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Coherent third-order spectroscopic probes of molecular chirality
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The third-order optical response of a system of coupled localized anharmonic vibrations is studied
using a Green’s function solution of the nonlinear exciton equations for bosonized excitons, which
are treated as interacting quasiparticles. The explicit calculation of two-exciton states is avoided and
the scattering of quasiparticles provides the mechanism of optical nonlinearities. To first-order in the
optical wave vector we find several rotationally invariant tensor components for isotropic ensembles
which are induced by chirality. The nonlocal nonlinear susceptibility tensor is calculated for
infinitely large periodic structures in momentum space, where the problem size reduces to the
exciton interaction radius. Applications are madeat@and 3, helical infinite peptides. €005
American Institute of Physic§DOI: 10.1063/1.1869495

I. INTRODUCTION static interactions. The peptide group parameters are usually
computed by semiempirical techniquég?*°

Laser pU|SES are characterized both by their carrier fre- The infrared OA of proteins shows intense peaks and
quenciesw and wave vectork. The optical response of typi- high sensitivity to peptide backbone. Vibrational circular di-
cal molecules, which are smaller than the wavelength othroism (VCD) (Refs.17-19 and Raman optical activity
light, can be calculated in the dipole approximation whererRoA), which involves differential inelastic scattering of the
the wave vector only provides an overall phase for the elecgjrcularly polarized visible radiatioh?®?? have focused
tric field and can be set to zero. The relevant molecular inyostly on the amide I, CO stretckl1600-1700 cri) and
fprmation is then extracted from t.he frequency spect(om amide 1, CN stretch,(1500—1600 cri) transitions: the
time dependengethrough the eigenstates and transition ROA has also routinely provided protein spectra down to
dipole matrix. Structural information enters only indirectly _-q4 712327 The cD spectrum ofw-helical peptides in

via the dependence of couplings and frequencies on thfﬁe amide | band shows a distinct sigmoidally shaped band at
geometry. . . 1658 cm? that has its negative lobe blue shifted with respect
The wave vector does play an important role in the SPECYy its positive lobe; the 1550 cth amide Il band shows a

:::igo\%iga e{ﬁ:?ﬁ:ﬁﬂi?'{iﬂiﬁg? Efﬁ?;eo?ri;a%aé;ds\?hesrf- negative VCD band that overlaps with a larger negative band
at 1520 cm.?® The other CH and NH stretching modes

the phase of the electric field does vary across the molecul - . .
For this reason certain tensor components of the respon%%(2)(2)0;2310\(,)\/ifrr]nl ; (;Jilsvtirt: d \;?r)r/nosi;re(;lnghz;éqé[; SL?;iaélesat
function, which vanish in the dipole approximation, become . 23.24.26 9 =10 :
finite to first order in the wave vector. A common exampleShOW _S|m|Iar spectra. Recen_t studies ofa-hel!x,_
for such chirally-sensitive, wave vector-induced, effects isglo'he“X’ B-sheet, and polProll helix revea] chargcterlstlc
circular dichroism(CD)—the difference absorption of left- veD baanhapeé p-sheet has weak.neganve amlde | VCD
and right-handed circularly polarized light which is related toPand, while polyPro)ll resembles an inverted-helix. VCD

L . . 7,28 .
the rotation of polarization vector of the propagating optical®f A-sheet hairpins is similar tﬁ-sheetf. Advances imab
field—phenomenon known as optical activ[@A).l'3‘5 initio calculations of vibrational electric and magnetic tran-

Due to its high sensitivity to microscopic structure, CD sition dipoles and their interferences lead to highly accurate
spectroscopy of electronic transitions of proteiE&CD) in determinatgog2 of vibrational absorption and VCD for small
the visible and UV has become an important tool for struc-molecules®*?These allow the transfer of property tensors
ture determinatiofi.-® ECD of proteins in the 180-260 nm from smaller to larger systems of coupled vibratiéhghe

range shows mainly two transitions: 190 fm-=*) and VCD of dipeptides in the amide | region was calculated re-
220 nm (n-7*).5 Based on the relative amplitudes of cently and a map of VCD amplitudes as a function of dihe-
different transitions in the CD spectrum proteins have beesiral angles was creat€dwhich showed very good agree-
classified asa-rich, B-rich, and P, structures. A well- ment with experiment for a tripeptidé.

developed theoretical framework relates the CD spectrum to  Pattern recognition and decomposition algorithms for
peptide structure. The matrix metiéd®is based on a set of protein structure determination allow to distinguish between
parameters describing each chromophoric group in the proz-helical andB-sheet formations using ECERefs. 7, 35,
tein: the parameters represent the charge distributions of afind 36, VCD (Ref. 37, and ROA(Refs. 38 and 3P Differ-
relevant ground and excited electronic states, the electric anght regions associated with particular structures were identi-
magnetic transition densities between different states, and tHfeed and reflect geometrical changgseptide folding as a

coordinates of each chromophoric group, coupled by electrcfunction of external perturbatior’ré.
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hoh HoTooT t, t <] wherev=x,y,z denotes cartesian components. The polariza-
’ R S tion is measured at timg and positionr 4, while ther inte-
P ; & grations extend over the volume of a single molecule
= . \;;ﬂ Y (fdr--- :fvdvaqufvdz- -_-) ar_wd_time integrations are from
(b) ©) —» to +wo. These integration limits are assumed throughout

this paper unless they are otherwise specifiedith j=1,2,3
) ) . ) is the interaction time with the electric fied, . Note that
FIG. 1. (Color online Third-order four-wave mixing experiment. The three . . . i .
incoming pulses with wave vectoks, k, andks generate a signal &, these time variables do not have a particular time ordering.
=+k,+k,%K5 (a). Interaction events and the definitions of time intervals in The response function depends parametrically on both the
Egs. (1), (C4), and (F3)(F6) (b). Quasiparticle picture of the coherent re- coordinates of the system and the interaction times.

sponse with respect to E(R6) (c). Three interactions with the optical fields It carries all material properties relevant for the optical
(red points or peakiscreate one-exciton particles. They evolve according to

their Green’s functions. The two excitons are scattered kplue dashed ~'€SPONSE. _ .
areas. Finally two excitons annihilate and the remaining exciton generates  In general the third-order response function hagegsor

the signal. elements. However, in the dipole approximation there
are only three linearly independent components for isotropic
systems“.8 XXYY, XyXy, andxyyx (xxxxis a linear combina-

CD is a good probe of molecular chirality: it has oppo- i f th | h h b Ul q
site signs for two enantiomers and vanishes for racemates—o" Of these € emergsThese have been successfully use

: . for improving of spectral resolution in two-dimensional IR
equal mixtures of two mirror structuré<CD of small mol- . 49-53 .

: : . . . . (2D IR) spectroscopie& >3 however, they are not chirally-
ecules is usually described by including magnetic transitio

dipoles®* H Jarge biological molecules such as DNA ""SYE
Ipoles.”™ HowWevet, large biclogical molecules such as In this paper we go one step beyond the dipole approxi-

and proteins and chromophore aggregées., light harvest-  ation and calculate the first- and the third-order response
ing systemsare spatially extended. Wave-vector-dependentnction and the susceptibility, to first order in the optical
terms, which go beyond the dipole approximation and argyave vector. The finite tensor elements of third-order re-
related to quadrup0|e and hlghel’ moments, become Signif.gponse tensors which contain an odd numbet (o@r y, orz

cant as the molecular size is increased. Local magnetic traguch asxxxy, etc) vanish for nonchiral molecules and are
sition dipoles can be ignored for large molecules: the ratio otherefore chirally-sensitive. We use the nonlinear exciton
magnetic dipole and electric quadrupole moment is proporequations (NEE) originally developed by Spano and
tional tov/c, wherev is the speed of electrorifor electronic MukameP*® for four-wave mixing of coupled
transitiong or nuclei(for vibrational transitionsandc is the  two-leveP’~®and three-lev&t~®*molecules. The NEE were
speed of light® ECD for molecular aggregates was calcu- later extended to particles with arbitrary commutation rela-
lated to first order in wave vectds*? by modeling them as tions and to Wannier excitons in semiconductrsthe

a collection of coupled electric dipoles. The dipole coordi-e€quations establish an exciton scattering mechanism for the
nates enter explicitly, showing high sensitivity to the geom-nonlinear response and avoid the expensive calculation of
etry. This model has been successfully applied to biologicalnultiexciton eigenstates, which is a considerable advantage
light harvesting antenna system and recently to a large clad8' large systems. Closed expressions are derived for infinite
of cylindrical aggregate%”. A more general description of periodic systems, where transla_ltlonal symmetry may be em-
CD and optical rotation was developed using spatially nonployed to reduc_e th_e problem siz€. W_e apply our theory to
local electric and magnetic optical response ten$bBpe- helical polypeptide in the amide | region.

cific tensor elements of the linear response functionand In Sec. Il we present the Hamiltonian and the NEE for
P ‘on vibrational excitons. In Sec. Il we introduce the notation and

yX), \.Nh'Ch 'S a gecond ra_mk tgqsor, are reSponS|pIe for C_Dparameters and calculate the linear susceptibility, recovering
Non!lnear techniques wh|ch UF'I'Ze circularly polarized Opt',' the well known expressions of linear absorption and circular
cal f|elo!g,42uch as two-dimensional pump-probe were studiefichrgism. We then derive in Sec. IV expressions for the
as well.™ third-order susceptibility of oriented systems using the same
Third-order techniques performed with linearly polar- assumptions and approximations, and extend them to isotro-
ized light(time and frequency resolvedre routinely used to  pic ensembles in Sec. V using a universal tensor averaging
probe isotropic systems. The experiment is depicted scherocedure. Simplified expressions for periodic systems are
matically in Fig. 1. The nonlinear response funct®® is a  derived in Sec. VI. The linear and the nonlinear signals are
fourth rank tenso?’ which relates the third-order nonlinear calculated fora and 30 helices in Sec. VII. We pay particu-
polarizationP® to the optical fieldE(r ,t), lar attention to two-exciton resonance and compare the re-
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sults within and beyond the dipole approximation. Various N mn W
aspects of nonlinear spectroscopy beyond the dipole approxi- ~ '7 + E (M * Vinnmen) Yo = Em()By
mation are discussed in Sec. VIII. mn

Derivations of the expressions used in the main text are +&,()Bp,. (5)

given in the Appendices. Appendix A introduces the exciton _ ) ) )
basis, the exciton Green’s functions, and the scattering mdi€rehmn= m,n8m+~]\r(n,n(1‘5m,n) is an effective single exci-
trix. The reduced expressions for the scattering matrix foton Hamiltonian,h - = 6w mhnn + O phmm is @ two-
special models of nonlinearities are given in Appendix B.exciton HamiltonianVynmn =Umnmn + Unmmens 1S the an-
The optical response is derived from the NEE in Appendixharmonicity =~ matrix, and &,(t)=E(r,,Dun.  The

C. General expressions for the susceptibilities in periodimonlinearities in these equations originate from the anharmo-
systems are derived in Appendix D. Reduced scattering magicity matrix. When it is neglected the two-exciton variables
trix expressions for periodic systems are given in Appendixcan be factorized a¥,,,=B,B,, Eq. (5 becomes redundant,

E, and the time ordered optical response functions requireltg. (4) becomes linear and the nonlinear response vanishes.
for time-domain short pulse experiments are presented iifthe polarization is given by the expectation value of 8.

