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Two algorithms for simulating the response of peptides to sequences of IR pulses are developed and applied
to N-methyl acetamide (NMA) and a 17 residueR-helical peptide (YKKKH17) in D2O. A fluctuating
vibrational-exciton Hamiltonian for the amide I mode is constructed from molecular dynamics trajectories.
Coupling with the environment is described using a density functional theory electrostatic map. The cumulant
expansion of Gaussian fluctuation incorporates motional narrowing due to fast frequency fluctuations and is
adequate for NMA and for isotopically labeled bands in large peptides. Real-space truncation of the scattering
matrix of the nonlinear exciton equations significantly reduces the computational cost, making it particularly
attractive for slow fluctuations in large globular proteins.

I. Introduction

Probing the structure and folding dynamics of proteins is one
of the most fundamental problems in biophysics and has been
the subject of intensive effort.1-16 IR spectroscopy provides a
valuable tool in these studies.17-24 Significant progress has been
made over the past decade in developing coherent two-
dimensional infrared (2DIR) techniques.25-33 In a 2DIR experi-
ment, three incoming pulses with wavevectorsk1, k2, andk3

interact with the peptide to generate a coherent signal in one of
the directionsks ) (k1 ( k2 ( k3. The pulse sequence and
time delays (t1, t2, andt3) are shown in Figure 1. 2D correlation
plots of the signals plotted as Fourier transforms with respect
to two of these delay periods reveal new types of information
with enhanced spectral resolution. Diagonal peaks show the
fundamental transitions, while cross-peaks and their line shapes
probe the fluctuations of the correlations among various
structural elements.26

2D NMR techniques originally introduced in the 1970s34 had
turned it into a useful structural tool.35 Extracting information
from NMR data requires extensive simulations. The “direct
inversion” of spectra to structures is based on constrained fits
guided by simulations.36-38 A recent study of human ubiquitin
in solution37 combined NMR experiments with molecular
dynamics (MD) simulations to directly determine the entire
ensembles of protein conformations, rather than merely the
average structure: Both the native structure and its associated
dynamics are thus obtained simultaneously. Since IR spectra
are more congested, and anharmonic vibrational Hamiltonians
are much more complex than spin Hamiltonians,39,40 efficient
simulation strategies are essential for the interpretation and
analysis of 2DIR signals. Thanks to the ultrafast time scale,
the simulation of 2DIR signals with atomic level details only
requires subnanosecond trajectories, which are readily avail-
able.41-44

Standard tools are available for computing two-point cor-
relation functions which are commonly used in the analysis of
fluctuations. Nonlinear response functions require the efficient
and accurate sampling of multipoint correlation functions; this

article addresses some of the simulation challenges involved in
predicting and interpreting multidimensional measurements.

We focus on the amide vibrational modes which are localized
along the peptide backbone. Their couplings (∼10 cm-1), which
depend on the secondary structure and its fluctuations, are
typically much smaller than the mode frequencies (∼1600
cm-1). The spectrum thus consists of well-separated groups of
energy levels representing single excitations| e >, double
excitations| f >, and so forth (Figure 4, part vi). The laser pulses
probe the system by inducing transitions among these manifolds.
Linear (single-pulse) techniques only access the lowest (single-
exciton) manifold, whereas doubly excited (two-exciton) states
can be effectively monitored by third-order spectroscopies.

Spectra of small peptides may be calculated using sum-over-
states (SOS) expressions45 in conjunction with simulated
structural trajectories. The optical response is described in terms
of transitions among eigenstates. For short peptides, in which
level crossings among eigenstates can be ignored, the cumulant
expansion of Gaussian fluctuation (CGF)45 can be adopted to
account for bath fluctuations of arbitrary time scale, ranging
from motional narrowing (fast), to the inhomogeneous broaden-
ing regime (slow). For several reasons, a different simulation
protocol should be adopted for large peptides: The SOS
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Figure 1. (top) Pulse configuration for heterodyne four wave mixing.
k1, k2, andk3 are the input pulses,ks is the signal generated, which is
in the same direction as the detection pulsek4. (bottom) The pulse
sequence for coherent 2D experiments.tj are the time intervals between
pulses centered atτi.
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computational cost of third-order coherent signals scales as
∼N4,45 whereN is the number of coupled oscillators and this
calculation becomes prohibitively expensive asN is increased.
In addition, as the peptide size is increased, the energy levels
become more dense and the adiabatic approximation underlying
the CGF no longer holds. Finally, in large peptides, the spectra
are often dominated by slow large-scale structural fluctuations.
Line broadening may then be simulated by averaging the
homogeneous response over ensembles of system configura-
tions.46

