only show up beyond the dipole ap-
proximation. Each order in the wave vector can thus be mea-
sured by a specific configuration of field polarizations.

In general there are 34 tensor components in the-third
order susceptibility, with parametric dependence on both the
wave vector direction and amplitudesuk j u =v j /c, wherec is
the speed of lightd. Not all of these components are indepen-
dent. Table I gives the number of independent tensor com-
ponents for each order: there is one component in the linear
responsesrelated either tod or e tensord and threeswithin the
dipole approximationd and six sbeyond the dipole approxi-

TABLE I. Isotropic rotational average tensorssRef. 48d. ea3a2a1
is the antisymmetric Levi–Civita tensor:ea3a2a1

, is equal to 1 for sa3,a2,a1d
=sxyzd ,syzxd ,szxyd, -1 for sa3,a2,a1d=sxzyd ,syxzd ,szyxd, and 0 otherwise.

Tensor element Value

Tn2n1,a2a1

s2d 1
3dn2n1

da2a1

Tn3n2n1,a3a2a1

s3d 1
6en3n2n1

ea3a2a1

Tn4. . .n1,a4. . .a1

s4d
1

301dn4n3
dn2n1

dn4n2
dn3n1

dn4n1
dn3n2

2
T

1 4 − 1 − 1

− 1 4 − 1

− 1 − 1 4
21da4a3

da2a1

da4a2
da3a1

da4a1
da3a2

2

Tn5. . .n1,a5. . .a1

s5d
1

301
en5n4n3

dn2n1

en5n4n2
dn3n1

en5n4n1
dn3n2

en5n3n2
dn4n1

en5n3n1
dn4n2

en5n2n1
dn4n3

2
T

1
3 − 1 − 1 1 1 0

− 1 3 − 1 − 1 0 1

− 1 − 1 3 0 − 1 − 1

1 − 1 0 3 − 1 1

1 0 − 1 − 1 3 − 1

0 1 − 1 1 − 1 3

21
ea5a4a3

da2a1

ea5a4a2
da3a1

ea5a4a1
da3a2

ea5a3a2
da4a1

ea5a3a1
da4a2

ea5a2a1
da4a3

2
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mationd components for the third-order response. Additional
continuous dependence on the wave vectors constitutes a
multidimensional parameter space. For collinear optical
fields propagating alongz, only x and y polarizations are
allowed. This gives three independent tensor elements within
the dipole approximation,xxyy, xyxy, xyyx sxxxx is linearly
dependent on these three: from Table I we find thatkxxxxl
=kxxyyl+kxyyxl+kxyxyld. Corrections to the dipole approxi-
mation induce three new components,xxxy, xxyx, andxyxx.

The rotationally-averaged time-domain expressions
when the sequence of interactions is ordered and can be
experimentally controlled using short pulses are given in
Appendix F.

VI. RESPONSE OF ISOTROPIC ENSEMBLES OF
PERIODIC STRUCTURES

We consider a periodicD dimensional lattice made of
ND cells with M sites smodesd per unit cell, a lattice con-
stanta and volumeV=sNadD as shown in Fig. 2. The posi-
tion of themth site is given by the vectorR+rm, whereR is
the origin of the unit cell andrm is the displacement from
that origin.

The exciton Bloch states are described by two quantum
numbers:q is the exciton momentum within the band andl
is the Davydov subband. In general there areND values of
momenta andM Davydov subbands. The Bloch states and
Green’s functions for a periodic system are given in Appen-
dix D. Expanding the linear and the third-order susceptibili-
ties in eigenstates we obtain general expressions for the lin-
ear and the third-order susceptibilitiesfEqs.sD5d andsD7dg.

For small periodic systemsswhen N@1 but L=Na
! uk u−1d we can use the expansion in wave vectors. Using the
Bloch eigenstates in Eqs.s28d ands34d and performing rota-
tional averagingsfEqs.s31d ands37dg we find that only zero
momenta contribute to the optical response and obtain

xn2,n1

s1d s− k2 − v2;k1v1d = 2piVdsv2 − v1d

3o
l

8kM ll
n2,n1sk2,k1dlIlsv2d

+ c . c.8, s43d

where the prime now indicates a summation over different
Davydov’s subbandsswhose number is equal to the number
of sites in the unit celld, V is the volume of the molecule and

kM ll
n2,n1sk2,k1dl = kdl

n2dl
n1l + io

k

k2
kkdl

k,n2dl
n1l

− k1
kkdl

k,n2dl
n1l. s44d

For the nonlinear susceptibility we similarly obtain

xn4,n3n2n1

s3d s− k4 − v4;k3v3,k2v2,k1v1d

= 2piV2dsv4 − v3 − v2 − v1dP
nkv

3 o
l4. . .l1

8 kM l4l3l2l1

n4n3n2n1 sk4k3k2k1dlGl4l3,l2l1
sv2 + v1d

3Il4
sv4dIl3

* s− v3dIl2
sv2dIl1

sv1d + c . c.8 s45d

with the orientational tensors

kM l4l3l2l1

n4n3n2n1 sk4k3k2k1dl = kdl4

n4dl3

n3dl2

n2dl1

n1l

+ io
k

k4
kkdl4

k,n4dl3

n3dl2

n2dl1

n1l

− io
k

k3
kkdl3

k,n3dl4

n4dl2

n2dl1

n1l

− io
k

k2
kkdl2

k,n2dl3

n3dl4

n4dl1

n1l

− io
k

k1
kkdl1

k,n1dl3

n3dl2

n2dl4

n4l. s46d

The one-exciton Green’s functionsfEq. sD4dg and the scat-
tering matrix fEq. sE12dg are taken atq=0. k and n are
cartesian components of the field wave vector and polariza-
tion, respectively, and the rotational averages may be calcu-
lated using Eqs.s39d–s42d.

VII. APPLICATION TO HELICAL POLYPEPTIDES

We have calculated the nonlinear susceptibility of the
amide I vibrational mode ofa and 310 helical polypeptides.
The helical periodic structures were created by repeating the
operations of translation along the helix axisz and rotation of
the xy plane around thatz axis by placing each peptide resi-
due for both systems according to Table II. The resulting 2.5
nm s0.5 nmd one-dimensional unit cell has 18s3d residues for
a s310d helix. The parameters for the transition dipole orien-
tations and for the couplings between neighboring modes
were taken from our previous work70 with the diagonal an-
harmonicityVmm,mm=2Umm,mm;D=−16 cm−1.