Appendix F. P(r,t) = 2 po(Brl) + B(0)8(r = 1) (6)

Additional variables are required in the NEE when popu-
lation transport and pure dephasing are inclutfedle shall
calculate the nonlinear polarization and explore different

We consider\ coupled anharmonic local vibrational limits of parameters using the Green’s function solution of
modes described by the exciton Hamiltonian the NEE given in Appendix A.

m#n

|:| = E SmQLém"' E ‘]m,né;én
m mn

Il. THE VIBRATIONAL EXCITON HAMILTONIAN AND
THE NONLINEAR EXCITON EQUATIONS

Ill. LINEAR ABSORPTION AND CIRCULAR
DICHROISM OF EXCITONS IN THE MOLECULAR
oS Upn BB By - j aP(r)-E(ry.  FRAME

mnm'n’ To introduce the notation and set the stage for calculat-

(2 ing the nonlinear response we first review the nonlocal linear
response. The nonlocal linear response functis{ﬁz,),v1
X(r,ty;rqty), is defined by the following relation between the
linear poIarizationP(VD(rz,tz) and the optical electric field
40,65,66 2

E, (rit)™

The creationl%;‘n, and annihilationém, operators for modm

satisfy the bosorBy,,B!]= 6, commutation relation. The
first two terms represent the free-boson Hamiltonigpde-

notes the harmonic frequency of modeand the quadratic
intermode couplingJ,, is calculated in the Heitler—London

approximation where we negleBf,Bf andB,B, terms. The
third term represents a quartic anharmonicity and the fourth

POt =2 f dry f duSY, (ratzir1ty)E,, (Faty).
V1

term is the interaction with the optical fiel(r ,t) where (7)
A -3 Ap o The linear susceptibility relates these quantities in the
P(r) = = & = T'm) ir(B + Bro) () frequency/momentum domain,
is the polarization operator and,, is the transition dipole P (K, w,) = LE fdklj dw;
i X Y 7 2 (2m)*
moment, a vector with the componertgy,, ul,, ), for 2
modenm located alf, XD, (- ko= gk 0B, (), (8)

The expectation value of the polarization operator which

describes the response of the system to the optical field willyhere we use the following convention for the Fourier trans-
be calculated using the NEB>"®*This hierarchy of equa- form

tions of motion for exciton variables may be exactly trun-

cated order by order in the field since the molecular Hamil- £ ) = f dr f dtF(r Hyexplikr +iwt). (9)
tonian conserves the number of excitons and the optical field

creates or ar_m|h|Iates one exc_|ton at a time. I_By neglectmq.he susceptibility and the response function are connected
pure dephasing, the only required exciton variables for th%

third-order optical response aBgn:<I§m> (one-exciton and @
Ymn=(ByBn (two excito. The NEE then assume the Xvgy

form>>°6
JB - f erJ drlJ dtzf dtlgvlz),vl(rztz;rltl)
. * v %
- |_&tm + 2 hunBa=En® = 2 Vi Bl Y, ()
n

I"m'n’ Xexqikzrz_ik1r1+iw2t2_iw1tl). (10)

(=Kz— wp;ky9)
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Using Egs.(C1), (7), and(3), the linear response func- X(Vl)y (= Ky — @y Ky;)
tion for our model is given by at
Sy, (ratpiraty) =12 8o =) &ry = 1) pwrzplt

mn

Vo

= 2mi 8(wp — w1) 2 APk (Kl (wp) +c.c!,  (16)
¢

XGmy(t—ty) +c.c., (11)  where, the nonlocal exciton transition dipoles are trans-

. _ . . formed to momentum space
whereG(t) is the single exciton Green'’s functigiq. (A4)]

and c.c. denotes the complex conjugate. From Eif$.and a2k =S K mgy? 17
(11) we obtain the susceptibility k) % P A7

(1)

Xo, (= K2 = 21K 007)

and the frequency domain Green'’s function
=2m7i 5((1)2 - (1)1) i
i
X explikat = 1Ky o) a1 pts Gone 1) )= 0y, (18
mn

+c.c/, (12) is the Fourier transform of Edq14).

, . . . The linear response functidiand the susceptibilijyde-
where c.c' stands for complex conjugate with reversing thescripes all linear properties of an ensemble of oriented mol-
signs of momentum and frequendy:~ -k ando— -, and  ocyles in the lab frame.

G(w) is the frequency domain Green's function given by EQ.  Tne Jinear absorption of the field is given By®

(A6). Time translational invariance implies tha}=w,. For

uniform systems with space translational symmetry we have oPY(r 1)

k=K. crA:Jdr fdt(E TEN,O), (19
Using the exciton basigy,,, (eigenstates of the single v

exciton block of the molecular Hamiltonianlefined in Eq.

(A1), Eq.(12) reads
S(Vlz%yl(rztz;rltl) = iE dgz(rz)dgl*(rl)lg(tz_tl) +c.c., oAz ‘_' J dk f wdwE E (K- w)PY(k w). (20)
é (2m)* o v

(13)

Transforming to the momentum/frequency domain we obtain

We next consider a monochromatic optical field
where the sum now runs over the one-exciton eigenstates _
andlt) is the single exciton Green’s function, E(r,t)= %EO(eV1+ ae”2e " 0)explikor —iwgt) +C . C. (21

10 = 00exp= Q= 7). 149 pereer is a unit vector along’=x,y,z ais a ratio of two
where(), and y; are the frequency and dephasing rate of theperpendicular amplitudes along and»,, ¢ is a phase dif-
£ exciton state, respectively(t) is the Heaviside step func- ference between them arit} is the overall amplitude. The
tion ((t)=0 fort<0 andéd(t)=1 for t=0) and the transition vectorset,e*2,k, form a right-handed orthogonal axis sys-

dipole is tem. Equation(21) represents linearly polarized light along
e’ whena=0; right-handed circularly polarized light when
di(r) = 2 8(r = m) - (15 a=1 and ¢,=+m/2 and left-handed witha=1 and ¢,
m =-/2. Combining Eq(8), (20), and(21), we obtain for the
The susceptibility is similarly given by linear absorption

(1)

"

(1)

nn

2.(1) 2.(1)

Ejw
oalwo) = |OTO[X (= Ko, wo; Ko, = o) = X3, (Ko, — wg; — Ko, ) + & XVz"z(_ Ko, wg; Ko, — wg) — & XVsz(kO’_ wo;~ Ko, wo)

+ad %oy 2(_ Ko, o; Ko, — wo)— ag ' Pox z(ko, — wo;— Ko, o) + @& Pox!Y (= ko, wo;ko,— wo)

VlV VlV V2Vl

—ad®y") (Ko, ~ wpi— Ko, wo)]. (22

Lelg]

By settinga=0 we obtain the absorption of linearly polarized light. The circular dichroism spectrum is defined as a difference
of absorption of left-circularly polarized lighe=1,¢¢=-m/2) and right-circularly polarized lighta=1,¢py=/2),

__Eowo g W
ocplwg) =i > ['X,,l,,z

v1v2

(1)
Yol

(1)

(= Ko, wg; Ko, = wp) +ix;,., (Ko, = wo; = Ko, wp) — i x (‘ko,wo§ko,—wo)—iXyz,,l(ko,‘wo§‘ko,wo)]-

(23
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The linear absorptioricircular dichroism depends on X
diagonal (off diagona) tensor components of the response
function. Settingv;=x, v,=y giving ko=€%,, the absorption =27y~ w3~ W~ )P,
of a linearly polarized light is

vy, V3V2V1( k41 ~ (g, k31 w3, k27 w21k11 0)1)

X 2 explikrn, —iKgrn, =Kol = ikyr )M pérarzs

n4n3n2n1
ngNgnony
oalwg) = 277_2 Mm/‘ﬁRd:eXF( |kzrmn)Gmn(wO)] X E I‘n:lné’néni(a)l + wz)Gn“,n"‘(wA)G;"ns(_ w3)
nyngnong 8
and the circular dichroism signal X Gy n,(@2) Gy (@) +C. €, (26)
£2 where the frequency domain Green’s functi@igv) and the
w0 ) . .
Toplwg) = 27 0 D [t X o], scattenng matrylxyl“gc:)_artya glverJ bB/ Eqs(18) and (A16),
2 respectively. M n4n:n§n1 /unj/un:/ung/u L is the orientational

tensor andP o denotes the sum over the six permutations of
k101, vKow,, andugksws. Sincex® is already symmetric
with respect to 1 and 2 we only need to permute 1 with 3 and
These results are exact for coupled dipoles with arbitrary, with 3. We therefore need only three permutations.

