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Recursive relations are developed for computing the multipoint correlation functions of a particle undergo-
ing a biased continuous-time random walk �CTRW� in an external potential. Two- and three-point correlation
functions are calculated for waiting-time distributions with an anomalous power-law profile t−�−1 , 0���1,
on intermediate time scales with a crossover to an exponential long time decay. Comparison of the CTRW with
the Brownian harmonic oscillator model �Gaussian process� illustrates how higher-order correlation functions
may be used to distinguish between dynamical models that have the same two-point correlation function.
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I. INTRODUCTION

Classical diffusion may be described by various models,
including random walks, or Langevin, Fokker-Planck, or
master equations �1,2�. Assuming short time correlations of
the random force, the mean square displacement grows as-
ymptotically linearly with time, ��r�t�−r�0��2�� t indepen-
dent of the details of the model. The diffusion trajectories are
self-similar with fractal characteristics—they are continuous
and nondifferentiable �3,4�.

Dynamical models of complex systems often lead to non-
exponential relaxation with correlation functions decaying as
stretched exponentials C�t��exp�−t�� or power laws C�t�
� t−�.When the time intervals between diffusive moves have
fractal characteristics, the mean squared displacement of free
diffusion can scale as ��r�t�−r�0��2�� t� �4,5�. This behavior
is known as anomalous diffusion �6�.

Non-subexponential relaxations were reported in many
physical systems including charge-carrier transport, geophys-
ical processes, biological systems, and economics �6–8�. Sto-
chastic trajectories of single protein molecules and quantum
dots show stretched-exponential or power-law kinetics and
relaxation �9–20�. Long algebraic tails common to many
complex systems �e.g., glasses, proteins, and supercooled
liquids� are signatures of a complex energy landscape
�21–23� with multiple barriers where the system has a broad
distribution of time scales and may not be equilibrated on the
relevant experimental time scales. Time-averaged correlation
functions were applied �24,25� to anomalous on-off fluores-
cence statistics observed in single quantum dots �14,15�.

Most studies so far focused on two-point correlation func-
tions. This paper studies multipoint correlations which pro-
vide critical tests for the microscopic models underlying the
anomalous relaxation �26–28�. Two-time properties of
anomalous diffusion have been calculated using fractional
Brownian motion �27–29�, the diffusion equation �30�, the
Langevin equation �31,32�, master equations �GME� �33,34�,
the age-dependent master equation �ADME� �35,36�, and the
continuous-time random walk �CTRW� �2,37�. Gaussian pro-
cesses �GPs� are completely determined by their two-point

correlation functions C��1 ,�0���x��1�x��0��; higher-order
correlation functions carry no additional information and
both regular and anomalous relaxation can be treated with
the same formalism �38�. For example, the four-point corre-
lation function of a Gaussian coordinate x is given by a sum
of possible pairings:

�x��4�x��3�x��2�x��1�� = �x��4�x��3���x��2�x��1��

+ �x��4�x��2���x��3�x��1��

+ �x��4�x��1���x��3�x��2�� .

The CTRW generalizes the ordinary random walk by in-
troducing a waiting-time distribution �WTD� ��t� between
successive jumps. Broad distributions of step lengths �Lévy
flights� �6,39� have been studied as well but will not be con-
sidered here. The CTRW model for transport was introduced
by Montroll and Weiss �40,41�. It is equivalent to a master
equation �33,42� as well as to a multistate trapping problem,
when internal states of the particlar are associated with dif-
ferent hopping rates �43–45�. The dynamics of the internal
space is assumed to be Markovian, so that the CTRW can be
viewed as a projection of a Markovian process into a lower-
dimensional space. The stochastic Liouville equations
�SLEs�, developed by Kubo �46–48�, provide a useful tool
for computing the multitime properties of the CTRW by a
judicious choice of additional dynamical variables which
map them into a Markovian process �49–51�. Similarly, the
ADME approach introduces an additional variable which de-
scribes the time from the last jump �“age”� and uses age-
dependent rates to construct a Markovian description of the
CTRW �35,36�.

The CTRW in a harmonic potential and the anomalous GP
are nonequivalent dynamical models. In both cases the sub-
exponential decay is caused by the presence of different time
scales for relaxation in the system. However, in the CTRW
these time scales are realized sequentially. In contrast, an
overdamped Gaussian variable can be decomposed as x�t�
=� jxj�t� where xj are independent Uhlenbeck-Ornstein vari-
ables �xj��1�xj��0��	e��1−�0�/Tj with different relaxation times
Tj �38�.

Two types of CTRW ensembles are commonly consid-
ered. By assuming that all particles made a jump at the time*Email address: smukamel@uci.edu
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origin we obtain a nonstationary process �NP�. A WTD with
infinite mean corresponding to anomalous diffusion was first
applied to electron transport in amorphous semiconductors
�52,53�. Starting with an ensemble of just arriving particles,
gradually most of them are captured by deep traps with long
waiting times and the system is never equilibrated. This ef-
fect is known as aging.

A stationary process �SP� must have a special WTD for
the first jump, and can only be established for WTDs with a
finite mean t̄=
0

	t��t�dt �54�. For WTDs with finite first and
second moments we expect a narrow Gaussian distribution
of waiting times for a large number of steps �the central limit
theorem� �6�. A macroscopic move requires an infinite num-
ber of short steps and the CTRW may be described by an
ordinary diffusion equation at long times, independent of the
details of the WTD. The above considerations do not apply
when the waiting-time distribution for a few steps is broad,
and anomalous relaxation occurs at intermediate time scales.
The fundamental differences between the two ensembles
have been known since the 1970s, when the frequency sen-
sitivity �insensitivity� of ac conductivity was reported for
NPs �SPs� �55,56�.

Long-tailed WTDs with ��t�	1/ t1+� , �
0, have been
studied recently �57,58�. For �
1 the first moment is finite.
The first moment diverges for 0���1 and step function
�57� or exponential long-time decay cutoffs �58� have been
added to keep it finite. A two-state SP was recently applied to
model the absorption line shape �58� and fluorescence on-off
blinking statistics �57�.

In this paper we analyze multipoint correlation functions
of biased CTRWs in a potential with an anomalous WTD
�7,59�. Two-point quantities for NPs in a harmonic potential
with infinite t̄ have been calculated using the fractional
Fokker-Planck equation �FFPE� �60� and applied to model
the donor-acceptor distance in single-molecule fluorescence
experiments �27,61� in enzymes. Two-point correlation func-
tions cannot distinguish between CTRWs and other dynami-
cal models �e.g., the Gaussian process �27,62��. Systems with
nonexponential correlations form universality classes �7,23�:
different microscopic models under certain general condi-
tions predict the same two-point correlation functions but are
expected to have different multipoint correlation functions
that could be measured by the nonlinear response �63,64�.
Barsegov and Mukamel have used the FFPE to investigate
the three-point correlation function for NPs �26�. Nonlinear
optical spectroscopy is commonly used to distinguish be-
tween models that have the same two-point correlations �lin-
ear response� �62�. We demonstrate the capacity of multi-
point correlation functions to distinguish between CTRWs
and the Gaussian models of anomalous relaxation.

Green’s functions of the GME, FFPE, and other types of
non-Markovian descriptions of CTRWs cannot be directly
used for calculating multipoint probabilities, as these may
not be factorized into two-point Green’s functions. We shall
construct a recursive algorithm for multipoint functions
based on densities of just arriving particles �2�, which allows
us to compute correlation functions in the frequency domain
directly. An alternative stategy would be to use Markovian
approaches �the SLE or ADME�, which would involve rep-

resenting age by additional variables, a larger matrix prob-
lem must then be solved.

Stationary CTRW ensembles with broad WTDs are de-
fined in Sec. II. The CTRW in an external potential is calcu-
lated in Sec. III. A general algorithm for computing multi-
point correlation functions for CTRWs is presented in Sec.
IV. Applications are made in Sec. V to three-point correlation
functions, where the CTRW is compared with a Gaussian
process.