We constructed a momentum space Hamiltonian for the
infinite systemsfEq. sD2dg and calculated the one-exciton
eigenstates. The susceptibilities were calculated using Eqs.
s43d ands45d with the rotational averages obtained from Eqs.
s39d–s42d. The Green’s functions in the exciton basis were

FIG. 2. sColor onlined sad Cells of a periodic infinite system are shown by
squares. Each cell has an originR and contains several modessthree in the
picture are chosen as an exampled located at sitesm indicated by vectorsrm

with respect to the cell origin. Each mode is invariant with respect to trans-
lation along r =R1−R. sbd Scattering of two excitons in the lattice. Two
excitons at sitesn8 and m8 interact with the anharmonic potentialD fEq.
sE10d with r 2=Rn8−Rm8g and create another two particles atn andm fEq.
sE11dg. The scattering is translationally invariant in the lattice since the
scattering potential depends only on the distance between the cells. Note
that momentum before and after scattering is conservedfEq. sE7dg.
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calculated using Eq.sD4d. Uniform line broadeningglsqd
=3 cm−1 was assumed for all one-exciton states. The scatter-
ing matrix was calculated using Eqs.sE8d–sE12d. A grid of
N=100 momenta was used to evaluate the integral in Eq.
sE9d. The relevant energy levels form three well-separated
manifolds of states as shown in Fig. 5sad: the ground state,
the one-exciton, and the two-exciton manifold, The band-
widths of these manifoldssdetermined byJ andDd are much
smaller than the energy gaps between them.

The absorption lineshapes of linearly polarized light of
both helices calculated using Eq.s22d are presented in Fig. 3.
Both spectra show two peaks resulting from threesone lon-
gitudinal and two degenerate transversed transitions.70 The
corresponding frequencies are 1642 and 1661 cm−1 for thea
helix and 1646 and 1677 cm−1 for the 310 helix. The trans-
verse peaks are relatively weaker for thea helix. The CD
spectrum calculated using Eq.s23d has also a two peak struc-
ture corresponding to the two peaks in linear absorption.
Both peaks have equal amplitudes but different signs: the
longitudinal peak is positive and the transverse is negative.

Linear spectroscopy shows only transitions between the
ground state and the one-exciton states. Qualitatively new
information is contained in third-order spectroscopy. We
have calculated the CW signal for a collinear configuration
assuming that all fields propagate alongz. Taking into ac-
count the dispersion relation between wave vector ampli-
tudes and the frequencies, the susceptibility becomes a func-
tion of three variablessv1,v2,v3d with three independent
tensor elements,xxyy, xyyx, andxyxy, in the dipole approxi-

mation and three additional elements,xxxy, xxyx, andxyxx,
beyond that approximation. We calculated the signal ob-
served in the directionk1+k2−k3 with v3=−v1.

The tensor componentsxxyyandxyxyof a helix shown
in Fig. 4 originate from the dipole approximationsxyyx is
very similar to xxyy and is not shownd. They show one
strong slongitudinald diagonal peak atv1=v2=1642 cm−1

and a weakstransversed peak atv1=v2=1661 cm−1 in a
helix. The weak crosspeaks between these diagonal peaks are
best seen inxyxy.

The chirally-sensitive susceptibilities calculated beyond
the dipole approximationsxxxy and xxyx in Fig. 4d show a
similar pattern. The largest difference is in the crosspeaks:
they are very asymmetric with respect to the diagonal line
and one of them has an amplitude comparable to the stron-
gest diagonal peak.

The corresponding 310 spectra are also shown. The lon-
gitudinal diagonal peak shows atv1=v2=1647 cm−1 and the
weaker transverse atv1=v2=1677 cm−1. Since both systems
are right-handed helices the information contained is similar:
the 310 helix shows larger separation between the peaks and
stronger crosspeaks compared to thea helix. The crosspeaks
are symmetric with respect to diagonalsv1=v2d in the dipole
approximation. The corresponding crosspeaks have different
amplitudes beyond that approximation.

Our simulated peak positions correlate well with
experiments26,71–73 and previous calculations.74–76 They
show that the crosspeaks carry information about exciton
interactions and distances between them: new terms such as
xxxygive an asymmetric crosspeak pattern, with comparable
amplitudes to the diagonal peaks. This signal also has a com-
plicated dependence on coordinates and should vanish for
achiral systems. However, only one-exciton resonances are
seen in this signal. The four one-exciton Green’s functions
suppress the two exciton resonances contained in the scatter-
ing matrix fsee Eq.s45dg.

We next consider techniques that reveal two-exciton
resonances. We start with the following 2Dk1+k2−k3

signal:

Wn4n3n2n1
sv3,vd

; E dv8xn4,n3n2n1

s3d sv3 − v;− v3,v/2 + v8,v/2 − v8d s47d

with the optical frequencies tuned according to Fig. 5sbd
where bothv /2 andv3 are tuned to the one-exciton reso-
nancessv also covers two-exciton resonancesd, while v8 is

TABLE II. Parameters ofa and 310 helices for transition dipoles.

a helix 310 helix

Translation distance alongz snmd 0.138 0.183
Rotation angle aroundz sdegd 100 120

Initial transition dipolea s20.271,20.309, 0.912d s20.453,20.325,0.830d
Initial coordinate of the transition dipolesnmd s1.76,0,0d s1.42,0,0d

Number of sites in the unit cell 18 3

aThe transition dipole is normalized so that the amplitude is 1.

FIG. 3. sColor onlined Linear absorptionstopd and circular dichroismsbot-
tomd spectra of the infinitea sblack solidd and 310 sred dashedd helices in the
amide I regionsspectra are normalized so that the largest peaks are equally
strongd.
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much smaller than the one-exciton energy as shown in
Fig. 5sbd. The resonant terms in the susceptibility for
this configuration are of the form Gl4l3,l2l1

svd
3Il4

sv−v3dIl3

* s−v3dIl2
sv /2+v8dIl1

sv /2−v8d. The signal
has the frequencyv3−v and in the dipole approximation
becomes

Wn4n3n2n1

sdipd sv3,vd ~ i o
l4. . .l1

8 kdl4

n4dl3

n3dl2

n2dl1

n1lIl4
sv − v3d

3Il3

* sv3dGl4l3,l2l1
svdIl2l1

svd. s48d

This signal involves the productGl4l3,l2l1
svdIl2l1

svd which
is the two-exciton Green’s function in the exciton basisfsee
Eq. sA15dg, showing two-exciton resonances along thev
axis. By integrating the signal overv3

Wn4n3n2n1
svd ; E dv3Wn4n3n2n1

sv3,vd, s49d

we obtain in the dipole approximation

FIG. 4. Third-order susceptibility tensor,xn4,n3n2n1
s−v2;−v1,v2,v1d, of a helix stwo left columnsd and of 310 helix stwo right columnsd as a function ofv1

andv2. Both real and imaginary parts are shown. Two tensor elementsxxxyy andxxyxy are calculated in the dipole approximation. The chirally sensitive tensor
elementsxxxxy andxxxyx vanish in the dipole approximation.