geometry and a fixed orientation with respect to the optical Equation(26) leads to the following physical picture for
field. the respons&® Each of the three optical fields interacts with
the system at points,t;, not,, andngt; as shown in Fig. 1.
The two excitons generated at poimtsandn, have positive
IV. NONLOCAL THIRD-ORDER RESPONSE FUNCTION  frequency and evolve independentlyrtpandn;, where they
IN THE MOLECULAR FRAME are scattered, changing their positionsfoandnj. The ex-
citon atn, evolves ton, and generates the signal, while the
Four-wave-mixing processes are described by the thirdexciton generated at; evolves ton; and is annihilated by

X Reliexp(- ikzrﬁm)Gmn(wO)]-

order polarizatiori the third field. In this representation the scattering matrix is
the only source for the nonlinear polarization. For harmonic
PO(K,, w,) oscillators the matrixv, the scattering matrix, and, conse-
4 quently, x® vanish. The susceptibility depends on the orien-
tation of the molecule in the laboratory frame and has a
"2 )12 Y fdk3f d“’3f dk?f dav nontrivial dependence on the wave vectors.

v3rary

In the exciton basi$Eq. (Al)] we substitute Eq(A4)

fdk fdle(ui)y3v2vl — Ky = wy;Kzws, Kows, K1) into Eq. (26) to obtain
X(V?; V3V2V1(_ k41 - w4; k31 w3, k21 wo, k11 (1)1)
Ev3(k31wS)Evz(kawZ)Evl(klawl)- (24) .
=2mi (wy =~ w3~ w3~ w)P,
The susceptibilitf Eq. (24)] and the response functidiq. x > dV4(k4)dV3( k3)d”2 (kz)dV1 (k)
(1)] are connected by Eabatoly
XT g, e6,(02+ @)l (@) (— @3)
Xyi)ysyzyl(‘ kg = w4;Kzwg,Kowp, K1) e ! ’

Xlgz((uz)lgl(wl) +C. C.,, (27)
fduJ dt“f dr3J dt3f erJ dtzf drlf dty where the exciton transition dipoles were defined in @),

< the exciton Green’s function in the eigenstate basis is given
Vg V3V2V1(r4t4’r3t3’rztz'rltl) by Eq.(18) and the scattering matriX(w) is obtained by the
Fourier transform of Eq(C6).

Xexp[i(k4r4 +agty) —i 2 (ki + w|t|)] . (29
|

o o V. THE RESPONSE OF ISOTROPIC ENSEMBLES
The response function is directly observed in time domain

experiments with ultrashort optical pulses where the time  The optical fields, wave vectors, and space coordinates
integration in Eq(1) can be eliminated whereas the suscep-are defined in the lab frame, while the transition dipoles and
tibility is observed in the opposite CW limit when the  their position vectors are given in the molecular frame. Ro-
integrations in Eq(24) can be eliminated. tational averaging - -), needs to be performed over the rela-

A Green’s function expression f@® obtained by solv- tive orientation of the two frames to calculate the response
ing the NEE is given in Eq(C4). Applying the transform of functions for isotropic(randomly orientegd ensembles of
Eq. (25) we obtain molecules’® Equation(16) then becomes
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X (= Ko = ko) = 2711 S~ ) A= 2 ri e m. (33)
m
X2 <d§2(kz)d§1*(k1)>lg(w1)
¢

Proceeding along the same steps we obtain average
third-order response. Rotational averaging of &Y) gives

+c.c/, (28)
with ngi),%yzyl(_ Kg, = w4;K3, w3,Ko, 5,k 1, 071)
v v* * j —i VoV =271 6 - - - 7) dv4k dy3 k
<d§2(k2)d§1 (k)= n}ﬂ: lr/lgnzlpgnl(elkzrnz 'klr”lﬂnﬁﬂni% T S ws— w3~ Wy — w1) §4§2§1< ( 4) ( 3)
211
(29 ng (kz)dgi (k1)>rg4§3,§2§1(w2 + w1)|§4(w4)
k;, and the tensor components are lab frame quantities, ><|23(‘ w3)l g (wp)lg (@) +C.C/, (34)

while the transition dipolegt, and coordinates, are mo-
lecular properties defined in the molecular frame. This typévith
of averaging required foum size macromolecules was cal-
culated by Craig and Thirunamachandran for linear absorp-
tion and for CD%°

(dz(k)d2(— ka)dZ (k) dZ (k)

For an isotropic ensemble of molecules we should treat = . E . ‘/’54”4%3”3‘[’(52“2'//51”1
each molecule as identical system with its collection of tran- g
sition dipoles having unique orientation with respect to the (@ang s ng 2, Kl e S 2 g (35

lab frame. The coordinate of each mode in the lab frame
depends on the position of the molecule. Therefore, in genwhere
eral we should replace the coordinatgswith R +r,,, where

: " - Kt . ~iKarn —iKor o -1k
R is the molecular positiotan origin of the molecular co- (@alng™ang ™2, 0, gy e S a2
ordinate systemin the lab frame and, is the coordinate o E . B
of modem with respect to that origin. Taking into account = (i) + 1.2 Ki(rn o)
the positions of molecules in the ensemble, factors
such as exfkorn, —ikyrn) will change to exfiR(k, =120 K5 oty
K

—ky))explikary,—ikyry ), where now exiR(k,—ky)) is an
overall phase factor which leads to phase-matching condition
for the optical fields when integrated over an isotropic bulk
sample. The second factor, éidpzrnz—iklrnl), is now re-
sponsible for the variation of phase within the molecule. - K(r o M2 ) - (36)
Hereafter we keep the phase-matching condition and neglect K

the exgiR(k,—k;)) factor. The coordinates,, vary only
within one molecule and for molecules smaller than the
wavelength of light we havér ,<1, and the exponential vy v3(— v vy* vaqvag?2” V1
functions in Eq.(29) can be expanded to first order, <d§ (k4)d§ ( kg)dg (kZ)dg (k)= (d; d§3d§2 d

(€2, g2l = <Mn2/un1>+lz ko n,se2ptn)

1 K K v, 12 v v
- IE k2<rn2Mn3Mn:ﬂn§Mni
K

In the exciton basis we finally obtain

+ |2 ki(dg: addZ dy) - |2 k"(d" sdyd2 dyt)

e |E k(dg "7 ddzadys)
=i 2 K oz, (30) .
—i2, k§ d" 1 32 dg? 37
wherex=x,y,z. This expansion allows to transform vectors E i &6 > 37
back to the exciton basis. Substituting E§0) in Eg. (29

and performing the summations over modes we obtain Egs. (31) and (37) require second to fifth rank rotational

averagings. The first terms in these equations correspond to

(di2(kp)dg (k) = (dzzdy’y +i 2 ka(de 2 dir) the dipole approximation. The remaining terms which con-
K tain the transition dipole and a coordinate represent a first-
-i> kf<ag,vl*dvz*> (31) order correction to the dipole approximation. These terms do

not depend on the coordinate origin of the molecular frame

providedk,=ks;+k,+k4, which is the phase-matching con-
where we had defined the transition dipole vector for the zergjitjgn.

momentum exciton state The projection of a molecular vector suchmsor un,
v L — Y onto the lab coordinate system can be represented as a scalar
de=dg(k=0)= % Pt ms (32 producte”-r,, (ande’- u,,), wheree” is a unit vector in the
lab frame. These products have simple transformations be-
and the tensor tween coordinate systems, and rotational averages can be
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is the antisymmetric Levi—Civita tensor, is equal to 1 for(as,ay,ay)

TABLE . Isotropic rotational average tensotRef. 48. €,,q,q, agasay

=(xy2,(yzX,(zxy), -1 for (a3, a,, a;)=(xzy),(yx2,(zyX, and 0 otherwise.

Tensor element Value
2 1
Tvzvl,azal §5V2u15a2a1
€) 26,0 €
Valplp,gandy 6 Cvarory Cagasay
T
l 5V4V35V2V1 4 - l - 1 5a4a35a2a1
T(4) 3_0 51141/261/31/1 -1 4 -1 60140125(1301
Vg Vg Qg
5D4V15V3V2 - 1 - 1 4 5&4015Q3d2
T
€V5V4V35V2Vl 3 - 1 - l 1 1 0 6(15(14{135112(11
E”5”4”25”:4”1 -1 3 -1 -1 0 1 6‘15‘14”‘250‘3“1
1 EV5V4V16V3V2 - 1 - 1 3 0 - 1 - 1 Ea5a4a16a3a2
(5 An
L 30| €sup,Ouin, 1-1 0 3 -1 1| e
€V5V3V15V41/2 1 0 - 1 - 1 3 - 1 6[15[131116&4[12
€ Ounn 0 1 -1 1-1 3 \e ub

easily calculated. For asth rank product of any system vec- of the susceptibilities. The linear susceptibiligg. (28)] in-
tors a we have the following transformatidrbetween the volves second and third rank rotational averages, while the
molecular and the lab frames: third-order susceptibilitf Eq. (34)] requires fourth and fifth
" ” Y . rank averages. Within the dipole approximation we only
(ag---ap) =((e"-ay) - (" -ay) need second and fourth rank rotational averages involving
=> T(VS) RN \CIERr- (38) products of the transition dipoles. Third and fifth rank rota-
agoay, o TS tional averages are required when we go beyond the dipole
© B . approximation to first order in the wave vector. These aver-
whereT,” |, o a,=luag 110, 18 the average of the trans- 4ge5 explicitly include one translational coordinate and, thus,
formation tensor wherg,, is the cosine of the angle between contain qualitatively new information about the molecular
laboratory frame axis'=x,y,z and molecular frame axi&  geometry. Based on Table I, we find that different ranks in
=X,y,z. The averages of ranks two to five transformationthe linear and nonlinear susceptibilities have different sym-
tensors, which are universal quantities independent of systefetry properties: second rank averages in the linear suscep-

geometry are given in Table*. tibility are related to a Kroneckef symbol, while third rank
Using Table I, the rotational averages of the transitionaverages are related to a Levi Civigasymbol; these aver-
dipoles in Eq.(31) are ages and, thus, different orders of the susceptibility in the
1 wave vector can be measured independently with different
(dEngl y= §6V2V1|d§|2, (39 field configurations. The third-order optical response shows

similar trends: the susceptibility in the dipole approximation
is related to the fourth rank rotational average, which is pro-
<ag,V2dg1*>: 1 €enp, D éaaazala??"azd?l*- (40) portional to a product ofﬁ .f_unc.:tions; to first ord_er in the
6 agagay wave vector the susceptibility is related to the fifth rank ro-
tational average, which contairs Thus, different orders in
the wave vector appear in different tensor components: the
( d23d§§d2§d§;> -3 T5}?1/31/2111,a4a3a2a1d?:d?33dg22* d?f*’ gif)eor:enir;?g(e)?(i(r;ar?n gi_vex_xyyand oth_er components with
peating indices, whilexy and other odd
number components only show up beyond the dipole ap-

