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7.1 Introduction

Consider two interacting sub-systems with nonoverlapping charge distrib­
utions. How can the properties of the combined system be expressed in
terms of properties of the individual sub-systems alone? This general prob­
lem appears in a wide variety of physical, chemical, and biological systems
[Joester 2003, Stone 1996, Moore 2001]. In this chapter we provide a prescrip­
tion for addressing this issue by the computation of (i) response functions
and (ii) correlation functions of spontaneous fluctuations of relevant degrees
of freedom in the individual sub-systems ..

The computation of response and correlation functions is greatly simpli­
fied by using the density matrix in Liouville space [Mukamel 1995]. Hilbert
and Liouville spaces offer very different languages for the description of non­
linear response. Computing dynamical observables in terms of the wavefunc­
tion in Hilbert space requires both forward and backward propagations in
time. In contrast, the density matrix calculated in Liouville space should
only be propagated forward. The choice is between following only the ket,
moving it both forward and backward, or following the joint forward dynam­
ics of the ket and the bra. Artificial time variables (Keldysh loops) commonly
used in many-body theory [Haug 1996] are connected with the wavefunction.
The density matrix which uses the real laboratory time throughout the calcu­
lation offers a more intuitive picture. Wavefunction-based theories calculate
transition amplitudes, which by themselves are not observable. The density
matrix, on the other hand directly calculates physical observables. Moreover,
dephasing processes (damping of off-diagonal elements of the density matrix
caused by phase fluctuatio:p.s) which are naturally included into the Liou­
ville space formulation may not be described in terms of the wavefunction.
The "causality paradox" of TDDFT [Gross 1996] can be clearly resolved in
Liouville space [MukameI2005].

In this chapter we present a method for expressing the joint response
of two interacting sub-systems in terms of their correlation and response
functions. This factorization appears quite naturally in Liouville space. The
pth order response of the individual systems is a linear combination of 2P

distinct (p + 1)-point correlation functions known as Liouville space path­
ways [Mukamel 1995], which differ by whether the interaction at each time
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is with the bra or the keto The pth order contribution to the intermolecu­
lar interaction requires a different linear combination of these same Liou-•

ville space pathways of both molecules. The 2P Liouville space pathways
are conveniently combined into p + 1 generalized response functions (GRFs)
[Cohen 2003, Cohen 2003b, Cohen 2005, Chernyak 1995]. One of the GRFs
is the ordinary (causal) response function. The other GRFs represent spon­
taneous fluctuations, and the response of such fluctuations to a perturbation,
and are therefore non-causal. The complete set of GRFs is calculated using
generalized TDDFT equations in Liouville space.

A direct DFT simulation of molecular complexes by treating them as
supermolecules is complicated because it requires nonlocal energy functionals
[Hult 1999, Lein 1999, Kohn 1998]. The response approach makes good use
of the perturbative nature of the coupling and recasts the energies in terms
of properties of individual molecules which, in turn, may be calculated using
local functionals [Dobson 1994b, Misquitta 2003].

7.2 Quantum Dynamics
in Liouville Space; Superoperators

In this section we introduce the notion of Liouville space superoperators and
review some of their useful properties. A detailed discussion of superoperators
is given in [Mukamel 2003]. The elements of an N x N density matrix in
Hilbert space are arranged as a vector of length N2 in Liouville space. An
operator in Liouville space then becomes a matrix of dimension N2 x N2,
and is called a superoperator. Two special superoperators, ih and AR, are
associated with every Hilbert space operator, A, and implement "left" and
"right" multiplication on another operator X: ALX {:} AX, ARX {:} X A.
These relations are not written as equalities because X is a vector in Liouville
space and a matrix in Hilbert space.