II. STATIONARY CTRW ENSEMBLES WITH
ANOMALOUS RELAXATION

We consider a particle moving stochastically on a lattice
with points x �time is continuous, space is discrete�. We de-
fine the transition probability Txy for the jump from y to x as

p�x;i + 1� = �
y

Txyp�y ;i� , �1�

where p�x ; i� is the probability to be at x after the ith jump
and �xTxy =1 �Txx=0, as a jump necessarily implies a change
of position�. The CTRW is defined by introducing the
waiting-time probability distribution for the jump, ��t�, nor-
malized as 
0

	��t�dt=1. The process is described by the ma-
trix of jump rates �we denote matrices by a caret�

�̂xy�t� � ��t�T̂xy , �2�

and by specifying the initial conditions. The probability den-
sity to find the particle at time �0 at x is �x��0�, and the WTD
���t� for the first jump after �0 may be different from ��t�.

The survival probability �t� that no jump had occurred
prior to t is connected to the waiting-time distribution:

�t� = �
t

	

��t��dt�. �3�

In Laplace space Eq. �3� reads

�s� =
1 − ��s�

s
. �4�

We further introduce the matrix of survival probabilities

�̂xy�t� = �t��xy . �5�

We define the probability densities �x��� that a jump oc-
curs to x precisely at time �. It follows from these definitions
that

�x��� = �
�0

�

�
y

�̂xy�� − ����y����d�� + �
y

�̂xy� �� − �0��y��0� .

�6�

The probability �x��� to find the particle at time � in a par-
ticular state is obtained by multiplying � by the survival
probability �t� �that no jump had occurred for time t� and
integrating over the time of the last jump,
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�x��� = ��� − �0��x��0� + �
�0

�

�� − ����x����d��. �7�

The evolution of the system is calculated by solving the
coupled Eqs. �6� and �7�.

The solution to Eqs. �4�, �6�, and �7� is given in terms of

the Green’s function Ĝ,

�x��� = �
y

Ĝxy��,�0��y��0� . �8�

In Laplace space

Ĝ�s� = �
�0

	

e−s��1−�0�Ĝ��1,�0�d�1

the Green’s function is given by �40�

Ĝ�s� = �̂��s� + �̂�s��1 − �̂�s��−1�̂��s� . �9�

Substituting Eq. �2� in Eq. �9� gives

Ĝ�s� =
1 − ���s� + ����s� − ��s��T̂

s�1̂ − T̂��s��
. �10�

We consider two types of ensembles which differ by the
WTD for the first jump ��.

�i� Assuming that all particles arrived at their sites ex-
actly at the initial time we simply set ���t�=��t�. This de-
fines a NP CTRW. The Green’s function is given by Eq. �10�
with ���s�=��s�.

�ii� For the process to be stationary �SP CTRW� we re-
quire the initial density � to be invariant to the jump event,

T̂���0� = ���0� , �11�

and �� must be connected to � by �54� �see Eq. �C9��

���s� =
�s�

t̄
=

1 − ��s�
st̄

, �12�

where t̄ is the mean waiting time:

t̄ = �
0

	

�����d� = − �d��s�
ds

�
s=0

.

It follows from Eq. �12� that the stationary ensemble can
only be constructed provided the WTD has a finite first mo-
ment; otherwise the system has a long time memory and
never equilibrates. Correlations between temporal and spatial
distributions do not build up in our model because Eq. �2�
has a separable form. Substituting Eq. �12� in Eq.�10� we
obtain

Ĝ�s� =
1

s
−

1 − ��s�
s2t̄

 1̂ − T̂

1̂ − T̂��s�
� . �13�

Any two-point quantity may be calculated using Eq. �13�.
A CTRW is generally a non-Markovian process, and knowl-
edge of the two-point Green’s function is not enough to cal-
culate higher-order quantities. ��t�= t̄−1exp�−t / t̄� is an excep-
tion where the CTRW is equivalent to a Markovian master

equation and higher-order quantities can be readily calcu-
lated.

We consider anomalous diffusion �AD� models character-
ized by algebraic waiting-time distributions with diverging
first moment ��t�� �t /��−��+1� �0���1�. In Laplace space
we have ��s��1− ��s�� for small s. We adopt the following
form �49,60�:

�AD�s� =
1

1 + ��s��
, AD�s� =

1

s + �−�s1−� , �14�

which in the time domain gives

�AD�t� = −
dE�„− �t/���…

dt
, AD�t� = E�„− �t/���… .

� defines the time scale and E� is the Mittag-Leffler function
Eq. �A1� �65,66�. This function interpolates between the
stretched-exponential form at short times t��

E�„− �t/���… � exp�− �t/���/��1 + ��� ,

which gives

�AD�t� =
1

������
exp�− �t/���/��1 + ���

t1−� , �15�

and a power-law decay for t��

E�„− �t/���… � �−1�1 − ���
t
��, ��s + 1� � �

0

	

e−xxs,

which yields

�AD�t� =
���

��1 − ��
1

t�+1 . �16�

�AD�t� is displayed in the left panel of Fig. 1 for several
values of �. The power law shows up as linear regions in the
log-log plots; the short- and the long-time slopes become
more different with increasing � �compare Eqs. �15� and
�16��.

To define a SP we truncate the WTD to have a finite mean
by adding a long-time cutoff parameter �,

�TAD�t� = �1 + ������e−�t�AD�t�

= − �1 + ������e−�tdE�„− �t/���…
dt

.

The algebraic decay t−�−1 on an intermediate time scale now

FIG. 1. Left panel: Anomalous WTD �AD for �=0.2 �solid line�,
0.5 �dotted line�, and 0.8 �dash-dotted line� Right panel: Corre-
sponding first-jump WTD �TAD� for ��=0.01.
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crosses over to an exponential decay for �t
1 �Fig. 2, left
column�. In Laplace space this truncation shifts the s singu-
larity by � to the left in the complex plane,

�TAD�s� =
1 + �����

1 + ���s + ����
. �17�

The survival function is

TAD�s� =
�s + ��� − ��

s��−� + �s + ����
�18�

and the mean waiting time

t̄ =
��−1

1 + ����−� . �19�

�t� is analytic for s
−�, so it has exponential long-time
decay given by

TAD�t� = �
t

	

�TAD�t��dt� �
���e−�t�1 + ������
�t�+1��1 − ��

.

For short times ��t���1 and ���1 the survival function is
similar to that of the nontruncated model TAD�AD

TAD�t� � E�„− �t/���… . �20�

Table I summarizes the typical time profiles for �TAD and

TAD.
For the stationary ensemble �� is obtained by substituting

the survival function and the mean waiting time �Eq. �18�� in
Eq. �12�. The �→0 limit is delicate since t̄ diverges. The
ratio � / t̄ shows the probability that the first jump will be
observed on a similar time scale ��� as the other jumps. It
represents the fraction of fluctuating particles in the en-
semble. Other particles are trapped—their first jump occurs
on much longer time scales. This can be described in terms
of equivalent multitrap models; see the discussion of Fig. 6
below. For small � the fraction of fluctuating particles van-
ishes, the probability of early first jump is low, and the first
jump appears on the �−1 time scale.
�TAD� is displayed in the right panel of Fig. 1 for ��

=0.01 and for various �. The �TAD� distribution is initially flat
for �t /����1 compared to the singular form of �AD �Eq.
�15��. The stretched-exponential decay is followed by long-
tailed algebraic decay for �� t��−1 if ������1. This may
best be seen for �=0.8, which shows a linear region for
t /�� �1,50�. The long-time decay is exponential.
�TAD� is sensitive to the cutoff � for any time scale, as

demonstrated in Fig. 2, right column. For t�� , �TAD� is sen-
sitive to � due to the factor 1 / t̄ in Eq. �12� which represents
the fraction of fluctuating particles in the ensemble. �TAD
given in the left column does not show such sensitivity for
���1. The power-law decay appears as ����� is decreased,
best shown in the lower right panel �TAD� 	 t−� and �AD
	 t−�−1. At long times, both �TAD and �TAD� decay exponen-
tialy.