For the averages in E¢B7) we give only the first two terms

0(40(3{120[1

(41) proximation. Each order in the wave vector can thus be mea-
_ .. sured by a specific configuration of field polarizations.
(g dpd 2 dy= 2 T L e In general there are*3tensor components in the-third
@501 order susceptibility, with parametric dependence on both the
><5§j’““d§§d§;*d§f- (42)  wave vector direction and amplitudg;| =w;/c, wherec is

the speed of light Not all of these components are indepen-
The remaining averages differ only by permutation ofdent. Table | gives the number of independent tensor com-
indices. ponents for each order: there is one component in the linear
Our final expressions, Eq$28) and (34) together with  responsérelated either t@ or e tensoy and thregwithin the
Egs.(31) and(31), allow to calculate all tensor components dipole approximationand six (beyond the dipole approxi-
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®) stlz),yl(‘ ko = wziKi01) = 27V w; — wy)
Lo e o
° \ ®; f ° X2 (M2 (K, k) (@)
H: = '
ol a@m) 43
® / o \ ® where the prime now indicates a summation over different
R i @ pien Davydov’s subbandévhose number is equal to the number
m R of sites in the unit ceJl V is the volume of the molecule and
FIG. 2. (Color onling (a) Cells of a periodic infinite system are shown by <M KVl(kZ’kl» = <d>112d;1> + iz k'2(<df'vzd;il>

squares. Each cell has an origthand contains several modéhree in the
picture are chosen as an exampteated at sitesn indicated by vectorp,,

with respect to the cell origin. Each mode is invariant with respect to trans-
lation alongr=R;—R. (b) Scattering of two excitons in the lattice. Two . o A .
excitons at sites’ and m’ interact with the anharmonic potential [Eq. For the nonlinear susceptlblhty we Slmllarly obtain
(E10 with r,=R,,—R,y] and create another two particlesrandm [Eq. (3)
(E11)]. The scattering is translationally invariant in the lattice since the XV4vV3V2V1
scattering potential depends only on the distance between the cells. Note
that momentum before and after scattering is conselzgd(E7)].

—ki(dy 2. (44)

(_ k4 - w4; k3w3, k2w2’ k]_wl)
= 2mi V25(w4 —w3— wy— wl)kaw

x 2 (M ;\lﬁig;\ll(k4k3k2k1)>r Ahaph, (@2 F @1)

mation) components for the third-order response. Additional g
continuous dependence on the wave vectors constitutes a ><|M(w4)|;3(_ w3)|kz(w2)|x1(wl)+c_c_' (45)
multidimensional parameter space. For collinear optical
fields propagating along, only x andy polarizations are With the orientational tensors
aIIow_ed. This give_s thr_ee independent tensor e_Iements within (M 227312%0 (K ke sk oK) = (ddl3d 2L
the dipole approximatiornxxyy, Xyxy, Xyyx (xxxxis linearly 4Tt 4782
dependent on these three: from Table | we find gxaixx® +i >, Ki(deradysd2d )
=(xxyy) +(xyyx +(xyxy)). Corrections to the dipole approxi- « o
mation induce three new componertgxy, Xxyx andxyxx

The rotationally-averaged time-domain expressions
when the sequence of interactions is ordered and can be _
experimentally controlled using short pulses are given in -iX ka(dy, 2d\3d)4d)t)
Appendix F. «

SOLECNE RO

-3 Ky deddy.  (46)

The one-exciton Green's functiofiEq. (D4)] and the scat-
VI. RESPONSE OF ISOTROPIC ENSEMBLES OF tering matrix [Eq. (E12)] are taken aig=0. « and » are
PERIODIC STRUCTURES cartesian components of the field wave vector and polariza-
tion, respectively, and the rotational averages may be calcu-

We consider a periodi® dimensional lattice made of lated using Eqs(39—(42).
NP cells with M sites(modes per unit cell, a lattice con-
stanta and volumeV=(Na)” as shown in Fig. 2. The posi- VII. APPLICATION TO HELICAL POLYPEPTIDES

tion of themth site is given by the vectd® +p,,, whereR is

the ori_gi_n of the unit cell ang,, is the displacement from amide | vibrational mode of and 3, helical polypeptides.
that origin. _ The helical periodic structures were created by repeating the

The exciton Bloch states are described by two quantumyperations of translation along the helix axiand rotation of
pumbers:q is the exciton momentum within the band axd the xy plane around that axis by placing each peptide resi-
is the Davydov subband. In general there Bfévalues of  qgye for hoth systems according to Table II. The resulting 2.5
momenta and\{ Davydov subbands. The Bloch states andnm (0.5 nm one-dimensional unit cell has 18) residues for
Green'’s functions for a periodic system are given in Appen+ (3,.) helix. The parameters for the transition dipole orien-
dix D. Expanding the linear and the third-order susceptibili-tations and for the couplings between neighboring modes
ties in eigenstates we obtain general expressions for the lifyere taken from our previous wdtkwith the diagonal an-
ear and the third-order susceptibilitigsgs. (D5) and(D7)].  harmonicity Vymmm=2Ummmm=A=-16 cnt.

For small periodic systemgwhen N>1 but L=Na We constructed a momentum space Hamiltonian for the
<k|™) we can use the expansion in wave vectors. Using thénfinite systemsEq. (D2)] and calculated the one-exciton
Bloch eigenstates in Eq&28) and(34) and performing rota- eigenstates. The susceptibilities were calculated using Egs.
tional averaging$Egs.(31) and(37)] we find that only zero  (43) and(45) with the rotational averages obtained from Eqgs.
momenta contribute to the optical response and obtain (39<42). The Green’s functions in the exciton basis were

We have calculated the nonlinear susceptibility of the
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TABLE II. Parameters ofx and 3 helices for transition dipoles.

a helix 3,0 helix
Translation distance alorg(nm) 0.138 0.183
Rotation angle around (deg 100 120
Initial transition dipolé& (—0.271,—-0.309, 0.912 (—0.453,-0.325,0.83D
Initial coordinate of the transition dipol@m) (1.76,0,0 (1.42,0,0
Number of sites in the unit cell 18 3

#The transition dipole is normalized so that the amplitude is 1.

calculated using Eq(D4). Uniform line broadeningy,(q)

mation and three additional elementsxy, xxyx andxyxx

=3 cni! was assumed for all one-exciton states. The scattebeyond that approximation. We calculated the signal ob-

ing matrix was calculated using EqE8)—(E12). A grid of

N=100 momenta was used to evaluate the integral in Eq.

served in the directiok+k,—k; with w3=—w;.
The tensor componenisyy andxyxy of « helix shown

(E9). The relevant energy levels form three well-separatedn Fig. 4 originate from the dipole approximatidryyx is

manifolds of states as shown in Figiab the ground state,

very similar to xxyy and is not shown They show one

the one-exciton, and the two-exciton manifold, The band-strong (longitudina) diagonal peak atw;=w,=1642 cni*

widths of these manifold&etermined byl andA) are much
smaller than the energy gaps between them.

and a weak(transversg peak atw;=w,=1661 cm?! in «
helix. The weak crosspeaks between these diagonal peaks are

The absorption lineshapes of linearly polarized light ofbest seen ixyxy.

both helices calculated using Eg2) are presented in Fig. 3.
Both spectra show two peaks resulting from th(eee lon-
gitudinal and two degenerate transversmnsitions’® The
corresponding frequencies are 1642 and 1661'dar the «
helix and 1646 and 1677 crhfor the 3, helix. The trans-
verse peaks are relatively weaker for thehelix. The CD
spectrum calculated using E@3) has also a two peak struc-

The chirally-sensitive susceptibilities calculated beyond
the dipole approximatiorixxxy and xxyxin Fig. 4) show a
similar pattern. The largest difference is in the crosspeaks:
they are very asymmetric with respect to the diagonal line
and one of them has an amplitude comparable to the stron-
gest diagonal peak.

The corresponding;3 spectra are also shown. The lon-

ture corresponding to the two peaks in linear absorptiongitudinal diagonal peak shows ai=w,=1647 cm? and the
Both peaks have equal amplitudes but different signs: theveaker transverse at; = w,=1677 cm?. Since both systems
longitudinal peak is positive and the transverse is negative.are right-handed helices the information contained is similar:
Linear spectroscopy shows only transitions between théhe 34 helix shows larger separation between the peaks and
ground state and the one-exciton states. Qualitatively newtronger crosspeaks compared to shieelix. The crosspeaks
information is contained in third-order spectroscopy. Weare symmetric with respect to diagoriak = w,) in the dipole
have calculated the CW signal for a collinear configurationapproximation. The corresponding crosspeaks have different

assuming that all fields propagate alomgTaking into ac-

count the dispersion relation between wave vector ampli-
tudes and the frequencies, the susceptibility becomes a funexperimen

tion of three variablegw,, w,,w3) with three independent
tensor elementxxyy, xyyx andxyxy, in the dipole approxi-

—
Absorption

| i 1 i

1640 1660
w (cm™)

1 1
1600 1620 1680 1700

FIG. 3. (Color onling Linear absorptior(top) and circular dichroisntbot-
tom) spectra of the infiniter (black solid and 3 (red dashephelices in the

amplitudes beyond that approximation.
Our simulated peak positions correlate well with
&7 and previous calculatiofd-"® They
show that the crosspeaks carry information about exciton
interactions and distances between them: new terms such as
XXXy give an asymmetric crosspeak pattern, with comparable
amplitudes to the diagonal peaks. This signal also has a com-
plicated dependence on coordinates and should vanish for
achiral systems. However, only one-exciton resonances are
seen in this signal. The four one-exciton Green’s functions
suppress the two exciton resonances contained in the scatter-
ing matrix[see Eq.(45)].