It will be useful to define the symmetric A+ = ~(AL + AR) and antisym­
metric A - = AL - AR combinations. Hereafter we shall use Greek indices
to denote superoperators AV with 1/ = +, -. Using ordinary Hilbert space
operators we get

(7.1)

A product of + and - superoperators constitutes a series of nested commu­
tators and anti commutators in Hilbert space. It is easy to verify that

(7.2)

We now consider products of superoperators that depend parametrically
on time. We introduce a time ordering operator T in ~iouville space, which
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orders all superoperators to its right such that time decreases from left to
right. This natural time-ordering followschronologically the various interac­
tions with the density matrix. We can freely commute operators following a
T operation without worrying about commutations because in the end the
order will be determined by 7.

The expectation value of any superoperator, AI/, is defined as,

(7.3)

where Peg is the equilibrium density matrix. For any two operators A and 13,
we have

(7A +(t) B - (t')) = 0 if t' > t . (7.4)

(7A+(t)B-(t')) is thus a retarded (i.e., causal) function. Equation (7.4) fol­
lows from the definitions (7.1): A "-" superoperator corresponds to a com­
mutator in Hilbert space, so for t < t', (7A+(t)B-(t')) becomes a trace
of a commutator which vanishes. Similarly, the trace of two "-" operators
vanishes:

(7A - (t)B- (t')) = 0 for all t and t' . (7.5)

(7.6)

We next introduce the interaction picture for superoperators. To that end,
we partition the Hamiltonian, fI = fIo +fIb into a reference part, fIo, which
can be diagonalized, and the remainder, interaction part, fI1. We define the
corresponding superoperators, il-, as il- = ila+ ill' The time evolution
of the density matrix is given by the Liouville equation:

ap iv- A- - --/I. Pat - fi .

The formal Green function solution of (7.6) is pet) = U(t, to)p(to). Note that
the time evolution operator, U, acts only from the left, implying forward
evolution of the density matrix. The total time evolution operator

(7.7)

can be partitioned as:

where Uo describes the time evolution due to fIo

{ . }
v 1 v

Uo(t, to) = e(t - to) exp -~1ta(t - to) ,

and U1 is the time evolution operator in the interaction picture

(7.8)

(7.9)

(7.10)
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The time dependent superoperator .A(t) in the interaction picture, denoted
by a .AI) is defined as

(7.11)

The equilibrium density matrix of the interacting system can be gener­
ated from the noninteracting density matrix Po by adiabatically switching
the interaction HI, starting at time t = -00: P~q = Ci](O, -oo)po. In the
wavefunction (Gell-Mann-Low) formulation of adiabatic switching, the wave­
function acquires a singular phase which must be cancelled by a denominator
given by the closed loop S matrix [Negele 1988]; this unphysical phase never
shows up in Liouville space.

For a set of operators {Ai}, the pth order generalized response functions
(GRF) are defined as

(7.12)

where (.. ')0 represents a trace with respect to Po, and the indices Vn = + or
-, and p' denote the number of '-' indices in the set {Vp+1 ... VI}' There are
p + 1, pth order GRFs, having different number of '-' indices. Each member
of the pth order GRF represents to a different physical process. For example,
there are two first order GRFs,

Rhh (t2, tl) = (t.Ah (t2)At (tl))O

+_ -1 ~ v+ v_
Ri2il(t2,t1) = -n(TAi2(t2)Ail(tl))0.

Recasting them in Hilbert space we have

(7.13a)

(7.13b)

Rh~ (t2, td = IiiO(t2 - tl) [Tr{ Ai2 (t2)Ai1 (tl)po} - Tr{Ai2 (t2)Ai1 (tl)PO}]