FIG. 5. sad Energy level scheme of coupled amide I vibrations. The ground,
one-exciton, and two-exciton manifolds are shown for the amide I band. The
band widths of the one-exciton and two-exciton manifolds are roughly 50
and 100 cm−1, respectively. The energy gaps between them are 1600 cm−1.
Two experimental configurations are shown:sbd all fields are resonant with
excitonic transitions;scd v1 and v2 are nonresonant, butv=v1+v2 is
resonant.
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Wn4n3n2n1

sdipd svd ; E dv3Wn4n3n2n1

sdipd sv3,vd

~ i o
l4. . .l1

8 kdl4

n4dl3

n3dl2

n2dl1

n1lGl4l3,l2l1
svdIl2l1

svd,

s50d

which only shows two-exciton resonances.
A different experiment can be performed by detuningv1

andv2 off resonancesv1−V.gd, but v2+v1=v<2V cov-
ers the two-exciton bandshereV is the average one-exciton
excitation energy andg is the average dephasingd fsee Fig.
5scdg. Again the contribution to this signal comes from terms
such as Gl4l3,l2l1

svdIl4
sv−v3dIl3

* sv3dIl2
sv−v1dIl1

sv1d,
wherev1 is fixed. Taking into account thatIl1

sv1d is con-
stant andIl2

sv−v1d is not resonantsuv−v1−V u @gd we
define the signal

Un4n3n2n1
sv3,vd ; sv − v1 − Vd

3xn4,n3n2n1

s3d sv3 − v,− v3,v − v1,v1d,

s51d

where the factorsv−v1−Vd is included to approximately
compensate the asymmetry of byIl2

sv−v1d. By integration
over v3 we have

Un4n3n2n1
svd ; E dv3Un4n3n2n1

sv3,vd. s52d

In the dipole approximation we obtain

Un4n3n2n1

sdipd svd ; E dv3Un4n3n2n1

sdipd sv3,vd

~
1

v1 − V
o

l4. . .l1

8 kdl4
dl3

dl2
dl1

lGl4l3,l2l1
svd.

s53d

This signal is proportional to the scattering matrix and is
scaled bysv1−Vd−1, which is an average off-resonant detun-
ing. Thus, both theW and U signals carry information on
two-exciton resonances: the former shows the two-exciton
Greens function, the latter shows the two-exciton scattering
matrix. TheW signal is resonant and should be stronger than
U.

Going beyond the dipole approximation, the rotational
factors depend on the wave vectors and, thus, optical fre-
quencies and the integrations do not lead to such simple
expressions. However, the resonances should still reflect the
two-exciton states, with different amplitudes and lineshapes.

Wn4n3n2n1
sv3,vd displayed in Fig. 6 shows two-exciton

mixed with one-exciton resonances. The chirally-sensitive
components show peaks at the same positions as in the di-
pole approximation, but different relative amplitudes. This is
a consequence of the fact that the molecular Hamiltonian is
not affected by the dipole approximation, thus, the reso-
nances remain the same. However, peak amplitudes, con-
trolled by rotational factors are different.

Wn4n3n2n1
svd for the helices displayed in Fig. 7 show

three two-exciton resonances which are better resolved in the
310 helix compared to thea helix. The amplitudes of two-
exciton resonances show dramatic differences when going
beyond the dipole approximation: the central resonance be-
comes stronger. This effect is more pronounced for 310 helix
compared toa helix.

The Un4n3n2n1
sv3,vd signals displayed in Fig. 8 show

one-exciton resonances superimposed with two-exciton reso-

FIG. 6. Third-order signalWn4n3n2n1
sv3,vd fEq. s47dg of a helix stwo left columnsd and of 310 helix stwo right columnsd. Wxxxx sdipole approximationd and

Wxxxy schirally sensitived are shown.
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nances. These signals decay very slowly with off-resonance
detuning. Thus, measuring the susceptibility over a broad
frequency range is required to get this signal, as is clearly
seen forU displayed in Fig. 9. These figures demonstrate the
scattering matrix weighted by the orientational factors and
show a complicated picture of two exciton resonances: one
part of the signalsreal in the dipole approximation and
imaginary beyond itd has a background plateau, whose mag-
nitude is related to the anharmonicity. This can be easily
shown by considering the scattering matrix of a single anhar-
monic vibrational mode. The different distribution of the am-
plitudes in thea and the 310 helices is much more clearly
seen in these two-exciton related signals compared with the
one-exciton spectra shown in Fig. 4.

VIII. DISCUSSION

The linear absorption is described by the electric dipole
approximation which is related to the diagonal tensor ele-

ments of the linear susceptibility. CD spectroscopy is related
to the off-diagonal tensor elements, which vanish for isotro-
pic systems in the electric dipole approximation. The CD
signal is induced by the magnetic dipole or higher electric
multipoles. The magnetic transition dipoles may be neglected
for extended systems e.g., macromolecules, as will be shown
below.

We considered a model systems of coupled electric di-
poles distributed in space. The calculations done for helices
can be repeated to other secondary structure motifs such asb
sheets and random coils, and to electronic aggregates. Going
beyond the dipole approximation, which is equivalent to in-
cluding the positions of the dipoles,
is required for CD. The nonlocal susceptibilities were ex-
panded to first order in the wave vectors: the expansion of
molecular property functions in wave vector accounts for
higher multipoles.

The wave vector expansion requires additional condi-

FIG. 7. sColor onlined Third-order signalWn4n3n2n1
svd fEq. s49dg of a helix sleftd and of 310 helix srightd. Four tensor elements are shown:Wxxxx, Wxxyy, Wxyyx

sall three in the dipole approximationd, andWxxxy schirally sensitived. Solid-real, dashed-imaginary, dotted-absolute value.

FIG. 8. Third-order signalUn4n3n2n1
sv3,vd fEq. s51dg of a helix stwo left columnsd and of 310 helix stwo right columnsd. Uxxxx sdipole approximationd Uxxxy

schirally sensitived are shown.v1=1800 cm−1 andV=1650 cm−1.
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tions. The system sizeL is limited from above byk0L!1,
where k0 is an optical wave vector. For larger systemsL
must be replaced by the exciton coherence size.77 The limit,
thus, holds even for large molecular systems including pro-
teins and electronic aggregates. The system size is also lim-
ited from below since the magnetic transition dipoles may
not be neglected for small systems. The expansion
expsikr d<1+ikr suggests that the amplitude of the terms
linear ink areL uk u. The local magnetic transition dipoles are
proportional to the factorv /c,40 where v is the speed of
electron for electronic transitions or the speed of nuclei for
vibrational transitions andc is the speed of light. Thus,L
.v /v; v is the optical frequency. This ratio can be esti-
mated by assuming classical energy:mv2=2"v, wherem is
the mass of particle and"v is its energy. We can then ex-
press this limit asL.Î2" /mv. For instance, taking values
of hydrogen atom with excitation energy corresponding to
3000 cm−1 we obtainL.0.1 nm for vibrational transitions.
Thus, our approach holds for delocalized excitons with co-
herence size spanning several units.

Periodicity reduces the problem size considerably: the
necessary sums reduce from the total number of dipoles to
the number of modes in a unit cellsfor linear J aggregates78

it is just one sited. We have derived the response function and
the susceptibility for infinite systems. This seems to conflict
with the upper bound of the system size. However, the sys-
tem can be assumed infinite as long as the number of cells is
very large,N@1, and edge effects can be ignored. We per-
formed calculations on amide I transitions of infinite helical
peptide. Since the distance between residues is,0.5 nm, our

approach is valid when the coherence size of excitation is
larger than two residues, which is reasonable at ambient tem-
peratures. Several hundreds of residues are required to reach
the 100 nm length of thea helical structure, which validates
the infinite size assumption. Even when the physical size of
the system is larger than the wavelength, the exciton coher-
ence size is typically smaller than the wavelength; this limit
is always satisfied for vibrational transitions of polypeptides.