III. TWO-POINT CORRELATION FUNCTIONS FOR
ANOMALOUS DIFFUSION IN AN EXTERNAL POTENTIAL

Diffusion in a potential can be described as a biased
CTRW in the continuous-space limit. An anomalous nonsta-
tionary CTRW was recently described by the fractional
Fokker-Planck equation �7,59,60�. For non-Markovian pro-
cesses multipoint joint probabilities may not be factorized in
terms of two-point ones. Equations of motion for densities
are limited to two-point quantities; multipoint correlation
functions are obtained by a more complicated procedures
�e.g., �26� for the FFPE�. We therefore do not derive a dif-
ferential equation for densities in this paper; instead, we cal-
culate the multipoint correlation functions using recursion
relations.

Following the steps used in the derivation of the FFPE
�59� we assume that the particle undergoes a one-
dimensional CTRW along x with a finite step length a and
probabilities A−�x� ,A+�x� to move to the left and to the right,
respectively. These are related to the external potential V�x�

TABLE I. Typical time profiles for �TAD and TAD.

Time regime Time scale �TAD TAD

Short t�� t�−1 e−�t /���

Intermediate �� t��−1 t−�−1 t−�

Long �−1� t e−�t e−�t

FIG. 2. Left panels: Truncated anomalous WTD �TAD for �
=0.2 �top panel�, 0.5 �central panel�, and 0.8 �bottom panel� and
with varying cutoff ��=1 �lower solid lines�, 0.1 �dot-dashed
lines�, 0.01 �dashed lines�, and 0.001 �dotted lines�, and nontrun-
cated anomalous WTD �AD �i.e., �=0 � �upper solid lines�. Right
panels: Corresponding WTD for the first jumps �TAD� except that
�=0 has no corresponding curve.
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and temperature T, by the detailed balance condition

A+�x�
A−�x + a�

= exp − V�x + a� − V�x�
kT

� � 1 +
aF�x�

kT

where F�x��−�V�x� /�x is the force. Since A++A−=1 and
assuming a small step aF�x� /4kT�1 we have

A+�x� = 1/2 +
aF�x�
4kT

, A−�x� = 1/2 −
aF�x�
4kT

,

where k is the Boltzmann constant. Equation �1� now reads

p�x;i + 1� = A+�x − a�p�x − a;i� + A−�x + a�p�x + a;i� .

�21�

To second order in a Eq. �21� gives

p�x;i + 1� = 1 +
a2L̂

2
�p�x;i� , �22�

where L̂ is the Fokker-Planck operator

L̂ =  �2

�x2 −
�

�x

F�x�
kT

� .

The transition matrix Eq. �1� now becomes

T̂ = 1 +
a2L̂

2
� . �23�

By the central limit theorem, the mean squared displacement
for free diffusion scales asymptotically linearly with time,
��x�t�−x�0��2�=Dt, where D�a2 /2t̄ is the diffusion con-
stant. In the following simulations we parametrize the model
in terms of the diffusion constant instead of the step size a.

The matrices Ĝ, �̂, and �̂ have an infinite dimensionality,
corresponding to the continuous index x. Equation �8� reads

�x���1� =� dx Ĝx�x��1,�0��x��0� .

The CTRW is defined in analogy with Eqs. �1�–�4�, but
the summations over states are replaced by integrations over
the continuous variable. The density of jumps to x , �x��� at
time �, is connected to densities at previous times through
the continuous limit of Eq. �6�:

�x��� = �
−	

	

dx��
�0

�1

�̂xx��� − ����x�����d��

+ �
−	

	

dx��̂xx�
� �� − �0��x���0�; �24�

and the probability density ��x , t� of finding a particle at time
t in state x is connected by

�x��� = �
�0

�

�� − ����x����d�� + ��� − �0��x��0� , �25�

in analogy with Eq. �7�.
The waiting-time matrix for diffusion in the potential �Eq.

�2�� and the survival matrix Eq. �5� take the forms

�̂xy�t� = ��t�T̂xy, �̂xy�t� = �t���x − y� . �26�

Adopting operator notation, Eqs. �24�, �25�, and �26� are
identical to the discrete-space Eqs. �2�, �5�, �6�, and �7� ex-
cept that matrix multiplications are replaced by integrations.

The two-point Green’s function is given by combining
Eq. �10� with the diffusion model Eq. �23�:

Ĝ�s� =
1

s

�1 − ��s�� − Dt̄L̂���s� − ���s��

�1 − ��s�� − Dt̄L̂��s�
. �27�

This may be calculated by expanding it in the eigenbasis of
right eigenvectors

L�n = − �n�n, n = 0,1,… ,

and the left eigenvectors

�n��x��L = − �n�n��x��

of the Fokker-Planck operator. The Green’s function Eq. �27�
is given by

Ĝx�x�s� = �
n

1

s

�1 − ��s�� + Dt̄�n���s� − ���s��
�1 − ��s�� + Dt̄�n��s�

�n�x���n��x� .

�28�

For a stationary ensemble �Eq. �12�� this gives

Ĝx�x
SP �s� =

1

s
�
n=0

	 1 −
�n

sD−1 + s�nt̄��s�/�1 − ��s��
��n�x���n��x� .

�29�

The joint probability distribution P��1x1 ,�0x0� is

P��1x1,�0x0� = Ĝx1x0
��1,�0��x0

��0�

and with the SP Green’s function Eq. �29� we have

P�s1x1,x0�

= ��x1 − x0�
s1

− �
n=0

	
�n�n�x1��n��x0�

s1
2D−1 + s1

2�nt̄��s1�/�1 − ��s1��
�

��x0
��0� .

Hereafter we consider the truncated anomalous diffusion
�TAD� model �Eq. �17�� in a harmonic potential:

V�x� =
1

2
M�2x2, F�x� = − M�2x , �30�

where M is the mass. For TAD �Eq. �17��, the Green’s func-
tion is independent of �. The independent parameters of the
SP model are the ratio of the diffusion constant and the cut-
off ���2� /D, where �2=kT / �M�2�, and �, which simply
scales with time:

Ĝ�s/�;1,�� = �Ĝ�s;�,�� ,
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Ĝ„��1 − �0�;�,�… = Ĝ„���1 − �0�;1,�… .

The Green’s function Eq. �29� is then

Ĝx�x
SP �s�� = �

n=0

1

�s�
1 −

n

s�� + �s�n/��s� + 1�� − 1��
�

exp�− x�2/2�2�
2n�2�n ! �

Hn x�

��2
�Hn x

��2
� , �31�

where s��s /� and Hn is the nth-order Hermite polynomial
�Eq. �D5��.

The NP Green’s function is obtained by substituting Eqs.
�14� and �D4� in Eq. �E3�:

Ĝx�x
NP�s� = �

n

1

s + nD�s
1−�/�2

exp�− x�2/2�2�
2n�2�n ! �

�Hn x�

��2
�Hn x

��2
� . �32�

The SP and NP distributions are shown in the lower and
upper panels panels, respectively, of Fig 3. The peak near the
initial position �x=0.0 �left panels� or 0.5 �right panels�� is
consistent with the picture of a CTRW with a broad WTD as
a mixture of diffusing and trapped particles �37�.

The two-point correlation function C��1 ,�0�
= �x��1�x��0�� for a CTRW in a harmonic potential is given
by Eq. �D9�. Knowledge of C��1 ,�0� is sufficient to construct
the CTRW model. The predicted multipoint correlation func-
tions may be used to test its validity. For technical details see
the discussion below Eq. �D9�. For a SP �Eq. �12�� and TAD
�Eq. �17�� the two-point correlation function �Eq. �D9�� is

C�s�� =
�2

�s�
1 −

1

�s� + �s�/��s� + 1�� − 1�� . �33�

At short times ��t���1 we set s��1 and get

C�s�� �
�2

�s�
1 −

1

�s� + �s��1−��� ,

which gives

C��1,�0� � �21 −
1

�
�
�0

�1

E��������/��d����� .

For ������� /� we have C��1 ,�0���2e−D��1−�0�.
The complex form of relaxation for intermediate time

scales �−1�� /��1/�� t��−1 is simplified for �→0,

C�s�� �
�2

��s�2 �1 + �s� − �1 + s���� ,

which in the time domain gives

C��1,�0� � �21 +
���1 − �0�
�

− �
j=0

	 �
j
� ����1 − �0��1−�+j

���2 + j − �� �
with the leading term C��1 ,�0���2�1− ����1−�0��1−� /���2
−���. This type of decay was recently reported for a two-
state CTRW model with broad distributions truncated by a
step-function cutoff �57�.