The nonlinear exciton equations (NEEs)45,47-49 provide a
practical alternative for large proteins. These equations use the
single-exciton basis and view the nonlinear response in terms
of scattering among one-exciton quasiparticles. Two-exciton
resonances enter through the exciton scattering matrix, totally
avoiding the expensive computation of multiple-exciton states.
The apparent NEE scaling of the computational cost for third-
order signals is also∼N4, similar to the SOS. However, when
the short-range nature of exciton couplings is exploited, the cost
may be reduced considerably and could even scale linearly with
protein size.

We explore the applicability and test the limits of the CGF
and NEE formalisms. Linear absorption and several third-order
signals are predicted and discussed for the amide I band line
shape of NMA and a 17 residueR-helical peptide Ac-
YAAKAAAAKAAAAKAAH -NH2 (named YKKKH17 since
YKKKH are its nonalanine (lysine) residues) in D2O (lower
panel of Figure 2). We demonstrate that the CGF is suitable
for NMA and for narrow isotopically labeled bands whereas
the NEE with inhomogeneous averaging yields accurate spectra
for large peptides.

A brief survey of coherent multidimensional signals is given
in section II, more details can be found in refs 29 and 50. An
accurate vibrational-exciton Hamiltonian is crucial for the
simulation of the spectra. An electrostatic DFT map is con-
structed for the fundamental frequencies and anharmonicities
and used to generate the Hamiltonian of NMA.51 The vibrational

Hamiltonian is introduced in section III, and the simulation
protocols are outlined in section IV and presented in detail in
sections V (CGF) and VI (NEE). These are then applied to NMA
(section VII) and YKKKH17 (section VIII). We finally discuss
our results and future applications in section IX.

II. Coherent Multidimensional Signals of coupled
vibrations

We consider third-order signals induced by three resonant
femtosecond pulses with the electric field

whereE(j) is the amplitude of thejth pulse andνj ) x, y, z
denotes its polarization direction.

We assume an ideal impulsive experiment with very short
pulses where the desired time ordering of the various interactions
is enforced. Finite-pulse envelopes can be included,50 but the
experiment is best understood in this impulsive limit. The
response of an ensemble of molecules is determined by the
nonlinear polarization,50 P, which serves as the source for the
ks signal in the Maxwell equations

The system is initially at equilibrium in the ground state, and
the response function depends parameterically on the three time
intervals between pulsestj (Figure 1). Due to interference of
the induced polarization of the various molecules, the signal is
only generated along specific (phase-matching) directionsks.
There are four possible signals with wavevectors:kI ) -k1 +
k2 + k3, kII ) + k1 - k2 + k3, kIII ) +k1 + k2 - k3, andkIV

) + k1 + k2 + k3. These techniques can be understood by
using Feynman diagrams50 which depict the evolution of the
vibrational density matrix in the course of the nonlinear process.
(Figure 4). Time goes from the bottom to the top, and the two
vertical lines in the diagram represent the ket and the bra of the
density matrix, while arrows represent interactions with the laser
pulses.

We shall focus onkI andkIII . The three diagrams contributing
to kI are shown in Figure 4 (top). In all the diagrams, the density
matrix is in a single-quantum coherence|g > < e| between the
ground state and the singly excited state duringt1. During t3, it
is either in the conjugate coherence|e > < g| ((i) and (ii)) or
in a coherence between the one- and two-exciton manifolds|f
> < e| (iii). The kI signal is displayed by performing a double
Fourier transform with respect to the first and the third time
delays (F(Ω) ≡ ∫0

∞ dt exp(iΩt)F(t))

where Ω1 and Ω3 are the Fourier conjugates tot1 and t3,
respectively. In all calculations, we sett2 ) 0.

kIII is similarly described by the two Feynman diagrams (iv)
and (v) and shows double-quantum coherences between the
ground state and the two-exciton band|f > < g| during thet2
interval. Duringt3, it has a single-quantum coherence|e′ > <
g| (iv) and |f > < e′| (v). kI, known as the photon echo, can
improve the resolution by eliminating certain types of inhomo-
geneous broadening. The spectral bandwidth is doubled inkIII

Figure 2. Structure of NMA (top) and YKKKH17 (bottom).
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which carries direct information regarding the coherence
between the two-exciton states and the ground state (double-
quantum coherence).28 The system is transferred to a coherence
by the first pulse. The second pulse takes the system either to
a population or to a coherence between two excitonic states.
Then the population and coherence evolution can be probed by
holding the second delay time,t2 (often referred to as population
waiting time) fixed. The third pulse creates coherences either
between the ground and one-exciton states or between the one-
and two-exciton states.