= Ii-IO(t2 - tl)ImJ(t2, tl) (7.14a)
++ ~ ~ ~ ~ ~ ~

Ri2i1(t2, tl) = Tr{Ai1 (tl)Ai2(t2)po} + Tr{Ai2(t2)Ait (tl)po}
= ReJ(t2, tl) ) (7.14b)

where J(t2,tl) = Tr{Ai2(t2)Ai1(tl)pO}' With the factor Ii-I, the GRF R+­
has a well defined classical limit [Mukamel 2003]. R+- is causal [see (7.5)]
and represents the response of the system at time t2 to an external pertur­
bation acting at an earlier time tl. On the other hand, R++ is non-causal
and denotes the correlation of A at two times. Each '-' index corresponds
to the interaction with an external perturbation while a '+' index denotes
an observation. In general, time-ordered Liouville space correlation functions
with one '+' and several '-' indices, R+-, R+--, R+---, etc., give response
functions' all '+' correlation functions of the form R++ R+++ R++++ etc, , , ,.
give ground state fluctuations, wheras R++- , R++-- , R+++- , etc. represent
changes in the fluctuations caused by an external perturbation.
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7.3 TDDFT Equations of Motion for the GRFs

Time dependent density functional theory is based on the effectiveone-body, <

Kohn-Sham (KS) Hamiltonian [Gross 1996],

~ /1,2 '12
HKs[n] = --- + Vext(rl) + VH[n](rl, t) + vxc[n](rl, t) ,2m

where the four terms represent the kinetic energy, the nuclear potential, the
Hartree, and the exchange correlation potential, respectively.

We now introduce the reduced single electron density matrix p [Tretiak
2002, Chernyak 1996, lling 1980, Blaizot 1986,Berman 2003, Coleman 2000]
whose diagonal elements give the charge distribution, n( rl, t) = p( rl, rl, t)
and the off-diagonal elements, p(rl, r2) with rl =f r2, represent electronic
coherences. We further denote the ground state density matrix by pGs.

The GRF corresponding to the charge density may be calculated by solv­
ing the time dependent generalized KS equation of motion for p [Mukamel
2005, Harbola 2004],

ili:t Dp = [irKS, p(t)] + Vket(t)p(t) - p(t)Vbra(t) ,

where Dp(rl, r2, t) = p(rl, r2, t) - pGS(rl, r2) is the change in the density
matrix induced by the external potentials Vket and Vbra. Equation (7.16)
differs from the standard TDDFT equations in that the system is coupled to
two external potentials, a "left" one Vket acting on the ket and a "right" one
Vbra acting on the bra.

We next define the new variables,

1
v_(r, t) = 2" [Vket(r, t) + Vbra(r, t)]

1
v+(r, t) = 2" [Vbra(r, t) - Vket(r, t)] ,

and the diagonal matrices

(7.17a)

(7.17b)

We further introduce two matrices (oper?-tors) in'real space V_ and V+ with
elements v_(rl, r2) and v+(rl, r2), respectively. Dp serves as a generating
function for GRFs, which are obtained by a perturbative solution of (7.16)
in v_(r,t) and v+(r,t) using irCD) = irKS as a reference, as we shall shortly
see. The reason for assigning the + and the - subscripts to v in (7.17a)
and (7.17b) is to keep track of the perturbative terms that arise from the
external potential that couples to the density matrix through commutators
and anticommutators.

Equation (7.16) can be recast in terms of superoperators,
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(7.19)

where

(7.20)

The pth order GRFs XVp+l",Vl, are computed as the kernels in a pertur­
bative expansion of the charge density fluctuation, oneTl, t) = 0p( Tl, Tl , t),
in the applied potentials, V+ and V_. Adopting the abbreviated space-time
notation Xn = (Tn, tn), we get

(on+(Xp+l))(P) = J d3rp J dtp ... J d3rl J dtl

XVp+IVp...Vl(Xp+l, Xp,'" ,Xl) VVp(Xp)VVp_l (xp-d ... VVl (xd. (7.21)

It follows from (7.16) and (7.21) that

X"H···"(xp+1 ... xIJ ~ ( ~i)"'(Ton"'" (Xp+I) ... On" (Xl))
(7.22)

where p' denotes the number of "minus" indices in the set {lIp+l ... lid· To
first order (p = 1), we have

X++(Xl' X2) = (Ton+(xl)on+(x2») (7.23a)

= 8(tl - t2)(on+(xl)8n+(x2») + 8(t2 - h)(8n+(x2)on+(xd)
-1 ~

X+-(Xl,X2) = /t(T8n+(xd8n-(X2» (7.23b)
-1

= /t8(t1 - t2)(8n+(Xl)on-(X2») .