Second-order techniques for probing molecular chirality
are commonly used for isotropic systems. Second harmonic
generationsSHGd is not allowed in the dipole approximation
by symmetry.79,80 For this reason most studies of quadratic
nonlinearities were conducted on macroscopically noncen-
trosymmetric systems.81,82 However, sum frequency genera-
tion sSFGd of isotropic systems in a noncollinear configura-
tion is allowed and is used as a probe of molecular
chirality.83–86Symmetry of isotropic systems allows one spe-
cific, xyz, component of the second-order susceptibility ten-
sor to be finite in the dipole approximation. Noncollinear
configuration leads to breaking of phase-matching condition
and, thus, to weak signals.84,85,87 Even weaker SHG signal
was observed, showing the significance of magnetic transi-
tion dipoles and of electronic quadrupoles. However this
SHG signal originating from terms beyond the dipole ap-
proximation is not sensitive to molecular chirality.

We next consider the symmetry properties of rotational
averages shown in Table III with respect to different spec-
troscopies and chirality. Only one independent diagonal ten-
sor component,xx, of the linear response survives the isotro-
pic rotational averaging in the dipole approximation; all off

FIG. 9. sColor onlined Third-order signalUn4n3n2n1
svd fEq. s52dg of a helix sleftd and of 310 helix srightd. Four tensor elements are shown:Uxxxx, Uxxyy, Uxyyx

sall three in the dipole approximationd, andUxxxy schirally sensitived. Solid-real; dashed-imaginary. Parameters are the same as in Fig. 8

TABLE III. Symmetry properties of rotational averages with respect to chirality tensor.

Response Form of terms in isotropic averaging Independent nonzero elements Probe of chirality?

1st sdipoled dn2n1
xx n

1st sikr relatedd ekn2n1
szdyx y

2nd sdipoled en3n2n1
xyz y

2nd sikr relatedd dkn3
dn2n1

sxdxyy, sxdyyx, sxdyxy n
3rd sdipoled dn4n3

dn2n1
xxyy, xyyx, xyxy n

3rd sikr relatedd dn4n3
ekn2n1

szdxxxy, szdxxyx , szdxyxx, szdzxyz, szdzxzy, szdzzxy y
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diagonal componentssand consequently the CD signald van-
ish. Calculating the linear response to first order in wave
vector, requires a third rank rotational averaging involving
the positions of the dipoles. The tensor is then proportional
to ekn2n1

—a Levi–Civita permutation symbol.48 Thus, one
independent,xyz, component is nonzero, relating the propa-
gation directionsfor instance,zd and polarizationsx andyd of
the optical field and system polarization.

The number of scalar products to be averaged is inti-
mately related to the chirality of the system. An achiral sys-
tem can be superimposed on itself after spatial inversion par-
ity operation,1 thus, the rotational average needs to be the
same for the original and the inverted systems. Odd rank
rotational averages which change sign upon inversion must
therefore vanish. A chiral system, in contrast, is converted to
its mirror immage by parity operation and the two cannot be
superimposed, thus, odd rank rotational averages are nonzero
and carry opposite signs for enantiomers. Therefore only chi-
ral systems survive odd rank rotational averagings. Even
rank rotational averages are not sensitive to spatial inversion
and, therefore, to chirality. Thus, the tensors involving odd
rank rotational averages are chirally-sensitive.

Third rank rotational averaging is responsible for the
second-order response in the dipole approximation. The iso-
tropic average is then proportional to the Levi–Civita tensor
leading toxyz tensor element of second-order susceptibility.
This element is not accessible by the collinear configuration,
required for phase matching. Similar to CD, this rotational
average survives only for isotropic systems with chiral mol-
ecules. Going one step beyond the dipole approximation we
obtain a chiraly insensitive signal coming from fourth rank
rotational averaging.79

The third-order nonlinear response in the dipole approxi-
mation has three independent nonzero rotational averages,
xxyy, xyyxandxyxy; the signal is not chirally sensitive. Go-
ing beyond the dipole approximation leads to the fifth rank
orientational averaging which imposes dependence of the
signal on the field wave vectors and includes the positions of
the dipoles. Fifth rank averaging gives six independent non-
zero tensor elements:zxxxy, zxxyx, zxyxx, zzxyz, zzxzy, and
zzzxywhich participate in noncollinear configurations. These
elements now carry information about chirality for the same
reasons asxyz in circular dichroism.

Phase-matching in the third-order response defines the
signal propagation direction. Unlike SFG, the collinear con-
figuration, which gives the strongest signal is allowed in the
third-order response and has three independent tensor ele-
ments:szdxxxy, szdxxyx, andszdxyxx sfields propagate along
zd. The frequency permutation requirement in the suscepti-
bility implies that they all vanish whenv1=v2=v3 si.e.,
third harmonic generationd. Noncollinear configuration
swhich can also satisfy phase matchingd leads to six nonzero
rotational averages where all components participate in the
response. Thus, the third-order response beyond the dipole
approximation together with CD constitute the best probes of
chirality and carry more information than conventional linear
and third-order response within the dipole approximation and
SFG.

We have derived expressions for the response using the

NEE, which are based on a standard exciton Hamiltonian in
the Heitler–London approximation. The parameters of this
Hamiltonian are excitation energies of different modes, inter-
mode couplingssquadraticd, and anharmonicitiessquartic
couplingsd, as well as excitation transition dipole and its co-
ordinate. These parameters may be obtained fromab initio
calculations performed on small peptide segments.74,88,89

They can also be readily obtained from experiment. The ex-
citation energies and intermode couplings are observed in
linear absorption and CD. We assumed only local anharmo-
nicities, which give a shift of one double excitation energy
from twice the single excitation energy on the same mode.
This can be obtained from pump-probe measurements. Off-
diagonal anharmonicities may also be important when inter-
mode coupling is weak.60

The experimental techniques which show two-exciton
resonances are most promising since they carry qualitatively
new information about the system. They also show very
strong dependence on the structure of the peptide backbone.
The tensor components induced by deviations from the di-
pole approximation show strong differences between the two
helices. Compared to CD, different exciton states are probed,
the signal originates from the anharmonicity and multiple
transition dipoles with the coordinates define the signal. The
frequency integrated susceptibilities used in our definitions
of the U and W signalsfEqs. s47d and s51dg could be ob-
tained in time-domain experiments using short optical pulses
which have a broad spectral bandwidth.
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APPENDIX A: EXCITON BASIS SET, GREEN’S
FUNCTIONS, AND THE SCATTERING MATRIX

The eigenenergiesVj and eigenvectorscjm of the one-

exciton block of the HamiltonianfEq. s2dg, k0B̂mu Ĥ uBn
†ˆ 0l

;hm,n=dm,n«m+Jm,ns1−dm,nd, define the one-exciton basis,

o
n

hm,ncjn = Vjcjm. sA1d

The evolution of a single exciton following an impulsive
excitation is described by the one-exciton Green’s function
Gstd,

Bmstd = o
m8

Gm,m8stdBm8s0d, sA2d

which satisfies the equation

dGm,nstd
dt

+ io
n8

hm,n8Gn8,nstd = dstd. sA3d

This equation can be solved using the exciton eigenvalues
cjm. The one-exciton Green’s function is then given by
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Gm,nstd = o
j

cjmIjstdcjn
* , sA4d

where

Ijstd = ustdexps− iVjt − gjtd sA5d

is a Green’s function in the eigenstate basis,gj is a dephas-
ing rate, andustd is the step functionfustd=0 for t,0 and
ustd=1 for tù0g which guarantees causality.