By performing a Fourier transforms with respect to the second
and the third time delays (Ω2 andΩ3 are the Fourier conjugates
to t2 and t3, respectively), we can observe double- (single-)
quantum coherence alongΩ2 (Ω3). ThekIII signal is

In all the calculations, we have sett1 to zero.
The linear response is similarly related to the linear response

function

whose Fourier transform gives the absorption spectrum

III. Fluctuating Vibrational-Exciton Hamiltonian

The construction of a fluctuating Hamiltonian for the primary
vibrations and their coupling with a bath is the first step in the
simulation of vibrational line shapes. Nonlinear signals are
sensitive to fine details (e.g., anharmonicities, overtone transi-
tions, etc.) and require a high-level Hamiltonian.52 Vibrational
motions and spectra are commonly described by normal modes.
These collective coordinates provide a convenient zero-order
approximation for the vibrational eigenstates and frequencies.
However, a normal-mode analysis is often too expensive for
large polypeptides. Instead, since the amide I vibrations are
localized on the backbone peptide bonds, it is desirable to trace
the structural origin of spectral features to local vibrational
coordinates.53 A peptide can be viewed as a chain of beads,
each containing one amide residue (OdCsNsH). The Frenkel
exciton model has long been used17,19,54,55 to represent the
vibrational Hamiltonian in this localized basis. Diagonal ele-
ments of the Hamiltonian matrix give the zero-order local mode
frequencies while off-diagonal elements represent their cou-
plings. For large, globular proteins, the Hamiltonian may be
constructed using parameters obtained from quantum chemistry
calculations performed on small segments.

Quantum calculations of 96 NMA-water clusters were
recently combined with a fitting procedure to obtain a linear
relation between the frequency of NMA, a simplest model
system for the peptide bond, and the instant external electric
potential.56 A similar procedure was adopted to obtain a relation
between NMA frequency and the external electric fields from
200 cluster calculations.57 Both approaches work very well for
the absorption line width (27 cm-1, compared with the
experimental width of 29 cm-1) and give a reasonable solvent
peak shift (∼60 cm-1 compared with the experimental shift of
90 cm-1). By considering some of the extreme configurations

of NMA-water clusters, Keiderling reproduced the solvent shift
even better.58

The cluster fitting for specific solvents is highly accurate but
may be too expensive for applications which require repeated
calculations for a large number of configurations of complex
polypeptides. We thus adopt a different approach, starting with
the vibrational-exciton Hamiltonian

where

is the system Hamiltonian andĤF is the interaction with the
optical field,E(t)

B̂m
† (B̂m) is the creation (annihilation) operator for themth

amide I mode, localized within the amide unit (OdCsNsH),
with frequencyεm, anharmonicity∆m, and transition dipole
moment µm. These operators satisfy the Bose commutation
relations [B̂m, B̂n

†] ) δmn. Jmn are the harmonic intermode
couplings. All parameters ofĤS fluctuate due to conformational
changes of the backbone, the solvent, and side-chain dynamics.

To describe themth localized amide I mode, it must be
separated from all other modes: The segment made of that
amide residue and two neighboring neutral groups (according
to CHARMM27 force field,44 which we use in electrostatic
interaction calculation) containing theR carbons is defined as
the chromophore (Figure 3). The rest of the protein, that is, all
atoms other than this chromophore, and the solvent molecules
are treated as a bath, whose effect on the chromophore will be
described by a fluctuating electrostatic field.