The standard TDDFT equations which only yield ordinary response func­
tions are obtained by setting Vket = Vbra so that V+ = 0 in (7.19). By allowing
Vket to be different from Vbra we can generate the complete set of GRF. The
ordinary response function X+- represents the response of the density to an
applied potential v_ [Mukamel 1995]. Similarly, x++ can be formally ob­
tained as the response to the artificial external potential, V+, that couples to
the charge density through an anticommutator. X++ represents equilibrium
charge fluctuations and is therefore non-retarded.

7.4 Collective Electronic Oscillator Representation
of the GRF

Since the TDDFT density matrix, pet), corresponds to a many-electron wave­
function given by a single Slater determinant at all times, it can be separated
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(7.27

(7.2{

(7.26c:

(7.26a:

(7.26b:

bp(t) = ~(t) + K(€(t» .

The second order term in density fluctuations is,

with fxc the first order exchange correlation kernel in the adiabatic approxi
mation where it is assumed to be frequency independent (see Chap. 1)

The elements of ~ (but not of bp) can thus be considered as independen1
oscillator coordinates for describing the electronic structure.

We next expand HKS in powers of bn(r, t):

into its electron-hole (interband) part ~ and the electron-electron and hole·
hole (intraband) components, K(~) [Chernyak. 1996, Thouless 1961].

Note that p( t) is the KS density matrix which corresponds to a noninteractin~
system. It follows from the idempotent property, p2 = p, that k (and bp) h
uniquely determined by the interband part ~ [iling 1980, Chernyak 1996].

with the kernel (in the adiabatic approximation),

(7.29

A quasiparticle algebra can be developed for ~ by expanding it in th
basis set of collective electronic oscillator (CEO) modes, ~a' which are th
eigenvectors of the linearized TDDFT eigenvalue equation with eigenvalue
Qo: [Chernyak 1996, 'Iretiak 2002].

(7.30

The linearized Liouville space operator, L is obtained by substitut
ing (7.26) into (7.16),
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(7.31)

iT~~and iTr~are diagonal matrices with matrix elements

H~~[n](rl,r2) = 5(rl - r2)H~o~[n](rl) (7.32a)

H~l~[~a](rl' r2) = 5(rl - r2)

x Jd3r3 {fr2 ~ r31 + !xc(r2, r3) } t;",(r3, r3) (7.32b)

The eigenmodes ~a come in pairs represented by positive and negative values
of a, and Weadopt the notation, il-a = -ila and ~-a = ~l.Each pair of
modes represents a CEO and the complete set of modes ~a may be used to
describe all response and spontaneous charge fluctuation properties of the
system.

By expanding ~(t) of the externally driven system in the CEO eigenmodes,
~(t) = 2::a za(t)~a, where a runs over all modes (positive and negative) and
za are numerical coefficients, and substituting in (7.25) and (7.24), we obtain
the following expansion for the density matrix

1
5p(rl, r2, t) = L tLa(rl, T2)Za(t) +"2 L tLa,{3(rl, r2)Za(t)z{3(t) + ... (7.33)

a a,{3

h

where we have introduced the auxiliary quantities, fla = ~a and fla{3 =
(2pGS - I)(~a~{3 + ~(3~a)'

Upon the substitution of (7.24) and (7.25) into (7.16) we can derive equa­
tions of motion for the CEO amplitudes za which can then be solved succes­
sively order by order in the external potentials, VVI• To second order we get

i~dz~(t) = ilaza(t) + K-a(t) +L K_a{3(t)z{3(t) ,
t {3

with the coefficients,

K-a(t) = L / d3Tl vv(rl, t)tL~a(rl)v

"/3' vK-a{3(t) = L-t d Tl vv(rl, t)tL-a{3(rl) .
v

(7.34)

(7.35a)

(7.35b)