We next consider techniques that reveal two-exciton
resonances. We start with the following 2B, +k,—k3
signal:

w

V4V3V2V1(w3! w)

= f dwlxgli),ysvzyl(wQ, -, w3,00/2 +o 0l2 - w,) (47)

with the optical frequencies tuned according to Figh)5

amide | region(spectra are normalized so that the largest peaks are equaliyVnere bothw/2 and w3 are tuned to the one-exciton reso-

strong.

nances(w also covers two-exciton resonangeshile o’ is
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-1 0 1
Alpha helix : 3, helix
Real Imaginary Imaginary
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g

16001

1700
§ 1650
5

}% .," -

e) T T T 0 T T T

8 1650
S

16001

1700
8 1650
-

P .. . B C . > . ..o . B P )

1600 1650 1700 1600 1650 1700 1600 1650 1700 1600 1650 1700
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FIG. 4. Third-order susceptibility tensog,, ,.,,.,(~w2; =1, w;, 1), of a helix (two left columns and of 3, helix (two right columns as a function ofw;
andw,. Both real and imaginary parts are shown. Two tensor elemgpftsand x,,, are calculated in the dipole approximation. The chirally sensitive tensor
elementsy,,, and x,y,x vanish in the dipole approximation.

much smaller than the one-exciton energy as shown in
Fig. 5b). The resonant terms in the susceptibility for

(@) (b) ©) this configuration are of the formT) (@)
2-exc. = ' ><|M(w—wg)l;\g(—w3)l)\2(w/2+w’)|)\1(w/2—w’). The signal
—_— has the frequencys;—w and in the dipole approximation

becomes
dip) H ’ Va V3 V2 AV _
1-exc. V\,(”4"3"2”1((1)3’w) * IA;M <d)\id)\§d}\§d}\i)l)\4(w w3)
X |;3(603)F>\4>\3,>\2A1(w)I)\le(w) . (48
This signal involves the produdt, ., (0)Z) (@) Which
ground is the two-exciton Green’s function in the exciton bdsise

Eq. (A15)], showing two-exciton resonances along the
axis. By integrating the signal oves,

FIG. 5. (a) Energy level scheme of coupled amide | vibrations. The ground,
one-exciton, and two-exciton manifolds are shown for the amide | band. The

band widths of the one-exciton and two-exciton manifolds are roughly 50 —

and 100 cr, respectively. The energy gaps between them are 1608 cm WV4V3V2V1(CU) = dw3WV4V3V2V1(w3’w)7 (49)
Two experimental configurations are showbr all fields are resonant with

excitonic transitions;(c) w; and w, are nonresonant, bub=w;+w, is

resonant. we obtain in the dipole approximation
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FIG. 6. Third-order signaW,4V3,,2V1(w3,w) [Eq. (47)] of @ helix (two left column$ and of 3, helix (two right columns. W,,,, (dipole approximationand

W,y (chirally sensitive are shown.

W) = | oD, .0 UE,,. (0 = [ a2, (050
VAV 1% 1
2T g (@ (), x 2" (e, At )Ty g, (@),

Age- A
4N w1~ QMM

This signal is_proportional to the scattering matrix and is
scaled by(w;—0)7%, which is an average off-resonant detun-
ing. Thus, both theN and U signals carry information on

the t iton b Qs th i two-exciton resonances: the former shows the two-exciton
ers the two-exciton banthere{) is the average one-exciton Greens function, the latter shows the two-exciton scattering

excitation energy ang is the average dephasingsee Fig. matrix. TheW signal is resonant and should be stronger than
5(c)]. Again the contribution to thls signal comes from termsy

such as T, (@) (=03l (@)l (0=w)l, (), Going beyond the dipole approximation, the rotational
where o, is fixed. Takmg into account tha’& (w1) IS €ON- ¢actors depend on the wave vectors and, thus, optical fre-
stant andl, (w=w,) is not resonani|w—w;- -0[>7) we quencies and the integrations do not lead to such simple
define the S|gnal expressions. However, the resonances should still reflect the
two-exciton states, with different amplitudes and lineshapes.
_ ,,4,,3,,2,,1((1)3,(1)) displayed in Fig. 6 shows two-exciton
Uy (03,0) = (0= 0= Q) mixed with one-exciton resonances. The chirally-sensitive
3 components show peaks at the same positions as in the di-
X Xugvgrgny pole approximation, but different relative amplitudes. This is
(51)  a consequence of the fact that the molecular Hamiltonian is
not affected by the dipole approximation, thus, the reso-
nances remain the same. However, peak amplitudes, con-
where the factorlw—-w;—-Q) is included to approximately trolled by rotational factors are different.
compensate the asymmetry of by(w-w,). By integration WV4V3V2V1(w) for the helices displayed in Fig. 7 show
over wz we have three two-exciton resonances which are better resolved in the
310 helix compared to ther helix. The amplitudes of two-
exciton resonances show dramatic differences when going
— beyond the dipole approximation: the central resonance be-
Uanle(“’) = f dw3UV4,,3,,2,,1(w3,w). (52) comes stronger. This effect is more pronounced fgrh&lix
compared tax helix.
The UV4V3V2V1(w3,w) signals displayed in Fig. 8 show
In the dipole approximation we obtain one-exciton resonances superimposed with two-exciton reso-

which only shows two-exciton resonances.
A different experiment can be performed by detuning
andw, off resonancéw; - >7), but w,+w;=w =20 cov-

(3= w,— w3, 0= wy,w7),
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Alpha helix 3. helix

W(a.u.)

; ! R i ! xxxy ; ! L : ! x.xxy
3200 3250 3300 3350 3400 3200 3250 3300 3350 3400
w (cm™) w (cm™?)

() [Eq. (49)] of @ helix (left) and of 3, helix (right). Four tensor elements are ShoWiyu,, Wiy Wi

FIG. 7. (Color onling Third-order signav_v,, ) Xyyx

(all three in the dipole approximatimmndvv_ixzxyl(chirally sensitive. Solid-real, dashed-imaginary, dotted-absolute value.

nances. These signals decay very slowly with off-resonancments of the linear susceptibility. CD spectroscopy is related
detuning. Thus, measuring the susceptibility over a broado the off-diagonal tensor elements, which vanish for isotro-
frequency range is required to get this signal, as is clearlypic systems in the electric dipole approximation. The CD
seen forU displayed in Fig. 9. These figures demonstrate thesignal is induced by the magnetic dipole or higher electric
scattering matrix weighted by the orientational factors andmultipoles. The magnetic transition dipoles may be neglected
show a complicated picture of two exciton resonances: ongyr extended systems e.g., macromolecules, as will be shown
part of the signal(real in the dipole approximation and pejow.
imaginary beyond jthas a background plateau, whose mag- e considered a model systems of coupled electric di-
nitude is related to the anharmonicity. This can be easily,qes distributed in space. The calculations done for helices
shown by considering the scattering matrix of a single anharz,, pe repeated to other secondary structure motifs sugh as
monic V|prat|onal mode. The dlfferenF distribution of the am- sheets and random coils, and to electronic aggregates. Going
p“tUd?S in thea and the %0 hellces.ls much more cIea_rIy beyond the dipole approximation, which is equivalent to in-
seen in _these two-exciton rglatgd signals compared with thgIuding the positions of the dipoles,
one-exciton spectra shown in Fig. 4. is required for CD. The nonlocal susceptibilities were ex-
panded to first order in the wave vectors: the expansion of
molecular property functions in wave vector accounts for
The linear absorption is described by the electric dipolehigher multipoles.
approximation which is related to the diagonal tensor ele- The wave vector expansion requires additional condi-

VIIl. DISCUSSION

-1 0

Alpha helix

1700

-w, (cm™)
-
o
W
S

3200 3300 3400 3200 3300 3400 3200 3300 3400 3200 3300 3400
w (cm™) w (cm™) w (cm™) w (cm™)

FIG. 8. Third-order signalU,,4,,3V2V1(w3,w) [Eqg. (51)] of & helix (two left columng and of 3, helix (two right columns. U, (dipole approximationU,,
(chirally sensitive are shownw;=1800 cm?* and)=1650 cm™.
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Alpha helix 3, helix

; ! ’ ! ; L i ; L ;
3200 3250 3300 3350 3400 3200 3250 3300 3350 3400
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FIG. 9. (Color onling Third-order signall,,,....,.() [Eq. (52] of « helix (left) and of 3, helix (right). Four tensor elements are shoW, Uyuyy Usyyx
(all three in the dipole approximatignandU,,,, (chirally sensitivg. Solid-real; dashed-imaginary. Parameters are the same as in Fig. 8