For long times �t�1 we expect exponential decay. For
�� /���1, the asymptotic decay rate is ��−1+ �1−� /��1/�� �a
pole in the complex plane for Eq. �33��. For �� /��
1, the
asymptotic decay rate is � �a cut in the complex plane for Eq.
�33��.

C�t ,0� is displayed vs log10�t� in Fig. 4 for �=0.4, and
various values of � �upper panel�. ln�−ln C�t ,0�� vs log10�t�
plots show a stretched exponential e−t� as straight lines �cen-
tral panel�. In the lower panel the linearity of these plots is
shown by the slope ��d ln�−ln C�t�� /d ln t for the curves of
the central panel.

While normal relaxation C�t ,0��e−Dt is observed for �
�1, subexponential relaxation shows up as � is decreased
�i.e., longer cutoff� at intermediate time scales. The
stretched-exponential form agrees with our model in this
most interesting intermediate regime. Note that for �→0 the
correlation function is controlled by � over both intermediate
and long time scales �the dotted �=0.01 and the solid �
=0.001 lines are similar� and the diffusion constant is rel-
evant only for very short times t���−1, in contrast to ordi-
nary diffusion, which is controlled by D at all times.

In Fig. 5 we display the same quantities as in Fig. 4 for a
fixed �=0.001 and various �. The stretched-exponential form
is most clearly seen as � is decreased. The stretching param-
eter � decreases with � for �−1�� /��1/�� t. This is in con-
trast to the correlation function for the NP �60�

FIG. 3. Left panels: Probability distributions for CTRW relax-
ation from origin x=0.0. Upper panel: NP at times �D��2�1/�t
=0.05 �dot-dashed line�, 1.5 �solid line�, 20 �dotted line�, and 500
�dashed line�; parameters �=1/�2, �=0.4. Lower panel: SP at
times Dt /�2=1.3 �dot-dashed line�, 2.7 �solid line�, 4.7 �dotted
line�, and 100 �dashed line�; parameters �=1/�2, �=0.5D /�2 , �
=0.4. Right panels: the same calculations but for a different initial
state x=� /�2=0.5.
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C��,0� = �2E��− D��
�� �34�

which decays more slowly with decreasing �.
We next consider the correlation function of

f�x� � exp �x̂ . �35�

This form serves as the generating function for any function
of x �xp is obtained by differentiation with respect to � and
setting �=0�.

We focus on

B�2���1,�0� � ��f��1��f��0�� �36�

where �f � f − �f�. For our harmonic model Eq. �30� we have

�f�x�� = exp�����2/2� . �37�

B�2� is calculated in Appendix D. By combining Eq. �D12�
with the TAD model Eq. �17� we finally obtain

BSP
�2��s�� = �−1exp����2�

n=1

	
����2n

n!

�
1

s�
1 −

1

s��/n + �s�/��s� + 1�� − 1�� , �38�

which is different from the NP �60�

FIG. 4. Top panel: The two-point correlation function C�t ,0� vs
log10��t� for SP with �=0.4 and various �=10 �upper solid line�, 1
�dashed line� 0.1 �dash-dotted line�, 0.01 �dotted line�, and 0.001
�lower solid line�. Central panel: ln�ln�−C�t ,0��� vs log10��t�. Bot-
tom panel: �=d ln�−ln�C�t ,0��� /d ln t vs log10��t�.

FIG. 5. Top panel: The two-point correlation function C�t ,0� vs
log10��t� for SP with �=0.001 and various �=0.1 �upper dotted
line�, 0.2 �upper solid line�, 0.4 �dot-dashed line�, 0.5 �dashed line�,
0.6 �lower dotted line�, and 0.8 �lower solid line�.
Central panel: ln�ln�−C�t ,0��� vs log10��t�. Bottom panel: �
=d ln�−ln�C�t ,0��� /d ln t vs log10��t�.
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BNP
�2� �s� = exp����2�

n=1

	
����2n

n!

1

s + nD�s/�2��s + ��� − ���
.

�39�

In Fig. 6 we compare BSP
�2� and BNP

�2� . The different role of the
cutoff is illustrated by varying � for fixed a ,� of the NP. The
NP correlation function approaches the anomalous solution
of �7� for �→0; � controls the time scale where the Mittag-
Leffler behavior crosses over to exponential �Fig 1�. In con-
trast, the SP correlation function is controlled by � over the
entire relaxation time.

The qualitatively different behavior of stationary and non-
stationary ensembles can be rationalized by a multitrap pic-
ture, where � controls the allowed trap depths �37�. The NP
describes the relaxation to equilibrium of just arrived par-
ticles. The allowed trap depth cannot be observed for times
earlier than �−1. In contrast, a substantial fraction of particles
is trapped at equilibrium, and the fraction of mobile particles
as well as the escape time from the trap are related to �. For
very small � and at equilibrium, all particles are deeply
trapped; the waiting time for the first jump becomes infi-
nitely longer than the time scale for the WTD of other jumps
�.

For comparison we consider a Gaussian process �Brown-
ian oscillator� with the same two-point correlation function
C��1 ,�0� as the SP �Eq. �33��. Using the second-order cumu-
lant expansion we obtain �62,67�

BGP
�2� ��1,�0� = e�

2�2
�e�

2C��1,�0� − 1� . �40�

In Fig. 7 we compare BGP
�2� �Eqs. �33� and �40�� and BSP

�2�

�Eq. �38��. The left upper panel shows the SP for �=0.4, �
=1. The right column shows the GP. For small ���1 the
dominant contribution comes from the first Fokker-Planck
eigenmode, which is described by C��1 ,�2�; the GP and SP
models then coincide. Increasing �� highlights the role of

higher modes, and faster relaxation is observed. The SP re-
laxation is not controlled by the diffusion constant for �
→0, so with decreasing �=0.1 �0.01� in the central �lower�
panels the changes with �� are less pronounced. GP decay
�right panels� is significantly faster with increasing ��,
which is seen for all �.

Figure 8 displays BSP
�2� �left panels� and the corresponding

BGP
�2� for �=0.1, various ��, and for �=0.2 �upper panel�, 0.4

�middle panel�, and 0.6 �lower panel�. The relaxation of the
GP model is faster compared to the SP in all cases. With
decreasing � the differences between SP and GP are stron-
ger; with �=1 we approach normal relaxation.

IV. MULTIPOINT CORRELATION FUNCTIONS

We consider a sequence of n+1 measurements of x car-
ried out at times �0 ,�1 ,… ,�n yielding the values
x0 ,x1 ,… ,xn. The multipoint correlation function of an arbi-
trary function of x , f�x�, is defined as

C�n+1���n,…,�0� � �f�xn� ¯ f�x0�� , �41�

where � � denotes averaging over realizations of the random
walk.

The joint probability distribution function �PDF� is simi-
larly defined by

P�n+1���nyn,…,�1y1,�0y0� � ���yn − xn� ¯ ��y0 − x0�� ,

�42�

and the two are connected by

FIG. 6. B�2��t ,0� for NP CTRW �lower curves� with varying �
and comparison to SPCTRW �upper curves� of the same sys-
tems. Parameters: D� /�2=2.19, �=10−5 , �=0.31, ����2=0.372,
�D� /�2�1/� /�=2.245 �solid line�, 22.45 �dotted line�, 224.5 �dashed
line�, and 5.585 �dot-dashed line�; �=0 �dot-dashed line, the non-
stationary model only�.

FIG. 7. Left panels: BSP
�2��� ,0� /BSP

�2��0,0� for �=0.4 and various
����=0.5 �solid lines�, 1.0 �dotted lines�, 2.0 �dashed lines�, and 4.0
�dot-dashed lines�. �=1, �top panel�, 0.1 �central panel�, and
0.01 �bottom panel�. Right panels: Corresponding curves
BGP

�2� �� ,0� /BGP
�2� �0,0� for GP with CGP�� ,0�=CSP�� ,0�.
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C�n+1���n,…,�0�

= �
yn

¯ �
y0

f�yn� ¯ f�y0�P��nyn,…,�1y1,�0y0� .