Applying the Fourier transformfEq. s9dg to Eqs. sA4d
and sA5d we obtain the frequency domain Green’s function,

Gm,nsvd = o
j

cjmIjsvdcjn
* sA6d

with

Ijsvd =
i

v − Vj + igj

. sA7d

The two-exciton evolutionYmnstd is similarly described
by the two-exciton Green’s functionGY

Ymnstd = o
m8n8

Gmn,m8n8
Y stdYm8n8s0d, sA8d

which satisfies the equation

dGmn,m8n8
Y

dt
+ i o

m9n9

shmn,m9n9
sYd + Vmn,m9n9dGm9n9,m8n8

Y = dstd.

sA9d

The zero-order noninteractingsV=0d two-exciton Green’s
function G can be factorized into a product of one-exciton
Green’s functions,Gmn,m8n8std=Gm,m8stdGn,n8std. The actual
Green’s function,GY, is connected toG by the Bethe Salpeter
equation

GYstd = Gstd +E
0

t

dt8E
0

t8
dt1Gst − t8dGst8 − t1dGst1d,

sA10d

where we have introduced the two exciton scattering matrix
Gst8− t1d. The two-exciton Green’s function and the scatter-
ing matrix are tetradic matrices. The scattering matrix is
causal and contains aust8− t1d factor.

In the frequency domain the Bethe Salpeter equation
sA10d reads

GYsvd = Gsvd + GsvdGsvdGsvd, sA11d

where the noninteracting two-exciton Green’s functionG is
given by

Gmn,m8n8svd = o
jj8

cjmcj8nIjj8svdcjm8
* cj8n8

* , sA12d

and

Ijj8svd ; E dtIjstdIj8stdexpsivtd

=
i

v − Vj − Vj8 + isgj + gj8d
. sA13d

By noting that Gsvd= isv−hd−1 and GYsvd= isv−h−Vd−1,
whereh and V are tetradic matrices,Gsvd can be obtained

using the operator identityÂ−1=B̂−1+B̂−1sB̂−ÂdÂ−1, whereB̂

and Â are any two operators. Applying this to the Green’s

functions withÂ=s1/idsv−h−Vd andB̂=s1/idsv−hd we get
the Dyson equation

GYsvd = Gsvd + Gsvds− iVdGYsvd. sA14d

Comparing Eqs.sA11d and sA14d gives

− iVGYsvd = GsvdGsvd. sA15d

Iterating Eq.sA14d and using Eq.sA15d finally gives

Gsvd = − iV + s− id2VGsvdV + s− id3VGsvdVGsvdV + ¯

; − iV„1 + iGsvdV…−1. sA16d

Thus, the calculation of the scattering matrix requires the
inversion of the matrixD=1+iGsvdV with matrix elements,

Dmn,i jsvd = dmidnj + i o
m8n8

Gmn,m8n8svdVm8n8,i j . sA17d

In general this is asN23N2d matrix, whereN is the number
of modes. ComputingD is equivalent to finding all two-
exciton states and is costly even for moderateN. However,
in practice the size of the scattering matrix can be reduced
considerably for typical forms of the matrixV as shown in
Appendix B. This is the main advantage of this method.

APPENDIX B: THE SCATTERING MATRIX FOR
SPECIAL CASES

We consider the following form for the anharmonicity:
Umn,m8n8=sDm,n/4dsdmm8dnn8+dmn8dnm8d so that

ĤS= Ĥ0 + o
mn

Dm,n

2
B̂m

† B̂n
†B̂mB̂n, sB1d

with Dm,n=Dn,m. Intramode anharmonicities,Dm,m, represent

the shift of the overtonesB̂m
† B̂m

† u0ld energy with respect to
2«m. Intermode anharmonicities,Dm,n with mÞn, shift the

combination bandsB̂m
† B̂n

†u0ld energies from«m+«n. Equation
sA16d then gives for the scattering matrix

Gmn,i jsvd = − iDm,n„D
−1svd…mn,i j . sB2d

We assume that the anharmonic potentialDm,n is nonzero
only for short distancesum−nu , lc, wherelc is an interaction
length of the anharmonicity. The presence ofDi,j in Eq.
sA17d and Dm,n in Eq. sB2d implies that i − j and m−n are
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limited by the interaction lengthlc. Therefore, the effective
matrix size of the scattering matrix reduces toNlc3Nlc. We
may then define a reduced matrixD,

Dml1,il 2
svd ; Dm,m+l1;i,i+l2

svd = dmidl1l2

+ iGm,m+l1;i,i+l2
svdDi,i+l2

, sB3d

where the indicesl1 and l2 take the values from interval
f−lc, . . . ,lcg. The complete scattering matrix can now be re-
cast in terms of reduced matrixD,

Gm,m+l1;i,i+l2
svd ; Gm,l1;i,l2

svd = − iDm,m+l1
sD−1dml1,il 2

.

sB4d

All other elements ofG vanish.
As a special case we consider a local anharmonicity

where we set Dm,n=Dmdm,n ssoft–core boson
approximationd.57 Then

Dm0,i0svd = dmi + iGmm,iisvdDi . sB5d

and the scattering matrix

Gmm,nnsvd = − iDmsD−1dm0,n0. sB6d

Thus the excitons interact and scatter only when they occupy
the same site. The interaction radius islc=0 andN3N ma-
trix D has the size as of the one-exciton basis.

For large anharmonicities each mode becomes effec-
tively a two level system and the two excitons then cannot
reside on the same siteshard-core bosonsd. This can be de-
scribed by taking the limitD→` leading to57,90

Gmm,nnsvd = − „Gsvd…mm,nn
−1 . sB7d

APPENDIX C: TIME DOMAIN GREEN’S FUNCTION
EXPRESSIONS FOR THE THIRD-ORDER
OPTICAL RESPONSE

The NEE can be solved by order-by-order expansion of
the variables in the field using the exciton Green’s functions
sAppendix Ad where the optical field and the lower-order
variables serve as the sources. The first-order variable,
Bm

s1dstd, is obtained from Eq.s4d,

Bm
s1dstd = iE

−`

`

dt8o
n

Gm,nst − t8dEnst8d. sC1d

The second-order variable,Ymn
s2dstd, is then obtained from Eq.

s5d,

Ymn
s2dstd = iE

−`

`

dt8 o
m8n8

Gmn,m8n8
Y st − t8dsEm8st8dBn8

s1dst8d

+ En8st8dBm8
s1dst8dd. sC2d

The third-order variable then is finally obtained from Eq.s4d
in terms of the exciton Green’s functions and the exciton
scattering matrix