Here tL;;(rl) = tLa(rl, rl), Jt;;{3(rl) = fla{3(rl, rl), tLt(rl) = il-a(rl, rl) =
1 hGS h h + 1 hGS h h h h h
'2 (2p -I)~a(rl, rl), andtLa{3(rl)= tLa{3(rd - '2 (2p -I)(~a~{3-~{3~a)(rl, rl)'

We further expand za = z:;? + Z~IV2 + ... , in powers of the external
potentials, where ZVIV2 ••.Vp denotes the nth order term in the potentials,
VVI VV2 ••• vVp' By comparing the terms in both sides, we obtain equations
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of motion for Z~l ... l/p for each order in the external potential. This gives to
first order,

.~dz~l (t) n 1/1 () K () ( )11£ dt = HaZa t + -a t . 7.36

,The solution of (7.36) gives the generalized linear response functions

, "~++(r1tl' r2t2) = O(ti - t2)LJ.la(rl)fi_a(r2)e--k.f.?a(t1-t2)

with Sa = sign(a). Higher order GRF can be obtained by repeating this
procedure [Harbola 2004].

We further consider the generalized susceptibilities defined by the Fourier
transform of the response functions to the frequency domain,

(8n+(rp+l,Wp+I)(P) = J d3rp i:dWp... Jd3rI i:dWI
VI/p (rp, wp) ... VI/I (rl, WI )Xl/p+l ... l/l (rp+1Wp+l, rpwp, ... ,rIWI) , (7.38)

(7.37a)

(7.37b)

. + O(t2 - tl) L J.la(r2)J1_a(rl)e-k.f.?a(t1-t2)

+ 1 ""a .. X -(rItl;r2t2) = -"h0(tl-t2) L...-SaJ.la(rl)J.l_a(r2)e--k.f.?O(t1-t2),a

(7.39)

(7.40b)+-( ).x( ) "" SaJ.la(rl)J.l-a(r2)X rIwI, r2w2 = U WI + W2 L...- [l"W2 + a - 1rJa

The CEO representations of.the ordinary response functions to third order
were given in [Thetiak 2002] and the GRF to second order were given in
[Harbola 2004],

The linear GRFs, x++ and X+- , are connected by the fluctuation-dissipation
relation, .

X++(T,W; T2 - w) = coth (B~) X+-(T,W, T2 - w) . (7.41)

To linear order, the ordinary response function x+- provides the complete
information. However such fluctuation-dissipation relations are not that ob­
vious for the higher order response functions [Wang 2002J and the complete
set of GRF are required to describe all possible fluctuations and response
functions of the charge density.
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7.5 GRF Expressions
for Intermolecular Interaction Energies

We now show how the GRF may be used to compute the energy of two inter­
acting systems a and b with nonoverlapping charge distributions. Wavefunc­
tion based theories for intermolecular forces (polarization theory, symmetry­
adapted perturbation theory and many-body symmetry-adapted theory) are
well developed [Jeziorski 1994].The response function based formulation pre­
sented here can be applied to study non-equilibrium effects (e.g., when the
two sub-systems are at different temperaturs) as well as coupling to nuclear
degrees of freedom [Cohen 2003]. At time t = -00 we take the density ma­
trix to be a direct-product of the density matrices of the individual molecules
(sub-systems), pg and pg, p[fs = pgpg. The Liouville space time-evolution op­
erator transforms this initial state into a correlated state. The GRF allow us
to factorize the time-evolution operator into a sum of terms that individually
preserve the purity of the direct-product form.