�43�

Correlation functions are given by moments of the PDF and
carry less information. For instance, one cannot distinguish
between the contributions to the n-point correlation function
from trajectories that visit the same states but in a permuted
order in time.

To calculate the PDF Eq. �42� we introduce some auxil-
iary quantities. We first define a projection to state

�xk�,�̂�xk���xk��xk�. Predicting the future evolution of the
system requires the present distribution function of x as well
as the distribution of the prior �last� jump. The density of just
arrived particles � �Eq. �6�� is most useful in studies of two-
point correlations. For multipoint correlation functions and
fixed results of previous measurement at times �0 ,… ,�k−1 we
focus on paths with a jump at some fixed later time �k

�k−1.

We consider a particle that starts at time �0 in state x0 ��0
is the onset of the random walk; Appendix E shows how the
�� is changed from � if the NP started in some earlier time�
and denote R̂xkx0

�k� ��k ,�0 ;�k−1xk−1 ,… ,�1x1� the probability to
find it in time �1 at state x1, … at time �k−1 in xk−1 and that a
jump had occurred to state xk exactly at time �k �any number
of jumps between �k−1 and �k is allowed�. We further define

a second auxiliary matrix �̂xkx0

�k� ��k ,�0 ;�k−1xk−1 ,… ,�1x1�, the
probability to find a particle that starts at time �0 at x0 at time

�1 at x1,…, at time �k−1 at xk−1, that the first jump after �k−1
occurs exactly at time �k to state xk, and that no other jump
occurs in the �k ,�k−1 period. �See Fig. 9.�

R̂�k� may be constructed from its values at earlier times.
The jump preceding �k could occur either during the
��k−1 ,�k� interval or in any of the previous intervals. This

leads to the following relation between R̂�k� and �̂�k�:

R̂�k���k,�0;�k−1xk−1,…,�1x1�

= �̂�k���k,�0;�k−1xk−1,…,�1x1�

+ �
�k−1

�k

d���̂��k − ���R̂�k����,�0;�k−1xk−1,…,�1x1� . �44�

The first term accounts for the paths where the jump before
the last at �k occurred prior to �k−1. The second term is the
contribution of the paths where the preceding jump occurred

at �k−1�����k. The probability for a jump at ���R̂�k�

���� ,�0 ;…�� is multiplied by the probability ���k−��� to
have the next jump �k.

�̂�k� is obtained by summing over all possible realizations
of the previous jump

�̂�k���k,�0;�k−1xk−1,…,�1x1�

= �̂���k − �0��
j=1

k−1

�̂�j��xj� + �
j=1

k−1 �
�j−1

�j

�̂��k − ���

��
q=j

k−1

�̂�xq�R̂�j����,�0;� j−1xj−1,…,�1x1�d��. �45�

The first term represents paths with no jump between �0 and
�k. Contributions of paths where the jump before the last at
�k occurs in the jth time interval �� j−1 ,� j� are summed in the
second term of Eq. �45�. These are given by the probability
to have a jump at prior time ��, the waiting-time function to
have a next jump after a �k−�� interval and projected to the
states observed at times � j ,… ,�k−1 between these two jumps.

FIG. 8. Left panels: BSP
�2��� ,0� /BSP

�2��0,0� for SP, �=0.1, and vari-
ous ����=0.5 �solid lines�, 1.0 �dotted lines�, 2.0 �dashed lines�,
and 4.0 �dot-dashed lines�. Various �=0.2 �top panel�, 0.4 �central
panel�, and 0.6 �bottom panel�. Right panels: Corresponding curves
BGP

�2� �� ,0� /BGP
�2� �0,0� for GP with CGP�� ,0�=CSP�� ,0�.

FIG. 9. Path contributions to R̂�3� and �̂�3� in multistate system.
Jumps �change of state� occur when the curves touch the time axis.
The system is in state x0 ,x1 ,x2 ,x3 at times �0 ,�1 ,�2 ,�3, respec-
tively; t1 , t2 , t3 are the intervals between measurements. Both

dashed and solid paths contribute to R̂x3,x0

�3� ��3 ,�0 ;�2x2 ,�1x1� as they

jump at �3. Only the dashed path contributes to �̂x3,x0

�3� ��3 ,
�0 ;�2x2 ,�1x1� where the jump at �3 is the very first after �2. The

dotted path contributes neither to R̂x3,x0

�3� ��3 ,�0 ;�2x2 ,�1x1� nor to

�̂x3,x0

�3� ��3 ,�0 ;�2x2 ,�1x1�, as it has no jump at �3.
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Equations �44� and �45� form a closed system for
R̂�1� ,… , R̂�k� and �̂�1� ,… ,�̂�k�. They may be recursively
solved in Laplace space order by order for k=1, then k=2,
etc. �see Appendix C�.

Having calculated R̂�k� we can obtain the Green’s func-
tion, Ĝxn,x0

�n+1���n ,�0 ;�n−1xn−1 ,… ,�1x1�: the probability for the
particle which starts at �0 at x0 to go through the path

�1x1 ,… ,�nxn. Ĝ is given by multiplying R̂�k� by the survival

probability from the last jump �̂ and integrating over the
time of the last jump:

Ĝ�n+1���n,�0;�n−1xn−1,…,�1x1�

= �̂��n − �0��
q=1

n

�̂�xq� + �
k=1

n �
�k−1

�k

�̂��n − ����
q=k

n

�̂�xq�

�R̂�k����,�0,tk−1,xk−1,…,t1x1�d��. �46�

The PDF for a particle to be at �0 at x0, …, and at �n at xn
is finally given by

P��nxn,…,�0x0� = Ĝxn,x0

�n+1���n,�0;�n−1xn−1,…,�1x1��x0
��0� .

�47�

In summary our algorithm for computing the multipoint cor-
relation function consists of the following steps. We first ap-
ply Eqs. �44� and �45� to calculate the auxiliary matrices

R̂�1� ,�̂�1� ,… , R̂�n� ,�̂�k�, which are then substituted into Eq.

�46� to obtain the Green’s function Ĝ�n+1�. The PDFs are fi-
nally calculated using Eq. �47�. For two-point quantities this
algorithm coincides with Eqs. �9� and �13�.

The general form of the three-point PDF is obtained in
Appendix C by solving Eqs. �44�, �45�, and �46� and is given
by

P�3��s2x2,s1x1,x0� =
1

�s1 − s2�
1 − ���s2�

s2
−

1 − ���s1�
s1

��x2x1
�x1x0

�x0
��0�

+
�1 − ��s2�����s2� − ��s1�����s1�

s2�s1 − s2� � T̂

1 − T̂��s2�
�

x2,x1

� T̂

1 − T̂��s1�
�

x1,x0

�x0
��0�

+
�1 − ��s2������s2� − ���s1��

s2�s1 − s2� � T̂

1 − T̂��s2�
�

x2,x1

�x1x0
�x0

��0�

+ �x2x1
���s1� 1 − ��s2�

s2�s1 − s2�
−

1 − ��s1�
s1�s1 − s2��� T̂

1 − T̂��s1�
�

x1,x0

�x0
��0� . �48�

For a SP Eq. �48� reduces to

P�3��s2x2,s1x1,x0� =
�x2x1

�x1x0

s1s2
�x0

��0� − �x1x0

1 − ��s2�
s1s2

2t̄
� 1̂ − T̂

1̂ − T̂��s2�
�

x2,x1

�x0
��0� − �x2x1

1 − ��s1�
s2s1

2t̄
� 1̂ − T̂

1̂ − T̂��s1�
�

x1,x0

�x0
��0�

+
��s2� − ��s1�
�s1 − s2�s1s2t̄

� 1̂ − T̂

1̂ − T̂��s2�
�

x2,x1

� 1̂ − T̂

1̂ − T̂��s1�
�

x1,x0

�x0
��0� . �49�

The three-point correlation function may be calculated using Eqs. �43� and �49�.