Bn4

s3dst4d = 2iE
−`

`

dt9E
−`

`

dt8E
−`

`

dt3E
−`

`

dt2E
−`

`

dt1

o
n1n2n3

o
n18n28n38n48

ust2 − t1dGn48n38,n28n18
st9 − t8d

3Gn4,n48
st4 − t9dGn38,n3

† st9 − t3d

3Gn28,n2
st8 − t2dGn18,n1

st8 − t1d

3En3
st3dEn2

st2dEn1
st1d, sC3d

where we used Eq. sA15d to change
−ion28n18

Vn48n38,n28n18
Gn28n18,n2j

Y st9− t2d into on28n18
e−`

` dt8Gn48n38,n28n18

3st9−t8dGn28n18,n2jst8− t2d, then we factorizedGn28n18,n2jst8
− t2d;Gn28,n2

st8− t2dGn18,jst8− t2d and performed a summation
over index j : o jGn18,jst8− t2dGj ,n1

st2− t1d=Gn18,n1
st8− t1dust8

− t2dust2− t1d. The variablest8 andt9 denote the times of the
first and the last exciton-exciton interaction, respectively, as
shown in Fig. 1sbd.

We use third-order NEE variables and their Green’s
functions to calculate the response function. Using Eqs.s6d,
s1d, andsC3d, we obtain the response function

Sn4,n3n2n1

s3d sr 4t4;r 3t3,r 2t2,r 1t1d

= iP
nr t o

n4n3n2n1

dsr 4 − r n4
ddsr 3 − r n3

ddsr 2 − r n2
ddsr 1 − r n1

d

3M n4n3n2n1

n4n3n2n1 o
n48n38n28n18

E
−`

`

dt9E
−`

`

dt8Gn48n38,n28n18
st9 − t8d

3Gn4,n48
st4 − t9dGn38,n3

† st9 − t3dGn28,n2
st8 − t2d

3Gn18,n1
st8 − t1d + c . c . , sC4d

where M n4n3n2n1

n4n3n2n1=mn4

n4mn3

n3mn2

n2mn1

n1, c.c. denotes the complex
conjugate, andP

nr t
denotes permutation of interaction

events, which are defined byn jr jt j with j =1,2,3: s3,2,1d
+s2,3,1d+s1,2,3d. This makes the response function sym-
metric with respect to this permutationsthere are only three
terms since the function is inherently symmetric with respect
to the permutation of 1 and 2d.

The response function in the exciton basis is obtained by
plugging Eq.sA4d into Eq. sC4d,

Sn4,n3n2n1

s3d sr 4t4;r 3t3,r 2t2,r 1t1d

= iP
nr t o

j4j3j2j1

dj4

n4sr 4ddj3

n3sr 3ddj2

n2*sr 2ddj1

n1*sr 1d

3E
−`

`

dt9E
−`

`

dt8Gj4j3,j2j1
st9 − t8dIj4

st4 − t9d

3Ij3

* st9 − t3dIj2
st8 − t2dIj1

st8 − t1d + c.c., sC5d

where the nonlocal exciton transition dipoles are given by
Eq. s15d and we have transformed the exciton scattering ma-
trix into the exciton basis,
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Gj4j3,j2j1
std = o

m4m3m2m1

cj4m4

* cj3m3

* Gm4m3,m2m1
std

3cj2m2
cj1m1

. sC6d

APPENDIX D: EIGENSTATES AND SUSCEPTIBILITIES
OF PERIODIC SYSTEMS

We consider the system shown in Fig. 2. We use periodic
boundary conditions to represent translational invariance and
ignore edge effects. Since the system is translationary invari-
ant, the intermode couplingJRm,R8n=Jm,nsR8−Rd now de-
pends on the distance between cellsR8−R and on the sites
inside each cell,m and n. Note the difference in notation
with the preceding section: now each mode is represented by
a pair of indices,Rm.

The one-exciton states of this system are the Bloch
states. Each eigenstatej is represented by a pair of quantum
numbersql, wherel denotes different Davydov’s subbands
in the one-exciton bandsthere areM different subbandsd
with momentumq. The momentumq assumes the values
s−p /a, . . . ,sp /ad−dqd including 0 in each dimension, with
the stepdq=2p /L andL=Na is the length of the system. The
one-exciton Bloch states are given by

cRm
sld sqd =

1

ÎVexps− iqRdclmsqd, sD1d

whereclmsqd are the translationally invariant eigenstates of
the cell given by

o
m8

8Jm,m8sqdclm8sqd = Vlsqdclmsqd. sD2d

HereJm,m8sqd=ore
−iqrJm,m8sr d; the prime in the sum overm

denotes the summation over sites inside one cell, while the
sum overr runs over cells includingr =0; l takes values
from 0 to M−1. Jm,m8sqd is a matrix of the sizeM3M
with indicesm andm8 denoting different sites; each matrix
element depends parametrically on the vectorq.

In the frequency domain the one-exciton Green’s func-
tion is obtained from Eqs.sA6d and sA7d,

GRm,R8m8svd =
1

Vo
q

o
l

8eiqsR8−Rdclmsqdclm8
* sqdIlsq,vd,

sD3d

o8 indicates the sum over different Davydov’s subbands with
the exciton Green’s function,

Ilsq,vd =
i

v − Vlsqd + iglsqd
. sD4d

Using the eigenstates and Green’s functions of periodic
systems in Eq.s12d we obtain the linear susceptibility,

xn2,n1

s1d s− k2 − v2;k1v1d = 2pidsv2 − v1d

3o
q

o
l

8dl
n2sk2,qddl

n1*sk1,qdIlsq,v2d + c.c.8, sD5d

where

dl
nsk,qd =

1

ÎVo
R

o
m

8eiksR+rmd−iqRclmsqdmm
n . sD6d

The R summationsa discrete coordinate of celld runs over
the cells,q is also a discrete momentum, whilek is a con-
tinuous vector.

The third-order susceptibility is obtained from Eq.s26d
and is given by,

xn4,n3n2n1

s3d s− k4,− v4;k3,v3,k2,v2,k1,v1d

= 2pidsv4 − v3 − v2 − v1dP
nkv

3 o
q4. . .q1

o
l4. . .l1

8dl4

n4sk4,q4ddl3

n3s− k3,q3d

3dl2

n2*sk2,q2ddl1

n1*sk1,q1d

3Gl4l3l2l1
sq4q3q2q1,v1 + v2dIl4

sq4,v4dIl3

* sq3,− v3d

3Il2
sq2,v2dIl1

sq1,v1d + c.c.8, sD7d

where the scattering matrix is given by

Gl4l3l2l1
sq4,q3,q2,q1;vd

=
1

V2 o
R4. . .R1

expsiq4R4 + iq3R3 − iq2R2 − iq1R1d

3 o
m4. . .m1

8cl4m4

* sq4dcl3m3

* sq3dGR4m4,. . .,R1m1
svd

3cl2m2
sq2dcl1m1

sq1d. sD8d

GR4m4,. . .,R1m1
svd is the real space scattering matrix identical

to Eq. sA16d, where site indicesn were changed into the
pairsRm. The reduced expression of the scattering matrix is
given by Eq.sE7d. These are the most general expressions
for arbitrary oriented periodic system. The directions are
given in the molecular frame. The scattering matrix can be
reduced considerably as shown in Appendix E.