tions. The system sizke is limited from above byk,L <1, approach is valid when the coherence size of excitation is
where k, is an optical wave vector. For larger systeins larger than two residues, which is reasonable at ambient tem-
must be replaced by the exciton coherence SiZhe limit, peratures. Several hundreds of residues are required to reach
thus, holds even for large molecular systems including prothe 100 nm length of the helical structure, which validates
teins and electronic aggregates. The system size is also lintke infinite size assumption. Even when the physical size of
ited from below since the magnetic transition dipoles maythe system is larger than the wavelength, the exciton coher-
not be neglected for small systems. The expansiomnce size is typically smaller than the wavelength; this limit
exp(ikr)=1+ikr suggests that the amplitude of the termsis always satisfied for vibrational transitions of polypeptides.
linear ink areL |k|. The local magnetic transition dipoles are Second-order techniques for probing molecular chirality
proportional to the factow/c,*® where v is the speed of are commonly used for isotropic systems. Second harmonic
electron for electronic transitions or the speed of nuclei forgenerationSHG) is not allowed in the dipole approximation
vibrational transitions and is the speed of light. Thus, by symmetry®#° For this reason most studies of quadratic
>v/w; w is the optical frequency. This ratio can be esti- nonlinearities were conducted on macroscopically noncen-
mated by assuming classical energy>=2%4w, wheremis  trosymmetric systemsél:82 However, sum frequency genera-
the mass of particle anflw is its energy. We can then ex- tion (SFQ of isotropic systems in a noncollinear configura-
press this limit ad > v2h/me. For instance, taking values tion is allowed and is used as a probe of molecular
of hydrogen atom with excitation energy corresponding tochirality.®>-# Symmetry of isotropic systems allows one spe-
3000 cmi* we obtainL >0.1 nm for vibrational transitions. cific, Xyz component of the second-order susceptibility ten-
Thus, our approach holds for delocalized excitons with cosor to be finite in the dipole approximation. Noncollinear
herence size spanning several units. configuration leads to breaking of phase-matching condition
Periodicity reduces the problem size considerably: theand, thus, to weak signaﬁfé’.%'87 Even weaker SHG signal
necessary sums reduce from the total number of dipoles towas observed, showing the significance of magnetic transi-
the number of modes in a unit céfbr linearJ aggregate7§ tion dipoles and of electronic quadrupoles. However this
it is just one site& We have derived the response function andSHG signal originating from terms beyond the dipole ap-
the susceptibility for infinite systems. This seems to conflictproximation is not sensitive to molecular chirality.
with the upper bound of the system size. However, the sys- We next consider the symmetry properties of rotational
tem can be assumed infinite as long as the number of cells @verages shown in Table Il with respect to different spec-
very large,N>1, and edge effects can be ignored. We per4roscopies and chirality. Only one independent diagonal ten-
formed calculations on amide | transitions of infinite helical sor componentxx, of the linear response survives the isotro-
peptide. Since the distance between residuesO$ nm, our  pic rotational averaging in the dipole approximation; all off

TABLE IlIl. Symmetry properties of rotational averages with respect to chirality tensor.

Response Form of terms in isotropic averaging Independent nonzero elements Probe of chirality?
1st(dipole) By, XX n
1st(ikr related €ccvyr, (2yx y
2nd (dipole) €0 Xyz y
2nd (ikr related 5”35»2./1 (X)xyy, (X)yyx (X)yxy n
3rd (dipole) B3O XXYY, XYYX XyXy n
3rd (ikr related By €y, (2xxxy, (2xxyx, (2xyxx (2)zxyz (2)zxzy (2)zzxy y
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diagonal component@nd consequently the CD sighalan-  NEE, which are based on a standard exciton Hamiltonian in
ish. Calculating the linear response to first order in wavehe Heitler—London approximation. The parameters of this
vector, requires a third rank rotational averaging involvingHamiltonian are excitation energies of different modes, inter-
the positions of the dipoles. The tensor is then proportionamode couplings(quadrati¢, and anharmonicitiegquartic
to €,,,,—a Levi-Civita permutation symbdf Thus, one couplings, as well as excitation transition dipole and its co-
independentxyz, component is nonzero, relating the propa-ordinate. These parameters may be obtained fabninitio
gation directior(for instancez) and polarizatior{x andy) of  calculations performed on small peptide segméht&®
the optical field and system polarization. They can also be readily obtained from experiment. The ex-
The number of scalar products to be averaged is inticitation energies and intermode couplings are observed in
mately related to the chirality of the system. An achiral sys-linear absorption and CD. We assumed only local anharmo-
tem can be superimposed on itself after spatial inversion paRicities, which give a shift of one double excitation energy
ity operation® thus, the rotational average needs to be thdrom twice the single excitation energy on the same mode.
same for the original and the inverted systems. Odd ranihis can be obtained from pump-probe measurements. Off-
rotational averages which change sign upon inversion mugtiagonal anharmonicities may also be important when inter-
therefore vanish. A chiral system, in contrast, is converted ténode coupling is weal’
its mirror immage by parity operation and the two cannot be ~ The experimental techniques which show two-exciton
superimposed, thus, odd rank rotational averages are nonzei@sonances are most promising since they carry qualitatively
and carry opposite signs for enantiomers. Therefore only chitew information about the system. They also show very
ral systems survive odd rank rotational averagings. Evetrong dependence on the structure of the peptide backbone.
rank rotational averages are not sensitive to spatial inversiohh€ tensor components induced by deviations from the di-
and, therefore, to chirality. Thus, the tensors involving oddPole approximation show strong differences between the two
rank rotational averages are chirally-sensitive. helices. Compared to CD, different exciton states are probed,
Third rank rotational averaging is responsible for thethe signal originates from the anharmonicity and multiple
second-order response in the dipole approximation. The isdransition dipoles with the coordinates define the signal. The
tropic average is then proportional to the Levi—-Civita tensorfrequency integra_ted susceptibilities used in our definitions
leading toxyz tensor element of second-order susceptibility.of the U and W signals[Egs. (47) and (51)] could be ob-
This element is not accessible by the collinear configurationtined in time-domain experiments using short optical pulses
required for phase matching. Similar to CD, this rotationalWhich have a broad spectral bandwidth.
average survives only for isotropic systems with chiral mol-
ecules. Going one step beyond the dipole approximation we
obtain a chiraly insensitive signal coming from fourth rank ACKNOWLEDGMENTS
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orientational averaging which imposes dependence of the
signal on the field wave vectors and includes the positions O);‘PPENDIX B EXCITON BASIS SET CREENS
the dipoles. Fifth rank averaging gives six independent non: ' ’

FUNCTIONS, AND THE SCATTERING MATRIX
zero tensor elementgxxxy zxxyx zxyxx zzxyz zzxzy and

zzzxywhich participate in noncollinear configurations. These  The eigenenergieQ, and eigenvectorsy,,, of the one-

elements now carry information about chirality for the Same,y titon block of the HamiltoniaiEq. (2)], <0IA3m|I:||BAEO>
reasons agyzin circular dichroism.

Phase-matching in the third-order response defines the A
signal propagation direction. Unlike SFG, the collinear con- >} Pnthien = Qetlem. (A1)
figuration, which gives the strongest signal is allowed in the n
third-order response and has three independent tensor ele-
ments:(z)xxxy, (2xxyx and(z)xyxx (fields propagate along exCi
z). The frequency permutation requirement in the suscepti—G(t)
bility implies that they all vanish whem;=w,=w3 (i.€.,
third harmonic generation Noncollinear configuration Bn(t) = > G (1B (0), (A2)
(which can also satisfy phase matchiteads to six nonzero m’
rotational averages where all components participate in the hich satisfies the equation
response. Thus, the third-order response beyond the dipngz q
approximation together with CD constitute the best probes of ~ dGy, (1)

= SmnemtImn(1-8mpn), define the one-exciton basis,

The evolution of a single exciton following an impulsive
tation is described by the one-exciton Green’s function

chirality and carry more information than conventional linear dt * 'E, P Gy () = A1) (A3)
and third-order response within the dipole approximation and "
SFG. This equation can be solved using the exciton eigenvalues

We have derived expressions for the response using the,,. The one-exciton Green’s function is then given by
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Grnal) = 2. Yol (0 (A4) Tye(w) = J dtl ()1 (Dexpliot)

where B [
w_Qg_Qgr + |(’}/§+ ’}/gr) '

(A13)

1(t) = B(t)exp(— it — ) (A5)
) , o ) o By noting that G(w)=i(w-h)™* and G"(w)=i(w—h-V)™,
IS a Gtreen sdfat(Jtr;c_tlotr;]m tthe ?'ger:?t%zt;)azils ‘ti dgphaj— whereh andV are tetradic matriced;(w) can be obtained
ing rate, an is the step functio =0 fort<0 an : : N A1 BB A A1 -
6(t)=1 for t=0] which guarantees causality. using the operator identith™"=B +B_ B ’/'_\)A » WhereB ,
Applying the Fourier transfornigg. (9)] to Egs. (A4) and A are any two operators. Applying this to the Green'’s

and (A5) we obtain the frequency domain Green’s function, functions withA=(1/i)(w—h-V) and B=(1/i)(w—h) we get
the Dyson equation

Grnal0) = 2 Yl o) (A6) G"(0) = G(w) + G(w) (- V)G¥(w). o
with Comparing Egs(A11) and (A14) gives
@)=~ wy V@5, (A15)
o= Qe tiy,

Iterating Eq.(A14) and using Eq(A15) finally gives
The two-exciton evolutiorY,,(t) is similarly described

by the two-exciton Green’s functiofi¥ I(w) ==iV+(=)VG(0)V + (= 1)*VG(0)VG(w)V + -
=-iV(1+iG(w)V) . (A16)
Yo = 2 G (0 Yo (0), (AB)
m’n’ Thus, the calculation of the scattering matrix requires the

. - ) inversion of the matriXD =1+iG(w)V with matrix elements,
which satisfies the equation

dg:l(mm’n’ Dmnij(w) = 5mi5nj +i ,E, gmn,m’n’(w)vm’n’,ij . (A17)
T * 2,,, (hm,m”n” + Vmﬂm’n”)g:;”n”,m’n’ = 5(0 "
m'n In general this is &\V? X A?) matrix, where\ is the number
(A9)  of modes. Computind is equivalent to finding all two-
) . ) exciton states and is costly even for moderafeHowever,
The zero-order noninteractingy=0) two-exciton Green's iy practice the size of the scattering matrix can be reduced
function G can be factorized into a product of one-exciton considerably for typical forms of the matri as shown in

Green's functions Gmnmn (1) =G (VG (1). The actual  Appendix B. This is the main advantage of this method.
Green'’s functionG”, is connected t@ by the Bethe Salpeter

equation

tv APPENDIX B: THE SCATTERING MATRIX FOR
GYM) =Gt + f dt’ f dt,G(t—t")T(t' = t,)G(ty), SPECIAL CASES
0 0

(A10) We consider the following form for the anharmonicity:
Umnm’n’:(Am,n/4)(5mm5nn’+5mn’ Sany) SO that
where we have introduced the two exciton scattering matrix
_F(t’—tl). _The two-exci_ton Gr(_aen’s function and_ the sca_tte_r— ,:,S: |:|o+ E Mé%égémém (B1)
ing matrix are tetradic matrices. The scattering matrix is mn
causal and contains &t’' —t,) factor.
In the frequency domain the Bethe Salpeter equationvith Ay, ,=A, . Intramode anharmonicitied, ,,, represent