We start with the total hamiltonian of two interacting molecules if>.. =
ifa +fh+AHab, where Ha and Hb represent the Hamiltonians for the individ­
ual molecules and their coupling if ab is multiplied by the control parameter
A, 0 < A < 1, where A = 1 corresponds to the physical Hamiltonian. Primed
and unprimed indices will correspond to molecules a and b, respectively. The
charge densities of molecules a and b at space points r and"r' will be denoted
by na (r) and rib (r'), respectively. H ab is the Coulomb interaction

Hab = - Jd3rJd3r' vee(r - r')na(r)nb(r') - LVee(Rk - Rk' )ZkZk'
k,k'

+ L Jd3r' Vee(Rk - r')Zknb(r') , (7.42)
P,k

where vee(r - r') = 1/1r - r'l and Rk (Rk') represents the position of kth
(k'th) nucleus in molecule a (b) with charge Zk (Zk'), The symbol Lp rep­
resents the sum over single permutation of primed and unprimed quantities
together with indices a and b. The interaction energy of the coupled system
is obtained by switching the parameter A from 0 to 1 [Kohn 1998]

(7.43)

Here (... )>.. denotes the expectation value with respect to the A-dependent
ground state many-electron density matrix of the system, ,0>... We next par­
tition the charge densities of both molecules as, na (r)= ria(r) +8na (r ),
nb(r')= rib(r') +8nb(r'), where n is the average density, na(r) = p~(r, r),
and nb(r') = pg(r', r'). Thus the total interaction energy can be written as,

(0) (I) (II) ;
Eab = Eab +Eab + Eab , where
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E~~) - -!d3r! d3r' vee(r - r')na(r)nb(r') - LVee(Rk :.- Rk' )ZkZk'
. k,k'

+L ! d3r' Vee(Rk - r')Zknb(r') , (7.44)
P,k .

is the average electrostatic energy, and the remaining two terms represent
the effects of correlated fluctuations.

E~~) = -lId>"! d3r! d3r' vee(r - r') [na(r) (8nb(r')>. + nb(r')(8na(r)>.]

+L ! d3r' Vee(Rk - r')Zk(Rk)(8nb(r')>. (7.45a)
P,k

E~~I) = -lId>] d3r! d3r' vee(r - r')(8na(r)8nb(r'))).. . (7.45b)

The expectation values (8na(rl)>. and (8na(rl)8nb(r~)>. can be com­
puted perturbatively in >..flab in the interaction picture. The interaction >..fla~
is switched on adiabatically to generate the interacting ground state density
matrix in terms of the non-interacting one. Substituting for flab from (7.42),
and expanding in powers of>"yields a perturbation series in terms of the pth

order joint response function, using x~ = (r~, tn),

R(p) ( , ') - (,r.r~I +( )[~I ( ) ~I ( , )]-a X, XP' Xp'" Xl, Xl - .I. una X na Xp nb Xp

... [n~(xI)nl(x~)]-)o. (7.46)

Making use of (7.2) and the fact that the initial density matrix is a direct
product of the density matrices of the individual molecules, R(p) can be
factorized in terms of GRFs of the individual molecules. For example, the
first order joint response function is:

R~I)(X,Xl'X~) = ('t8n~+(x)[n~(xI)nl(x~)]-)o

= Th {T8n~ +(x)[n~(~l)nl(x~)]- p~pg} (7.47)

Substituting n~Y(x) = n~(x) + 8n~Y(x), nlY(x') = nb'(x') + 8nbY(x'), and
using the identities, (8n~Y(x))Oa = 0 and (n;t(x))Oa = na(x), we obtain

(7.48 :

where x;t- represents the linear order GRF for molecule a [see (7.22)). Sim·
ilarly, second and higher order joint response functions can be expressed ir
terms of the GRFs of the individuals molecules.

In the present work we have ignored the contributions due to the interac
tions with nuclei in (7.42). The quantities (8na(rl)))" and (8na(rl)8nb(ri)))..
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and consequently the interaction energies E~r) and E~r 1) can be expanded
perturbatively in terms of the GRFs of the individual molecules [Harbola
2004]. We shall collect terms in E~r) and E~r I) by their order with respect

to charge fluctuations. The total energy is then, Eab = I:j E~{), where E~{)
represents contribution from jth order charge fluctuation. W(O) was given
in (7.44) and E~~)= O.E~{) to sixth order are given in [Harbola 2004].·