When the system size is much larger than the optical
wavelengthuk0uL@1, R andq may be treated as continuous
variables and the summations overR andq in Eqs.sD5d and
sD7d can be changed into integrations. In this case the equa-
tions are considerably simplified. The linear susceptibility is

xn2,n1

s1d s− k2 − v2;k1v1d = s2pd4idsv2 − v1ddsk2 − k1d

3 o
l

8dl
n2sk2ddl

n1*sk2dIlsk2,v2d + c.c.8, sD9d

wheredl
nskd;dl

nsk ,kd=ÎVom8 eikrmclmsqdmm
n are the transi-

tion dipoles of infinite system between different continuous
exciton bands.Ilsq ,vd is the exciton Green’s function in the
exciton basisfEq. sD4dg.

For the third-order susceptibility we obtain

xn4. . .n1

s3d s− k4,− v4;k3,v3,k2,v2,k1,v1d = 2pidsv4 − v3 − v2

− v1dPnkv o
l4…l1

8dl4

n4sk4ddl3

n3s− k3ddl2

n2*sk2ddl1

n1*sk1d

3Gl4. . .l1
sk4,− k3,k2,k1,v1 + v2d
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3Il4
sk4,v4dIl3

* s− k3,− v3dIl2
sk2,v2dIl1

sk1,v1d + c.c.8

sD10d

This limit may be achieved for pure oriented semicon-
ductors or molecular crystals at cryogenic temperatures
where the exciton coherence size is larger than the wave-
length. The opposite limiting case of the small systems is
discussed in Sec. VI.

APPENDIX E: THE EXCITON SCATTERING MATRIX IN
MOMENTUM SPACE

Computing the general scattering matrixfEq. sD8dg is
very costly for a large systems. Using a finite interaction
radius lc and periodicity we can reduce the problem size
below Nlc.

EquationssB2d and sB4d define the exciton scattering
matrix by the reduced matrixD which depends onG fsee Eq.
sB3dg. Using the representation of Fig. 2, the two-exciton
Green’s function in the coordinate representation has the
form GRmm,Rnn;Rm8 m8,Rn8n8svd, wherem. . . are indices of sites in
cells andRm. . . labels different cells. The coupling and the
anharmonicity matrix are now translationally invariant and
can be given asJm,m8sr d andDm,m8sr d, respectively, wherer
defines the distance between the cells. We are interested in
the Green’s function whenRn=Rm+r 1 and Rn8=Rm8 +r 2

whenr 1 andr 2 are within interaction radiuslc sotherwise the
quartic couplingV is zerod. Thus, we define the reduced
Green’s function GRmm,r 1n;Rm8 m8,r 2n8svd
=GRmm,sRm+r 1dn;Rm8 m8,sRm8 +r 2dn8svd and expand it in the basis of
one-exciton eigenstates given by Eq.sD1d,

GRmm,r 1n;Rm8 m8,r 2n8svd =
1

V2o
qq8

eisq+q8dsRm8 −Rmd−iq8sr 1−r 2d

3gm,n;m8,n8sq,q8,vd, sE1d

where the unit cell’s Green’s function

gm,n;m8,n8sq,q8,vd = o
ll8

8clmsqdcl8nsq8dIll8sq,q8,vd

3clm8
* sqdcl8n8

* sq8d sE2d

and

Ill8sq,q8,vd =
i

v − Vlsqd − Vl8sq8d + iglsqd + igl8sq8d

sE3d

is a two-exciton Green’s function in the frequency domain.
Taking into account the translational invariance with re-

spect to Rm and Rm8 we can transform the two-exciton
Green’s function to momentum space,

Gr 1,m,n;r 2,m8,n8sq,vd =
1

Vo
q1

eisq−q1dsr 2−r 1d

3gm,n;m8,n8sq1,q − q1,vd. sE4d

We can now write the transformedM2lc3M2lc matrix D,

Dr 1,m,n;r 2,m8,n8sq,vd = dr 1,r 2
dm,m8dn,n8

+ iGr 1,m,n;r 2,m8,n8sq,vdDm8,n8sr 2d.

sE5d

Note that we are using a mixed momentum and real space
representation, which allows us to control the expressions
using the interaction distancelc. The transformation with re-
spect tor 1 and r 2 does not simplify the expression since
these coordinates are not translationally invariant in our ex-
pressions ofD. The exciton scattering matrix in this mixed
representation now reads

Gr 1,m,n;r 2,m8,n8sq,vd = − iDm,nsr 1d„Dsq,vd…r 1,m,n;r 2,m8,n8
−1 .

sE6d

This expression is illustrated in Fig. 2sbd. Here the initial
two-exciton pairm8 and n8 is separated by the distancer 2

=Rn8−Rm8 within interaction radius, which is established by
Dm8n8sr 2d. The pair is scattered by the matrixG to create a
new pair of excitons atm and n separated byr 1=Rn−Rm.
The distance between two excitons after scattering is also
within the interaction distance as required byDmnsr 1d. The
distance between the two exciton pairs is not important be-
cause of translational invariance.

For the scattering matrix in the eigenstate representation
we obtain

Gl4l3l2l1
sq4,q3,q2,q1;vd

= dsq4+q3d,sq2+q1d o
−lc,r8r9,lc

expsiq3r 9 − iq1r 8d

3 o
m4. . .m1

cl4m4

* sq4dcl3m3

* sq3dGr9m4m3;r8m2m1
sq2 + q1,vd

3cl2m2
sq2dcl1m1

sq1d. sE7d

The total momentum before interaction and after interaction
is conserved.

The calculation of the response functionfEq. s45dg re-
quires the scattering matrix for zero momentum. The final
expressions are:

gm,n;m8,n8sq,− q,vd = o
ll8

8clmsqdcl8ns− qd

3Ill8sq,− q,vdclm8
* sqdcl8n8

* s− qd,

sE8d

Gr 1,m,n;r 2,m8,n8svd =
1

Vo
q

e−iqsr 2−r 1dgm,n;m8,n8sq,− q,vd,

sE9d

Dr 1,m,n;r 2,m8,n8svd = dr 1,r 2
dm,m8dn,n8

+ iGr 1,m,n;r 2,m8,n8svdDm8n8sr 2d, sE10d
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Gr 1,m,n;r 2,m8,n8svd = − iDmnsr 1d„Dsvd…r 1,m,n;r 2,m8,n8
−1 , sE11d

and the Green’s function of the unit cell were given by Eq.
sE2d. The scattering matrix of the eigenstates is

Gl4l3l2l1
svd = o

−lc,r8r9,lc

o
m4¯m1

8 cl4m4
cl3m3

Gr9m4m3;r8m2m1
svd

3cl2m2
cl1m1

. sE12d

The matrix sizes areM2s2lc+1d3M2s2lc+1d, the same
size as for the inversion problem. These are significantly
reduced compared to nonperiodic systems.