(A10) reads the shift of the overtonéBB!|0)) energy with respect to
v 2e,. Intermode anharmonicities),, , with m#n, shift the
G'(@) = G(w) + G (w)G(w), (A1) combination bandB! B!|0)) energies froms,,+¢,. Equation

where the noninteracting two-exciton Green’s funct®tis (A16) then gives for the scattering matrix

given by T (©) = = gy D™H0) ) - (B82)
Grnmn (@) = > ¢§m¢§,nz§§,(w)¢* ,,/,*, ., (A12) We assume that the anharmonic potenkigl, is nonzero
& ren only for short distancen—n| <I., wherel, is an interaction

length of the anharmonicity. The presence &f; in Eq.

and (A17) and A, in Eq. (B2) implies thati—j and m—-n are

Downloaded 08 Aug 2005 to 128.200.11.135. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



134305-16  D. Abramavicius and S. Mukamel J. Chem. Phys. 122, 134305 (2005)

limited by the interaction length.. Therefore, the effective ® (e B )

matrix size of the scattering matrix reduces\t, X M. We  Bn,(t) = 2'f dT’f dr J dtsf dth dt;

may then define a reduced matiix _ _w dt) dgf
2 E 6(t2 - tl)rniné,néni()f’ _ T’)

Bmll,ilz(w) = Drmme i i+1,(@) = midi 1, Mo i
1234
¥ G410 A 1 (B3) X Gy (ta = )Gy, (7~ 1)
"4 33
where the indiced; and |, take the values from interval ) ,
. - XGyr -t ’ -t
[~l¢, ... Ic]. The complete scattering matrix can now be re- Gy, (7 = )Gy (7~ 1)
cast in terms of reduced matrix, X En,(ta)En, (L) En (1), (C3)
Ui i (@) = fm,|l;i,|2(w) =- iAm,m+I1(5_1)mll,iI2-

where we used Eq. (Al15) to change
. Y . 0
_|2néni V”A”éxnénignéni,nzj(TI,_tZ) into Enéni{—wdT,FnAné,néni
All other elements of” vanish. X(7"=7)Gnnr nyi (7' ~t2), then we factorized Gy (7
As a special case we consider a local anharmonicity-tz)EGné,nz(T’—tz)Gni,j(r’—tz) and performed a summation
where we set Ap,=A.6,, (soft-core boson over index j: EjGni’j(T'—tz)Gj‘nl(tZ—tl):Gni’nl(T/—tl)ﬁ(T'

(B4)

approximation.>” Then -1,)6(t,—t;). The variables’ and 7’ denote the times of the
= . — first and the last exciton-exciton interaction, respectively, as
Dmo,io(®) = S+ iGmmii () A;. (B3 shown in Fig. 1b).

We use third-order NEE variables and their Green’s

and the scattering matrix ; , .
g functions to calculate the response function. Using Egjs.

T man(@) = = iAm(D ™m0 m0- (B6) (1), and(C3), we obtain the response function
Thus the excitons interact and scatter only when they 0CCUPY3) (F st ot ool 1t0)
the same site. The interaction radiugds0 andA/ X N ma- ~ ~*ararer 44733220 1
trix D has the size as of .thej one-exciton basis. =ip S Sirs- ) Ars= o) = 1) AF~ Fn)
For large anharmonicities each mode becomes effec- " nanony
tively a two level system and the two excitons then cannot " "
reside on the same sitbard-core bosonsThis can be de- XM rarararn dqﬂf dr' Ty e (7= 7))
scribed by taking the limit\ — o leading t3"° n“n3n2n1n,n,n,n, —o —o Rk
47377271
— -1
menn(w) -~ (g(w))mmnn' (B7) XGn4vn4’1(t4 - f,)GIé,ns(T" - tS)Gné,nz(T, - t2)
XGni,nl(T, -t)+c.c., (CH
APPENDIX C: TIME DOMAIN GREEN’'S FUNCTION vavavoy va, vz, Vo, v
h M 4V3V2V] — 4 3 2 1 .C. t th |
EXPRESSIONS FOR THE THIRD-ORDER Where My oo, = i fnspn e, C-C. deNOtes the complex
OPTICAL RESPONSE conjugate, ande denotes permutation of interaction

events, which are defined byr;t; with j=1,2,3:(3,2,1)

The NEE can be solved by order-by-order expansion oft(2,3,1)+(1,2,3. This makes the response function sym-
the variables in the field using the exciton Green'’s functiongmetric with respect to this permutatidthere are only three
(Appendix A where the optical field and the lower-order terms since the function is inherently symmetric with respect
variables serve as the sources. The first-order variablép the permutation of 1 and)2
Bﬁr?(t), is obtained from Eq(4), The response function in the exciton basis is obtained by

plugging Eq.(A4) into Eq. (C4),

B (D) =i f dt' > Gt =t)E(t). cy
oo 5(V4,V3V2V1(r ataista, Moo, T 4ty)
The second-order variabl&fﬁﬁ:](t), is then obtained from Eq. =ip > dg“(r4)d§3(r3)d§2*(r2)d§1*(r1)
(5), m§4§3§2§1 ¢ ° 2 '
Yﬁq(t) = if d' > g;n.m'n’(t - t,)(gm’(t,)B,(q];)(t,) Xf_x df’f_m dTT§4§3r§2§1(7J, - T,)I§4(t4 -7)
—00 m/n/
+ & (t)BRL)). (C2) Xl (7 =t (7 ~ )l (7' ~ty) +c.c., (C5)

The third-order variable then is finally obtained from E4).  where the nonlocal exciton transition dipoles are given by
in terms of the exciton Green’s functions and the excitonEg. (15) and we have transformed the exciton scattering ma-
scattering matrix trix into the exciton basis,
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F§4§3,§2§1(T): 2 '//§4m4‘//§3m3Fm4m3,n12m1(7)

myMamymy

X ¢§2m2 'ﬁglml . (C6)

APPENDIX D: EIGENSTATES AND SUSCEPTIBILITIES
OF PERIODIC SYSTEMS

J. Chem. Phys. 122, 134305 (2005)

1 ) o
dy(k,q) = —@2 > ek RremiaRy, (@) pl. (D6)
VV R m

The R summation(a discrete coordinate of cgltuns over
the cells,q is also a discrete momentum, whiteis a con-
tinuous vector.

The third-order susceptibility is obtained from E@6)
and is given by,

We consider the system shown in Fig. 2. We use periodiatss ;s (~ Ka— @K, wg,Kz, 05, K,01)

boundary conditions to represent translational invariance and
ignore edge effects. Since the system is translationary invari

ant, the intermode couplindgmgrn=Jmn(R’'—R) now de-
pends on the distance between c@lls-R and on the sites
inside each cellm and n. Note the difference in notation

with the preceding section: now each mode is represented by

a pair of indicesRm.

The one-exciton states of this system are the Bloch

states. Each eigenstagas represented by a pair of quantum
numbersg\, where\ denotes different Davydov’s subbands
in the one-exciton bandthere areM different subbands
with momentumqg. The momentung assumes the values
(-=mla, ... (m/a)—-dg) including O in each dimension, with
the stepd,=27/L andL=Nais the length of the system. The
one-exciton Bloch states are given by

s (D1)

Q) = rexp( iGR) Yam(a),

VY

where%\m(q) are the translationally invariant eigenstates of
the cell given by

> I (@) i (@) = (@) ().

m

(D2)

Here Jpm (@) ==,e79J., v (r); the prime in the sum oven
denotes the summation over sites inside one cell, while th
sum overr runs over cells including =0; \ takes values
from 0 to M—1. J,v(q) is a matrix of the sizeM X M
with indicesm andm’ denoting different sites; each matrix
element depends parametrically on the vector

- (1)1)73

x 2 2 Ak 00)dy3 (- ks, 0a)

Gg-- A1 Mg Mg
xd;é (k21QZ)d)\f(k11q1)
X\ pgry (02030201, 01 + )1y, (A, w4)|;3(Q3, ~w3)

(D7)

_— 27 8wy — w3~

X1\, (G2, w)1) (0, @p) +C.C/,
where the scattering matrix is given by

I\ g, (02,003,002, 01 @)

> expliqsR,+i0sR3—i0.R, —ig;Ry)

12
VR4 Ry

X 2 P (02 U (G TRy, Rym, (@)

my...my

X Y m (A2 Y m, (0.

(D8)

FR4m4,__,lel(w) is the real space scattering matrix identical
to Eg. (A16), where site indices were changed into the
pairsRm. The reduced expression of the scattering matrix is
given by Eq.(E7). These are the most general expressions
for arbitrary oriented periodic system. The directions are
given in the molecular frame. The scattering matrix can be
reduced considerably as shown in Appendix E.

When the system size is much larger than the optical
wavelengthky|L>1, R andq may be treated as continuous

In the frequency domain the one-exciton Green's func~ariables and the summations oW®mndq in Egs.(D5) and

tion is obtained from Eq9A6) and (A7),
E 2 @R R Y @) e (DI (0 ),

Grmpr/m (@) =

(D3)

2’ indicates the sum over different Davydov’s subbands with

the exciton Green’s function,
i
w=0(q) +in(q)

(9, 0) = (D4)

Using the eigenstates and Green'’s functions of perlod|c

systems in Eq(12) we obtain the linear susceptibility,
(l) (—ky—

V2 r1

X2, 2 A2k, 9)dyE (K, Q)1,(G, @) + c.c!
q A\

wo;K1wq) = 271 8w, = wy)

(D5)

where

(D7) can be changed into integrations. In this case the equa-
tions are considerably simplified. The linear susceptibility is

(- K- wl)é(kz_ kl)

X ) 'di2(kp)dyr (ko)) (kg w) + C.C!
A

(1)
Xoyv,

wy;Kiwy) = (2m)% Swy =

(D9)

whered} (k) =d;(k ,k):y]F/Er’,ne‘k"’m%m(q)/ur”n are the transi-
tion dipoles of infinite system between different continuous
exciton bandsl, (g, w) is the exciton Green'’s function in the
exciton basi§Eq. (D4)].