Ei~) = -~ ~ ]:~dt2 ] d3LI] d3L2 nb(rDnb(r~)x;;- (Xl, X2)Vee(SI)Vee(S2)
(7.49a)

Ei~) = ~ ~ l~dt2l~ dt3 ] d3LI] d3L2] d3!'3 Vee(SI)Vee(S2)Vee(S3)

x nb( TDx~-- (Xl, X2, X3)nb( T~)nb( T)3 (7.49b)

Eit) = ~~ l~dt2['~ dt3 ] d3L,] d3L2] d3!'3 Vee(SI)Vee (S2)Vee(S3)

[- ( )- ( ') +- ( ) +-( I ')X na T2 nb T3 Xa Xl, X3 Xb Xl' X2

+ nb(TDna(T3)X~-(Xl, X2)Xt-(X~, X;)]

- ~ ~ ]:~ dt2 ] d3LI] d3L2 Vee(SI)Vee(S2)X;,+(X" X2)Xt-(X~, X~)
(7.49c)

Ei~) = ~ ~ 1" dt21" dt3 ] d3LI] d3L2] d3!'3 Vee(SI)Vee(S2)Vee(S3)6 p -00 -00

x {xt-- (x~, x~, x;) [fia(TI)X;+(X2, X3) + na(T2)X~+(XI' X3)

+ na(T3)X~+(XI, X2) + na(TI)X~-(XI, X3)]

+ xt+-(x~, x~, x;)[fia(T2)X~-(XI' X3) + nb(T;)xt-(x~, x~)]} (7.49d)

Ei~) = ~L:I"dt21" dt3 ] d3LI] d3L2] d3!'3 Vee(SI)Vee(S2)Vee(S3)6 p -00 -00

[ +++( ) +-- (' I ')X Xa Xl, X2, X3 Xb Xl' X2, X3

++- ( . ) ++- (' I I )]+ Xa Xl, X2, X3 Xb Xl' X2, X3 ,

where for brevity we have used the notations, Jd3r:.n
vee(sn) = Vee(Tn - T~).

We have now at hand all the ingredients necessary for computing the
intermolecular energies using the GRF of the individual molecules calculated
at the TDDFT level.
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The second term in (7.49c) reproduces McLachlan's expressio:d for the
van der Waals intermolecular energy [Misquitta 2003, McLachlan 1963a,
McLachlan 1963b). Since x+- and x++ are related by the fluctuation­
dissipation theorem, the McLachlan expression may be recast solely in terms
of the ordinary response of two molecules, xt- and xt- .

E~~(,.,= - 2~ L:dw!d3Ll!d3L2Vee(Sl)Vee(S2)

cath (fJ~) "';:--(r" r2, w)"'t- (ri, r~, w), (7.50)

where XV2V1 (T2W2, TIWl) = (1i-1 )pl a~2Vl (TI, T2, Wl)b"(Wl +W2). Equation (7.50)
gives

00

E~~w=-kBT ?~Jd1 d3Ll L2V~(Sl)Vee(S2)"';:-- (rl, r2, iwn)",t- (ri, r~,iwn) ,
(7.51)

where Wn = (27rnkBT Iii) are the Matsubara frequencies. However, life is not
as simple for the higher order responses. The (p + 1), pth order generalized
response functions, XVp+lVp",Vl, cannot all be related to the fully retarded or­
dinary response, X+-···-. The complete set of generalized response functions
is thus required to represent the intermolecular forces.

By combining (7.49a)-(7.4ge) with the CEO expansion, we can finally
express the intermolecular energies in terms of CEO modes of the separate
molecules. For example, substituting for X+- and X++ from (7.37) in (7.49c),
the fourth order term is obtained in terms of CEO modes as

Expansions of higher order terms in CEO modes are given in [Harbola 2004].
The GRF therefore provide a compact and complete description of intermole­
cular interactions. Both response and correlation functions can be described
in terms of Liouville space pathways and can thus be treated along the same
footing.
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