APPENDIX F: TIME-DOMAIN OPTICAL RESPONSE
FUNCTIONS

Time-domain expressions are useful for experiments per-
formed with ultrafast, well separated, optical pulses. The se-
quence of interactions can then be defined and different tech-
niques can be determined by their time ordering.40 The time
ordered optical response is defined by

Pn4

s3dsr 4,t4d

= o
n3n2n1

E dr 3E dr 2E dr 1E
−`

t4

dt3E
−`

t3

dt2E
−`

t2

dt1

Sn4,n3n2n1

s3d sr 4t4;r 3t3,r 2t2,r 1t1dEn3
sr 3,t3dEn2

sr 2,t2dEn1
sr 1,t1d,

sF1d

where t1 now stands for the first interaction,t2 for the sec-
ond, andt3 for the third in chronological order.

Equation.sC4d cannot be used directly since the time
arguments have to be rearranged in chronological order. To
that end we separate the expression into three terms:

Sn4,. . .,n1

s3d sr 4t4, . . . ,r 1t1d = Sn4,. . .,n1

k I sr 4t4, . . . ,r 1t1d

+ Sn4,. . .,n1

k II sr 4t4, . . . ,r 1t1d

+ Sn4,. . .n1

k III sr 4t4, . . . ,r 1t1d + c.c . ,

sF2d

where

Sn4,. . .,n1

k I sr 4t4, . . . ,r 1t1d = 2i o
n4. . .n1

kdsr 4 − r n4
d¯dsr 1 − r n1

d

3M n4. . .n1

n4. . .n1lJn4n1n3n2
st41,t43,t42d,

sF3d

Sn4,. . .,n1

k II sr 4t4, . . . ,r 1t1d = 2i o
n4. . .n1

kdsr 4 − r n4
d¯dsr 1 − r n1

d

3M n4. . .n1

n4. . .n1lJn4n2n3n1
st42,t43,t41d,

sF4d

Sn4,. . .,n1

k III sr 4t4, . . . ,r 1t1d = 2i o
n4. . .n1

kdsr 4 − r n4
d¯dsr 1 − r n1

d

3M n4. . .n1

n4. . .n1lJn4n3n2n1
st43,t42,t41d,

sF5d

and we have defined an auxiliary function

Jn4n3n2n1
st3,t2,t1d = o

n48n38n28n18
E

0

t2

dts9E
0

ts9
dts8

Gn48n38,n28n18
sts9 − ts8d

3Gn4n48
sts8dGn38n3

† st3 − ts8d

3Gn28n2
st2 − ts9dGn18n1

st1 − ts9d. sF6d

Here tij = ti − tj is the time delay between two consecutive
interactions.ts8 and ts9 are the delay times between exciton
scattering events and the polarization measurement:ts8= t4
−t9, ts9= t4−t8 as shown in Fig. 1sbd. Since the time vari-
ables can be rearranged ast43, t42= t43+ t32, t41= t43+ t32+ t21,
each response function now depends on three time delays
between different interactions:t43, t32, andt21.

The time intervals of Eqs.sF3d–sF5d and their relation to
the actual interaction times are shown in Fig. 1sbd. The signal
can be interpreted similarly to the frequency domain suscep-
tibility: there are three interactions with the optical fields at
times t1ø t2ø t3 which generate three quasiparticles repre-
sented by one-exciton Green’s functionsGn18,n1

, Gn28,n2
, and

Gn38,n3

† stwo having positive oscillation frequency and one

having negatived. These quasiparticles evolve in time and
two of them with the same phase are scattered byGn48n38,n28n18
shifting the particles to the positionsn38 andn28. The scatter-
ing is such that one of the two new excitons corresponds to
the exciton generated by the field. The other exciton gener-
ates the optical response.

The time evolution is followed explicitly and the reso-
nant terms can be selected according to wave vectors of op-
tical fields and time ordering of the interaction. The three
different time evolutions for the time ordered response func-
tions are showed in Fig. 10.

The dependence on the wave vector of the optical field
can be obtained by applying spatial Fourier transform to the
response function. The expressions are considerably simpli-
fied in eigenstate basis where we get

Jj4j3j2j1
st3,t2,t1d =E

0

t2

dts9E
0

ts9
dts8Gj4j3,j2j1

sts9 − ts8d

3Ij4
sts8dIj3

* st3 − ts8dIj2
st2 − ts9d

3Ij1
st1 − ts9d sF7d

and

Sn4,. . .,n1

k I sk4t4, . . . ,k1t1d

= 2i o
j4. . .j1

kdj4

n4sk4ddj3

n3*s− k3ddj2

n2*s− k2ddj1

n1sk1dl

3Jj4j1j3j2
st41,t43,t42d, sF8d
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Sn4,. . .,n1

k II sk4t4, . . . ,k1t1d

= 2i o
j4. . .j1

kdj4

n4sk4ddj3

n3*s− k3ddj2

n2sk2ddj1

n1*s− k1dl

3Jj4j2j3j1
st42,t43,t41d, sF9d

Sn4,. . .,n1

k III sk4t4, . . . ,k1t1d

= 2i o
j4. . .j1

kdj4

n4sk4ddj3

n3sk3ddj2

n2*s− k2ddj1

n1*s− k1dl

3Jj4j3j2j1
st43,t42,t41d, sF10d

with k4=−k3−k2−k1 which reducesJ from fourfold summa-
tion to none. The dependence on the wave vectors is also
expressed clearly. The rotational averages of these quantities
were given in Sec. V.

Three possible techniques,k I =−k1+k2+k3, k II =k1−k2

+k3, k III =k1+k2−k3, are now defined by the response func-
tions Sk I, Sk II, andSk III , respectively. The parameters of the
response functions are the three time delayst43, t32, t21. Con-
sider the techniquesk I =−k1+k2+k3 and k III =k1+k2−k3.
For k I we set the second time delayt32=0 and perform the
Fourier transforms with respect to the first and third time
delays:t21→v1 and t43→v3. For k III we set the first time
delayt21=0 and perform the Fourier transforms with respect
to the second and third time delays:t32→v2 and t43→v3.
The signals become also a function of the directions of op-
tical wave vectors in first-order approach we are using. Ex-
pression especially useful for numerical simulations for the
2D signal in thek I techniquesk4=−k Id is

Wn4,n3n2n1
sk4,k3,k2,k1;v1,v3d

= 2i o
j4. . .j1

kdj4

n4sk4ddj3

n3*s− k3ddj2

n2*s− k2ddj1

n1s− k1dl

3Ij1

* s− v1dIj4
sv3d

3E
−`

` dv8

2p
Gj4j1,j3j2

sv8dIj3j2
sv8dIj1

* sv8 − v3d

and ink III techniquesk4=−k III d

Wn4,n3n2n1
sk4,k3,k2,k1;v2,v3d

= 2i o
j4. . .j1

kdj4

n4sk4ddj3

n3s− k3ddj2

n2*s− k2ddj1

n1*s− k1dl

3Ij4
sv3dE

−`

` dv8

2p
Gj4j3,j2j1

sv8dIj2j1
sv8d

3Ij3

* sv8 − v3dusv2 − v8d.

The functionusvd= isv+ ig8d−1 is taken in the limitgj@g8
.0.
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