The frequency of modem subjected to a time-dependent
electric field is given byεm(E) ) ε - δεm(E). ε ) 1717 cm-1

is the frequency of an isolated NMA in the gas phase.58 The
spectral shiftδεm(E) and the anharmonicity∆m(E) are obtained
from an ab initio DFT map which relates the electric field and
its derivatives at a reference point to the fundamental and
overtone frequencies of the amide I mode.51 Geometry optimi-
zation was performed on a gas-phase NMA reference structure
at the BPW91/6-31g(d,p) level of DFT using Gaussian 03.59

This functional is known to give accurate vibrational frequen-
cies.58 During optimization, the origin is set to be the reference
point, which is in the middle of the line connecting the oxygen
and hydrogen atoms of this NMA molecule and thex axis goes
from O to H. OdCsNsH then defines thex-y plane, where
the y axis points toward the N atom.

Figure 3. Amide I vibrational chromophore (red rectangle). “SC”
stands for “side chain”. The dotted line at the bottom indicates that
some atoms of the side chain may be included in the chromophore
depending on the “group” defined in the Charmm force field.
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A DFT map was constructed which relatesδεm(E) and
∆m(E) to a 19 component vectorCT ≡ (Ex, Ey, Ez, Exx, ..., Exxx,
...) representing all the independent components of the electric
field, its gradients, and second derivatives at the origin point

The coefficientsKν and Kνν′ are obtained from vibrational
eigenstate calculations for the sixth-order DFT anharmonic
vibrational potential of a single NMA chromophore in a spatially
nonuniform electric field.51 ∆m(E) was expanded in a similar
fashion. A modified Gaussian 03 code was used to generate
the anharmonic potential and the ARNOLDI algorithm was
employed for the eigenstates calculations. To trace the origin
of the electric field influence on the amide I band, the CdO
bond length obtained by energy minimization for the various
field values was also parametrized in terms ofC.51

The instantaneous CdO bond length was calculated from the
DFT map. The scatter plot of the amide I frequency vs CdO
bond length is shown in Figure 5. The strong positive correlation
suggests that electric field fluctuation causes geometrical

changes of the amide unit due to polarization, which is the
reason for the amide I frequency fluctuation. This agrees with
the conclusions from previous studies.51,61-63

The components ofCT were determined at each time point
by a least-squares fit to the electric field sampled at 67 points.
Spanning the spatial region of the electric field relevant in the
amide vibrations, to decide this region we have expanded the
molecular charge densityF(r ) in the vibrational modesQi

The transition charge density (TCD)∂F/∂Q51 represents the
electronic structure change due to theQi vibration. We expect
the electrostatic potential generated by the solvent in the region
where the TCD is large to dominate the optical response of
that vibration. Three electric field components were sampled
at each of these 67 points and used for the fitting calculated for
each bath configuration. TheCT calculated using this protocol
represents the electric field distribution across the TCD region.

The couplings of different amide modes were assumed to
depend solely on the peptide backbone structure. For the nearest
covalently bonded modes, we used Torii and Tasumi’s ab initio
map.20 All other couplings were calculated by making the dipole
approximation for each amide unit17,19and using the electrostatic
TDC model

whereµm is the transition dipole in (D Å-1 u-1/2) units, rmn is
the distance between dipoles (in Å),emn is the unit vector
connectingm andn, andε ) 1 is the dielectric constant. The
angle between the transition dipole and CdO bond is 10°. The
conversion factorA ) 848619/1650 gives the coupling energy
in cm-1.

IV. Simulation Protocols

The CGF modeling of the coherent vibrational response
involves the following steps:

1. A MD simulation generates a sequence of protein and
solvent configurations for NMA and YKKKH17.

2. A fluctuating vibrational-exciton Hamiltonian,ĤS(t), and
the transition dipole matrix,µ(t), in the one-exciton and two-
exciton bases are constructed for each configuration. The
fundamental frequencies and the diagonal anharmonicities are
generated by our electrostatic DFT map.

3. The reference exciton HamiltonianHh S is obtained as the
time average ofĤS(t). The eigenvalues,ωj n, and eigenvectors,
ψh n, of this Hamiltonian form a reference basis. The trajectory
of ĤS(t) and µ(t) is transformed to the reference basis set,
creating a fluctuating Hamiltonian matrix withδωn(t) ) ωn(t)
- ωj n (diagonal fluctuations) and off-diagonal fluctuations of
couplings,δJmn(t) ≡ Jmn(t). The line broadening functions (eq
15) were generated using this Hamiltonian.

4. The necessary products of four transition dipoles are
calculated. Both orientational averaging64 and time averaging
were performed to account for fluctuations of the transition
dipoles.