V. THREE-POINT CORRELATION FUNCTIONS

We consider the three-point correlation functions of �f � f − �f� where f�x�=exp �x for the diffusion model in a harmonic
potential �Eqs. �23� and �30��:

B�3���2,�1,�0� � ��f��2��f��1��f��0�� . �50�

This is given by

B�3���2,�1,�0� = B�3���2,�1,�0� − �B�2���1,�0� + B�2���2,�1� + B�2���2,�0���f� − �f�3, �51�

where B�3���2 ,�1 ,�0���f��2�f��1�f��0��.
We compare the SP and GP stationary models for anomalous diffusion introduced in the previous sections. For the SP �Eq.

�12�� B�3� is given by Eq. �D14�, which for the TAD model �Eq. �17�� gives
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BSP
�3��s2�,s1�� = �−2exp�3����2/2��

k=0

	

�
m=0

	

�
j=0

	
����2�m+k+j�

m ! k ! j! � 1

s1�s2�
−

1

s1�s2�
2 �

�s2� + 1�� − 1
+

�

�j + k��
−

1

s2�s1�
2 �

�s1� + 1�� − 1
+

�

�j + m��
+

�s2� + 1�� − �s1� + 1��

��s1� − s2��s1�s2�1 +
���s2� + 1�� − 1�
��j + k�

�1 +
���s1� + 1�� − 1�
��j + m�

�� �52�

where s��s /�. B�3���2 ,�1 ,�0� is obtained by substituting
Eqs. �37�, �38�, and �52� in Eq. �51�.

Note that Eq. �52� obeys B�3��sb ,sa�=B�3��sa ,sb�. This re-
lation follows from the time-reversal and time-translational
invariance of stationary ensembles �27�:

B�3��ta + tb,tb,0� = B�3��tb + ta,ta,0� . �53�

For comparison, the three-point correlation function for a
GP is obtained from the second-order cumulant expansion
�62,67�

BGP
�3� ��2,�1,�0� = e3����2/2�e�

2C��1,�0�+�2C��2,�1�+�2C��2,�0�

− e�
2C��1,�0� − e�

2C��2,�1� − e�
2C��2,�0� + 2�

�54�

where CGP��1 ,�0�=CSP��1 ,�0� is taken to be identical for the
GP and SP �Eq.�33��.

The three-point SP and GP correlation functions are com-
pared in Figs. 10 and 11 for �=0.8, �=10−5, and ����2

=0.372. �For ���1 BSP
�2��BGP

�2� since both reduce to C�t� as
shown in Figs. 7 and 8.�

Contour plots of B�3��t2+ t1 , t1 ,0� displayed for several
time decades show subexponential relaxation. Contours are
linear for BSP

�3��t1+ t2 , t1 ,0� and curved for BGP
�3� �t1+ t2 , t1 ,0�.

BSP
�3���2 ,�1 ,�0� are insensitive to �1 and depend primarily on

the �2−�0 interval. This is consistent with the picture that
trapped particles make significant contributions to long-time
correlations. GP relaxation is faster along the diagonal direc-
tion. Both GP and SP contours are symmetric along the di-

agonal. This is a consequence of Eq. �53�. These figures
demonstrate the capacity of higher-order correlations to dis-
tinguish between various dynamical models.

Logarithmic scale plots of B�3� �Fig. 12� show that the GP
contours �right panel� are not perpendicular to the time axis
even when the time intervals t1 and t2 differ by four orders of
magnitude. In comparison, the three-point correlation func-
tion for the SP �left panel� only changes when t1 , t2 are com-
parable and both contribute to the t1+ t2 time interval. This
observation is equivalent to the straight vs curved contours in
Figs. 10 and 11. The three-point correlation functions along
the diagonal t1= t2 are compared in Fig. 13. The decay of the
Gaussian model is significantly faster. This results from two
factors. First, higher eigenmodes can contribute �C�3�

���2 ,�1 ,�0���x��2�x��1�x��0��=0� resulting in faster GP re-
laxation as pointed out in the discussion of Figs. 7 and 8.
Second, as shown in Figs. 10 and 11, the diagonal decay
BGP

�3� �2t , t ,0� is significantly faster than BGP
�3� �2t ,0 ,0�.

In summary, we have computed multipoint correlation
functions for continuous-time random walks with truncated
anomalous WTD of stationary ensembles. Our model inter-
polates between normal and highly subexponential relax-
ation. Stretched-exponential relaxation has been observed for
two-point correlation functions for the CTRW in a harmonic
potential. This is similar to the short-time regime of nonsta-
tionary random walks commonly used in modeling of
anomalous diffusion. However, anomalous relaxation of sta-
tionary random walks is controlled by the cutoff parameter.
We have not observed the power-law decays �known from
the NP� for the TAD model; however, these can also be mod-
eled with stationary random walks by employing other forms
of long-tailed waiting-time distributions as shown in Appen-
dix B. We developed a general algorithm for calculating mul-
tipoint CTRW correlation functions. Significant differences
in the three-point correlation function B�3� of f�x� were found
for the stationary CTRW and the Brownian oscillator model

FIG. 10. Left: Contour plot for the three-point correlation func-
tion BSP

�3��t1+ t2 , t1 ,0� for SP with �=0.8, �=10−5 , ����2=0.372.
Right: Same plot for the Gaussian model BGP

�3� �t1+ t2 , t1 ,0� with
CGP�t ,0�=CSP�t ,0�. FIG. 11. Longer times for Fig. 10.
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�Gaussian process� with identical two-point correlation func-
tions C of x.

Equations �44�–�46� can be generalized to describe non-
linear optical response functions by including the dynamics
of coherences in Liouville space. The non-Markovian sto-
chastic Liouville equation �50� has been used for linear re-
sponse �two-point correlation function�. The present ap-
proach allows the calculation of a higher-order multipoint
optical response. This extension will be made in the future.
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APPENDIX A: ANALYTIC PROPERTIES OF NONINTEGER
EXPONENTS IN THE COMPLEX PLANE

To find the noninteger exponent for Eq. �14� we note that
since ��s�*=��s*�, the cut in the complex plane must be on
the real axis in the negative half plane. For s
0 � is analytic
and further we assume positivity ��t� 0 and normalization
��s=0�=1. Similar properties are assumed to hold for
 , �1−��s��−1.

Thus the exponents are defined �z
0� as

�z + i!�� = �z2 + �!�2��/2�cos� arctan
!

z
�

+ i sin� arctan
!

z
��

with arctan� �−� /2 ;� /2�.

The Mittag-Leffler function is defined using reverse
Laplace transform

E��− t� �
1

2�i
�

−i	

i	

dz
ez

z + tz1−� �A1�

with series expansion

E��− t� = �
n=0

	
�− t�n

��1 + �n�
.

The Mittag-Leffler function interpolates between the initial
period t�1 of exponential decay

E��− t� � e−t/��1+��

and the power-law decay at long times t�1

E��− t� �  1

t��1 − ��� .

Integrals in the complex plane can be simplified using
variants of the residue theorem. Assuming f�s� is analytical
for s
0, and s→	⇒ f�s�→0 it states that

�
−i	

i	 ds1

2�i

f�s1�
�s − s1�

= f�s� . �A2�

APPENDIX B: WAITING-TIME DISTRIBUTION WITH
FINITE MEAN AND DIVERGING SECOND

MOMENT

An interesting type of subexponential relaxation is the
WTD with finite mean t̄�	 but infinite higher moments,
e.g., �t2�=	 �68�. The typical WTD has the asymptotic form
��t�� t−1−� with 2
�
1. The asymptotic form at s=0 is
connected to moments as ��s��1−st̄+s2�t2�+¯ we there-
fore look for WTDs with ��s��1−s+s� at s=0.

Consider the following example:

�WAD�s� =
1

1 + �1s/�1 + ���s��−1�
,

FIG. 12. Left panel: Contour plot on log10-log10 time scale for
three-point correlation function BSP

�3��t1+ t2 , t1 ,0� for SP with �
=0.8, �=10−5 , ����2=0.372. �Dashed contours connect time points
with equal correlations B�3�=0.02,0.15,0.3,0.45,0.6,
0.75,0.9,1.05.� Right panel: Similar plot for Gaussian model BGP

�3�

��t1+ t2 , t1 ,0� with CGP�t�=CSP. Three-point correlation function
for CTRW and Brownian model with identical CSP�t ,0�
=CGP�t ,0� on logarithmic scale.