For the third-order susceptibility we obtain

Xy4 yl( Ka,— wg; K3, 03,Ko, w0,K1, 1) = 271 (w4 — w3 — w5

~0)Puw 2 BRKIA(- kA (DA} (k)

Y

XTIy, 2, (Ko, = k3K Ky, 01 + @)
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X1, (kg @4)1 (= kg, = w3)l, (Ko, @)l (Ky,01) + C.C! Dr mr o (6,@) = &t Oy S
(D10) +iGr mmr /(A 0) Ay (1),
This limit may be achieved for pure oriented semicon- (E5)

ductors or molecular crystals at cryogenic temperatures

where the exciton coherence size is larger than the waveNote that we are using a mixed momentum and real space

length. The opposite limiting case of the small systems igepresentation, which allows us to control the expressions

discussed in Sec. VI. using the interaction distandg The transformation with re-
spect tor, andr, does not simplify the expression since
these coordinates are not translationally invariant in our ex-

APPENDIX E: THE EXCITON SCATTERING MATRIX IN pressions oD. The exciton Scattering matrix in this mixed

MOMENTUM SPACE representation now reads

Computing the general scattering mat[Eg. ([}8)] is Frl,m,n;rz,m’,n’(va) _ _iAm,n(rl)(B(Qrw))r_lmn-r -
very costly for a large systems. Using a finite interaction MM,
radius |, and periodicity we can reduce the problem size (E6)
below M...

This expression is illustrated in Fig(t8. Here the initial
-exciton pairm’ andn’ is separated by the distancge
n—Rpy Within interaction radius, which is established by
mn(r2). The pair is scattered by the matidkto create a

Equations(B2) and (B4) define the exciton scattering o
matrix by the reduced matri® which depends og [see Eq. -R
(B3)]. Using the representation of Fig. 2, the two—excitonA
Green’s function in the coordinate representation has th ew pair of excitons am andn separated by =R, -R,.

form ngvan”?R%m"R.Q”’(w‘)’ wherem... are |nd|ces-of sites in The distance between two excitons after scattering is also
cells andR, .. labels different cells. The coupling and the \ithin the interaction distance as required By, (r,). The
anharmonicity matrix are now translationally invariant and yistance between the two exciton pairs is not important be-
can be given _aém,m,(r) andAp, v (r), respectively, _Where cause of translational invariance.

defines the distance between the cells. We are interested in  gq; the scattering matrix in the eigenstate representation

the Green's function wherR,=Rp+r; and Ri=R{+I>  \ve obtain
whenr; andr, are within interaction radiuk. (otherwise the

quartic couplingV is zerg. Thus, we define the reduced Ty oo (Ga GGy O @)
A IR A IS D

Green’s function ngmyrln;R%m,’rzn,(w)
:ngm,(F{mﬂl)n%m,V(Rr/nﬂz)n,(.w) and expand it in the basis of = Blq,+ay) (A0 D expligar” —iqyr’)
one-exciton eigenstates given by &), “le<rr"<l,
ER R m o (@) = iz g(@+a" ) (Ry=Rp)=ig’ (ry=ry) X 2 E;4m4(q4)a:\3m3(q3)fr”m4m3;r'mzml(qz +q1,)
mMr R mAron quq, my. ..My
X Qe (@07, 0). (E1) X ihm (A2 Y,m (A1) - (E7)
where the unit cell's Green’s function The total momentum before interaction and after interaction
L - , , is conserved.
Omnm ' (4,9", @) —2 @ (A )i (d,9", @) The calculation of the response functipBq. (45)] re-
“_ B quires the scattering matrix for zero momentum. The final
X (@0 (") (E2)  expressions are:
and = -
) gm,n;m',n’(qv_ q,w) = 2 @) n(— )
i o
I)\)\/(q!qliw) = ’ . . ’ —x —
®=Q\(a) = (") +in(a) +in () X Ty (0, = 0, @) iy (@) iy (= ),
(E3) (E8)
is a two-exciton Green'’s function in the frequency domain.
Taking into account the translational invariance with re- 1
spect toR,, and R/, we can transform the two-exciton grl,m,n;rz,m’,n’(w):_z e_iq(rz_“)gm,n;mr,nf(q,—q,w),
Green'’s function to momentum space, 1% q
_ 1 _ (E9)
Grpmnrpm (0, 0) = =2 iy
v a1 _
><gm,n;m’,n'(quq - ql!w)' (E4) Drl,m,n;rz,m’,n'((’-’) - 5r1,r25m,m’ 5n,n’
We can now write the transformet2, x M2, matrix D, +iGr mmrpm (@A (r2),  (E10
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T ; =, -1 .
I‘rl,m,n;rz,m’,n’(“’) == |Amn(r1)(D(w))r1’myn;r2,mrynry (E1D) 5511'1'___’y1(l'4t4, ol 1t1) =2 E <(9(r4 - rn4)- : ‘5(!'1 - rnl)
Ng...Nq
and the Green’s function of the unit cell were given by Eq. XM Y441y T (tystantar)
(E2). The scattering matrix of the eigenstates is Mg Ny/*NaNghhy 143242 T4 L
(F5)
Do (@) = 2 2! P gmg¥ngmgl crmymyrrmym, (@) and we have defined an auxiliary function
—le<r'r"<l, Mg My
T T//
" o r| s ’
X’/’)\Zmzlr/f)\lml- (ElZ) jn4n3n2n1(73v72171): 2 def de
nyngnang 0 0
The matrix sizes areM?(2l.+1) X M?(2l.+1), the same Lo (= o)
size as for the inversion problem. These are significantly NNgMpny s 7s
i i ! T !
reduced compared to nonperiodic systems. XGn4n;1( - )Gnéns( 5- 1)
XGnénz(TZ - T,S,)Gninl(Tl - 7). (F6)

APPENDIX F: TIME-DOMAIN OPTICAL RESPONSE . . .
FUNCTIONS Here t;=t;—t; is the time delay between two consecutive

interactions.7, and 7; are the delay times between exciton
Time-domain expressions are useful for experiments perscattering events and the polarization measuremept,
formed with ultrafast, well separated, optical pulses. The se=17", 7.=t,— 7 as shown in Fig. (b). Since the time vari-
quence of interactions can then be defined and different tect@bles can be rearranged @g ty,=tss+1ts, tag=tyg+tz+1y,
niques can be determined by their time ordeffhghe time  each response function now depends on three time delays

ordered optical response is defined by between different interactions;s, ts,, andt,;.
The time intervals of EqgF3)—(F5) and their relation to
PO (r 4ts) the actual interaction times are shown in Figp)1The signal
) 4 s ) can be interpreted simi!arly to Fhe frequency do_main_suscep-
=3 f drsf dfzf dflf dtsf dtzj dt, t!bl|lty: there are th_ree interactions with the _optlc_:al fields at
— o e o times t; <t,<t; which generate three quasiparticles repre-

sented by one-exciton Green’s functioﬁﬁivnl, Gné,nz, and
+ . L. . .
Gné’n3 (two having positive oscillation frequency and one

having negative These quasiparticles evolve in time and
(FD  two of them with the same phase are scattered by, nn:
shifting the particles to the positiomg andn;. The scatter-

ing is such that one of the two new excitons corresponds to
the exciton generated by the field. The other exciton gener-
tes the optical response.

The time evolution is followed explicitly and the reso-
nant terms can be selected according to wave vectors of op-
tical fields and time ordering of the interaction. The three
different time evolutions for the time ordered response func-

S(Vi), vy (T ataiTata P oo, T )E, (Fa,ta) B, (Fa ) E,, (st

wheret; now stands for the first interactioty, for the sec-
ond, andt; for the third in chronological order.
Equation.(C4) cannot be used directly since the time
arguments have to be rearranged in chronological order. T%
that end we separate the expression into three terms:

3 _ ok
S(V4)"__'V1(r4t4, cealqty) —SVL..”Vl(r4t4, N

+SK (Pt ... Fty) tions are showed in Fig. 10. o
4t The dependence on the wave vector of the optical field
+S'§L','___V1(r4t4, .ofqfp) +ce., can be obtained by applying spatial Fourier transform to the

response function. The expressions are considerably simpli-

(F2) fied in eigenstate basis where we get

Where —_ 7-2 n T’S, ! 1 !
Tttty (7372 71) = ) drg . A7l e, 6,6, (75 = 7)
K L
SVL’___’Vl(r4t4, ,rltl)—2| 2 <5(r4_rn4)"'5(r1_rnl) o , .
Ng...Nq Xl §4(Ts)| 53(7-3 - Ts)l §2(TZ - TS)
XM 00 Tngngngn,(tan taz tad) Xl g (1= 72) (F7)

(F3) and

S (Katg, ... Kt
Sty Tit) =20 3 (S =) 8y =Ty ol dlD)

e =2 X <d§j(k4)d§§*(— ks)dg(— ko)dgl (k)
XM 1) Tngngngn, (tazrtag tar), b by
(F4) X Tg .66, tan tazta2), (F8)
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FIG. 10. (Color online The Green'’s functions and the
scattering matrix representing three contributions to the
time-domain third-order respongedopted from Ref.
64).

k,+k,—k,

Kit1)

=21 2 (d(k)d (- ka)d@2(k)dg (- ky)
&p- &1

k
SV‘llI,. . "Vl(k4t4' e

X Te o8, (taz taz tar), (F9)
K
S (Kt ket
=2 3 @k kI k)
&6
o/ é4§3§zfl(t437 ta2, t41) ) (F10

with k,=-k3—k,—k; which reduceg from fourfold summa-

and in k||| technique(k4= _k|||)
W, (Ka, kg, Ko, Ky; @, 3)

Vg, V3Voly
=2 3 (d2(kgd2- ko)diZ (- kp)d2 (— ky)
&1

“ do' , ,
Xlgld) |5 Tagen(@)Tes(@)

X Izga(w’ - w3)0(wy— ).

The function8(w)=i(w+iy’)! is taken in the limity,> '

>0.
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