FIG. 13. Correlation function B�3��2t , t ,0� is compared for the
SP �solid line� with parameters �=0.8, �=10−5 , ����2=0.372 and
the GP �dashed line� with CSP�t ,0�=CGP�t ,0�.
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�WAD� �s� =
1

1 + �1s + ���s��−1 ,

which gives for s→0

�WAD�s� = 1 − �1s + �1��
�−1s�,

�WAD� �s� = 1 − ���s��−1,

or in the time domain

�WAD�t� � ��
�−1�1/t�+1, �WAD� �t� � ��

�−1/t�, t → 	 ,

while

�WAD�s� = ��
�−1/��1s2−��, �WAD� �s� = 1/��1s�, s → 	 ,

�WAD�t� � ��
�−1/��1t�−1�, �WAD� �t� � 1/�1, t → 0.

�B1�

The application to a CTRW in a potential gives

C�s� =
1 + �D/�2������s��−2

s + �D/�2��1 + ���s��−1�
.

The asymptotic form at s=0,

C�s� = ��
�s�−2,

predicts algebraic tails with t�−2 in the asymptotic regime.
The correlation function does not depend on �1, similar to

the results of the main text. This connects to the standard
diffusion limit where the entire WTD is scaled with the
length of the step a keeping the ratio a2 / t̄ constant, and an
exponential relaxation is obtained for any SP CTRW. For
anomalous relaxation the short time scale �1 �� for TAD� is
limited to 0, keeping D , �� �D ,� for TAD� constant.

APPENDIX C: THREE-POINT CORRELATION FUNCTIONS

Equations �44� and �45� can be solved by performing a Laplace transform:

R̂�k��sk;sk−1xk−1,…,s1x1� = �
�0

	

¯ �
�n−1

	

exp�− � j=1

k
sj�� j − � j−1��R̂�k���k,�0;�k−1xk−1,…,�1x1�d�k ¯ d�1.

sk are Laplace conjugates to the interval tk=�k−�k−1. Laplace transforms for �̂�k� ,�̂ ,�̂ , Ĝ�k� are defined similarly. Equations
�44� and �45� are then transformed to

R̂�k��sk;sk−1xk−1,…,s1x1� = �1 − �̂�sk��−1�̂�k��sk;sk−1xk−1,…,s1x1� , �C1�

�̂�k��sk;sk−1xk−1,…,s1x1� = �
−i	

i	 dsk
*

2�i
�̂��sk

*��
q=1

k
1

sq − sk
* �

q=1

k−1

�̂�xq� + �
j=1

k−1 �
−i	

i	 �
−i	

i	 dsj�

2�i

dsk
*

2�i
�̂�sk

*� 1

sj − sj�
−

1

sj − sk
*�

�
1

�sj� − sk
*� �

q=j+1

k
�̂�xq−1�
sq − sk

* R̂�j��sj�;sj−1xj−1,…,s1x1� . �C2�

Equation �C2� is simplified using the residue theorem Eq. �A2�:

�̂�k��sk;sk−1xk−1,…,s1x1� = �
l=1

k
�̂��sl�

�
q=1;�l

k

�sq − sl�
�
q=1

k−1

�̂�xq� + �
j=1

k−1

�
l=j

k
�̂�sl�

�q=j,�l

k
�sq − sl�

�
q=j+1

k

�̂�xq−1�R̂�j��sj;sj−1xj−1,…,s1x1� .

�C3�

In a similar way we get the Laplace space form of Eq. �46�:

Ĝ�n+1��sn;sn−1xn−1,…,s1x1� = �
−i	

i	 dsn
*

2�i
�̂��sn

*��
q=1

n
1

sq − sn
* �

q=1

n−1

�̂�xq� + �̂�sn��̂�xn�R̂�n��sn;sn−1xn−1,…,s1x1�

+ �
k=1

n−1 �
−i	

i	 dsk�

2�i
�

−i	

i	 dsn
*

2�i
�̂�sn

*� 1

sk − sk�
−

1

sk − sn
*�� 1

�sk� − sn
*� �

q=k+1

n
1

sq − sn
*�̂�xq−1�

�R̂�k��sk�;sk−1xk−1,…,s1x1� . �C4�

This gives
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Ĝ�n+1��sn;sn−1xn−1,…,s1x1� = �
l=1

n
�̂��sl�

�q=1;�l

n
�sq − sl�

�
q=1

n−1

�̂�xq� + �̂�sn�R̂�n��sn;sn−1xn−1,…,s1x1�

+ �
j=1

n−1

�
l=j

n
�̂�sl�

�q=j,�l

n
�sq − sl�

�
q=j+1

n

�̂�xq−1�R̂�j��sj;sj−1xj−1,…,s1x1� . �C5�

Direct application of Eq. �C3� gives

�̂�1��s1� = �̂��s1� �C6�

and

R̂�1��s1� = �1 − �̂�s1��−1�̂��s1�

and using Eq. �C5� the Green’s function Eq. �9� is obtained. The PDFs are finally given by

P�2��s1x1,x0� = ��s1��x1,x0
+ �x1��̂�s1��1 − �̂�s1��−1�̂��s1��x0��x0

��0� . �C7�

Other two-point quantities are calculated from Eq. �C7�.
We next calculate the three-point quantities

�̂�2��s2;s1x1� =
�̂��s1� − �̂��s2�

�s2 − s1�
�̂�x1� +

�̂�s1� − �̂�s2�
�s2 − s1�

�̂�x1��1 − �̂�s1��−1�̂��s1� . �C8�

With Eq. �C8� we prove that the conditions Eqs. �11� and �12� define the stationary model. By applying �̂�2� to the initial

density and summing over results of the first measurements �x1
�̂�2��s2 ,s1x1����0� we obtain the WTD of the first jump after the

second measurement, i.e., the WTD for the first jump after �1. We require Eqs. �11� and �12� to hold and after some of algebra
we get

�
x1

�̂�2��s2,s1x1����0� =
�̂��s2�

s1
���0� . �C9�

The equilibrium density and the first-jump WTD �� are recovered at �1 �compare Eq. �C6��. Therefore, the model is
stationary—there is no difference in starting the process at any time.

Combining Eq. �C1� with Eq. �C8� we get

R̂�2��s2;s1x1� = �1 − �̂�s2��−1�̂��s1� − �̂��s2�
�s2 − s1�

�̂�x1� + �1 − �̂�s2��−1�̂�s1� − �̂�s2�
�s2 − s1�

�̂�x1��1 − �̂�s1��−1�̂��s1� . �C10�

Three-point quantities are obtained by applying Eqs. �C1�, �C3�, and �C5�. The PDF is finally given by

P�3��s2x2,s1x1,x0� = ��s2� − �s1��
s1 − s2

�x2x1
�x1x0

+ �x2��̂�s2��1 − �̂�2��s2��−1 ��̂��s1� − �̂��s2��
s2 − s1

�x1��x1x0
+ �x2x1

�s2� − �s1�
s1 − s2

��x1��1 − �̂�s1��−1�̂��s1��x0� + �x2��̂�s2��1 − �̂�s2��−1 ��̂�s2� − �̂�s1��
s1 − s2

�x1��x1��1 − �̂�s1��−1�̂��s1�

��x0���x0
��0� . �C11�

Applying Eq. �2� we obtain Eq. �48� and for the SP �Eq. �12�� we get Eq. �49� of the main text.

APPENDIX D: CORRELATION FUNCTION FOR A CTRW IN AN EXTERNAL POTENTIAL

In this appendix we calculate the correlation function for a CTRW, with the diffusion model Eq. �23� and an arbitrary WTD.
First we consider a general potential. Starting from the general Green’s function for SP diffusion in a potential �Eq. �29�� the
correlation function can be calculated by

C�s� =
1

s
�
n=0

	 1 −
�n

sD−1 + s�nt̄��s�/�1 − ��s��
�/ dx dx� x�x�n�x���n��x��x��0� �D1�

and �f is the correlation function;
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BSP
�2��s� = �

n=1

	
1

s�1 −
�n

sD−1 + s�nt̄��s�/�1 − ��s��
�/ dx dx� e��x�+x��n�x���n��x��x��0� �D2�

for an arbitrary potential.
For a harmonic potential Eq. �30� the equilibrium state

has a Gaussian form,

�x��0� =
exp�− x2/2�2�

�2��
,

where �2=kT /M�2, and the Fokker-Planck operator takes
the form

L̂ =  �2

�x2 +
1

�2

�

�x
x� ,

with eigenvalues

�n =
n

�2 , �D3�

right eigenvectors

�n�x� =
exp�− x2/2�2�
2n�2�n ! �

Hn x

��2
� , �D4�

where Hn is the nth-order Hermite polynomial

Hn�x� � �− 1�nex2 dn

dxne−x2
, �D5�

and left eigenvectors

�n��x� = Hn x

��2
� . �D6�

Equations �D3�–�D6� are essential to represent the Green’s
function for a harmonic potential in space variables:

Ĝx�x�s� =
1

s
�

n
1 −

n

s�2D−1 + snt̄��s�/�1 − ��s��
�

�
exp�− x�2/2�2�

2n�2�n ! �
Hn x�

��2
�Hn x

��2
� . �D7�

Combining Eq. �D7� with the TAD model �Eq. �17�� we get
Eq. �31�.

Calculation of the correlation function is simplified in the
harmonic case because the important recurrence relation

xHn�x� =
Hn+1�x�

2
+ nHn−1�x� �D8�

enables a simple representation of x̂:

x̂��n� = ��2�n + 1���n+1� +
1

2
��n−1�� .

For a harmonic potential, space integration for the corre-
lation function is simplified:

C�s� =
�2

s

�1 − ��s�� + Dt̄���s� − ���s��/�2

�1 − ��s�� + Dt̄��s�/�2
�D9�

and by applying the stationary condition �Eq. �12��,

C�s� =
�2

s
1 −

1

s��2D−1 + t̄��s�/�1 − ��s���
� . �D10�

Combining with Eq. �17� we recover Eq. �33�.
In principle, ��s� can be reconstructed once C�s� is

known. The other parameters are found as �2=C�t=0� and
using

lim
s→	

t̄��s�
1 − ��s�

= 0,

we get D=lims→	�s�2−s2C�s��. Equation �D10� then gives
�. Using C�t� the CTRW model is reconstructed and may be
further tested.

The general scheme for probing the multipoint quantities
is as follows: B�2��t� → parameters of models �� �SP� or C�t�
�GP�� → prediction B�k 3��t� and experimental test. In prac-
tice, a small number of parameters will be fitted to param-
etrize the WTD �in our model � ,� ,��. The quality of such
fits is not enough to distinguish between a CTRW and the
Gaussian model, but higher-order correlation functions are
important.

Higher moments of x are calculated by using a convenient
representation of x̂ in terms of creation and annihilation op-
erators:

x̂ = ��b† + b� ,

b†��n� = �2�n + 1���n+1� ,

b��n� =
1
�2

��n−1� .

For an arbitrary function Q�x�,

�
�0

	

d�1e−s��1−�0��Q„x��1�…Q„x��0�…�

= ��0��Q�b + b†�Ĝ�s�Q�b + b†���0� .

Using the relation

exp − �x̂ = e����2/2exp − �b†exp − �b

we get
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B�2��s� = e����2�
n=1

	
����2n

n!

1

s

�
�1 − ��s�� + Dt̄n���s� − ���s��/�2

�1 − ��s�� + Dt̄n��s�/�2
�D11�

and applying the stationary condition �Eq. �12��,

B�2��s� = exp����2�
n=1

	
����2n

n!

1

s

�1 −
1

s��2/nD + t̄��s�/�1 − ��s���
� , �D12�

which gives Eq. �38� by applying Eq. �17�.
The three-point PDF for the diffusion potential is

P�s2x2,s1x1,x0� =
��s2� − ��s1�

s1 − s2
��x2 − x1���x1 − x0��x0

��0� + �
k=0

	
�s2�����s1� − ���s2���1 − �kDt̄�

�1 − ��s2��1 − �kDt̄���s2 − s1�
�k�x2��k��x1���x1 − x0��x0

��0�

+ �
n=0

	
��s2� − �s1���1 − �nDt̄����s1�
�s1 − s2��1 − ��s1��1 − �nDt̄��

��x2 − x1��n�x1��n��x0��x0
��0�

+ �
k=0

	

�
n=0

	
�s2����s2� − ��s1���1 − �kDt̄��1 − �nDt̄����s1�

�1 − �1 − �kDt̄���s2���s1 − s2��1 − �1 − �nDt̄���s1��
�k�x2��k��x1��n�x1��n��x0��x0

��0� . �D13�

The three-point correlation function B�3���exp��x��2��exp��x��1��exp��x��0��� for the SP may by calculated by

B�3��s2,s1� = exp�3����2/2��
k=0

	

�
m=0

	

�
j=0

	
����2�m+k+j�

m ! k ! j!
� � 1

s1s2
−

1

s1s2
2 t̄��s2�

�1 − ��s2��
+

�2

�j + k�D
� −

1

s2s1
2 t̄��s1�

�1 − ��s1��
+

�2

�j + m�D
�

+
��s2� − ��s1�

�s1 − s2�s1s2t̄��s2� +
�2�1 − ��s2��

�j + k�Dt̄
���s1� +

�2�1 − ��s1��
�j + m�Dt̄

�� . �D14�

Equation �52� is obtained by applying Eq. �17� to Eq. �D14�.

APPENDIX E: NONSTATIONARY CTRW

The results of Appendix C are applicable to nonstationary
processes, except that the WTD for the first jump is different
from Eq. �12�. In the general case, the first measurement is
not made at the start of the nonstationary process and the
two-time PDF P�2���1x1 ,�0x0� depends on the time t0 be-
tween the start of the process and the first measurement. One
way is to calculate C from the three-time PDF:

C��2x2,�1x1� =� P�x2�2,x1�1,x0�0�dx0.

A simpler approach is to calculate the changed WTD for the
very first jump from the time of the first measurement ��1�

dependent on t0,

��1��s1,s0� =
��s1� − ��s0�

s0 − s1

���s0�
1 − ��s0�

+
���s1� − ���s0�

s0 − s1
.

�E1�

For the stationary process we set ���s�= �1−��s�� /st̄; and get
the waiting-time function independent on the time interval t0,
as expected for a stationary process:

��1��s1,s0� =
1 − ��s1�

s0s1t̄
, ��1��s1,�0� =

1 − ��s1�
s1t̄

= ���s1� .

In contrast the correlation function for a nonstationary pro-
cess with ���s�=��s� carries information about the starting
time, and will depend on both time intervals,

��1��s1,s0� =
��s1� − ��s0�

s0 − s1

1

1 − ��s0�
.

If the first measurement is made at the time origin, the
WTD is not special but ��s�=���s�. This refers to the com-
monly used NP, which is compared to the SP in the main
text. Below we focus on the NP. The Green’s function Eq.
�10� is

Ĝ�s� =
1

s�1̂ − Dt̄��s�L̂/�1 − ��s���
�E2�

which is the Green’s function of the Fokker-Planck equation
for ��s�=� / �s+�� and the Green’s function of the FFPE for
��s�=1/ �1+s��.

Expanded in the eigenbasis of the Fokker-Planck operator
the Green’s function takes the form
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Ĝx�x�s� =
1

s
�
n=0

	
1 − ��s�

�1 − ��s�� + Dt̄�n��s�/�2
�n�x��n��x�� .

�E3�

The correlation function is given by

C�s� = ��2/s�
1 − ��s�

�1 − ��s�� + Dt̄��s�/�2
. �E4�

The �f correlation function is calculated using

BNP
�2� �s� = exp����2�

n=1

	
����2n

n!

1

s + nsDt̄��s�/�2�1 − ��s��
.

�E5�

As the NP is treated in the context of the WTD with t̄
=	 one should replace Dt̄→a2 /2. For the Mittag-Leffler
model Eq. �14�

Dt̄��s�
�1 − ��s��

=
a2s−�

��

and with the definition

D� �
a2

2��

Eq. �E2� becomes the Green’s function for the fractional
Fokker-Planck equation �7�. Equations �E3�, �E4�, and �E5�
correspond to Eqs.�32�, �34�, and �39�, respectively.
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