5. The reference Hamiltonian, line broadening functions, and
average amplitudes of the Liouville space pathways were

Figure 4. Double-sided Feynman diagrams for thek I and k III

techniques showing the pulse sequence and the vibrational density
matrix during each time interval.

Figure 5. Scatter plot of the amide I fundamental frequency vs the
CdO bond length.
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combined to calculate the response functions. The experimental
lifetime broadening is added.65

The NEE approach requires the following steps:
1. An MD or a Monte Carlo simulation generates an ensemble

of system configurations.
2. The fluctuating vibrational-exciton Hamiltonian,ĤS(t), and

transition dipole matrix,µ(t), were constructed in a fashion
similar to the CGF, except that only the one-exciton block is
calculated.

3. At each configuration, we usedĤS(t) to calculate the
exciton scattering matrix in the one-exciton basis.

4. The products of four transition dipoles50 were calculated
and ensemble averaged.

5. The response functions were calculated at each configu-
ration using the Green function expressions64 and then averaged
over configurations.

V. CGF simulations of Multipoint Response Functions

Simulations were performed on the basis of eigenstatesψn

of the reference HamiltonianHh s with energiesεjn. All elements
of the Hamiltonian fluctuate due to coupling with the bath:
diagonal frequency fluctuations,δεn, are primarily responsible
for the line shapes, while off-diagonal fluctuations of couplings,
δJmn, cause population transport and lifetime broadening. An
adiabatic approximation is used by assuming that all fluctuation
amplitudes are much smaller than the average energy spacings
between states so that curve crossing is negligible. Thus, the
CGF is suitable for calculating equilibrium fluctuations of small
systems with well-separated energy levels.

The one-exciton states were obtained by solving the eigen-
value problem

where the summation runs over the chromophores. This yields
the one-excition eigenfunctions,ψem, and energies,εe. Two-
exciton states were obtained by diagonalizing the two-exciton
block. The response function was calculated using the second-
order cumulant expansion,66 which is exact for Gaussian
fluctuation statistics. A detailed description of this method and
closed correlation function expressions for the signals can be
found elsewhere.45,50

The linear response function is given by a sum over transitions
from the ground to all first excited statese, whose energies lie
within the laser bandwidth

whereθ(t) ) 0 (θ(t) ) 1) for t < 0 (t > 0) is the Heavyside
step function,µeg is the transition dipole element between the
ground state and theeth one-exciton state, and〈‚‚‚‚〉o represents
orientational averaging and〈‚‚‚‚〉t represents time averaging. The
line broadening functionsg̃ab for the transition between the two
states are given by

wherea andb can be states in either the exciton basise, f or
the local basisn, m. C′′ab(ω) is the spectral density of the

fluctuation of the transition frequencyU(t) ≡ εa - εb -
(εja - εjb)

Ũ(ω) is the Fourier transform ofU(t). In the present simulations,
we calculatedg̃ab(t) in the exciton basis, but one can also
calculate it first in the local basis and then transform to the
exciton basis.67

We have added lifetime broadening,γjeg, which originates
from fluctuations of the couplings

Kaa is the diagonal element of the vibrational relaxation matrix
K representing the total relaxation rate from statea to all the
other states. Off-diagonal elements,Kab, give the relaxation rate
from statea to b. Conservation of probability implies that the
sum of the elements of the relaxation matrix in each column is
zero

The vibrational relaxation rates are directly related to the
correlation functions of fluctuations of couplings

where

andM′′ab(ω) is a spectral density ofJab

The third-order response function is given by the four point
generalization of eq 6 (eqs 5.22-5.23 in ref 45). Equation 5.23
in ref 45 neglects vibrational relaxation. This can be included
by adding the Doorway-Window (DW) expressions68 (eqs D6-
D9 of section 5.2 in ref 45) which require the numerical solution
of master equations (eq 5.31 in ref 45). The response functions
were calculated by the procedure described in section IV.

VI. NEE Simulations of Multipoint Response Functions

The NEEs were derived for a vibrational Hamiltonian which
conserves the number of excitons (see, e.g., eq 8). Response
functions are solely expressed using the one-exciton states.
Doubly excited resonances are obtained from the scattering of
one-exciton states. The scattering is then the source of the
nonlinear response (excitations in a linear system are noninter-
acting bosons and their response is strictly linear). The scattering
matrix contains all necessary information regarding the two-
exciton resonances, and the calculation of two-exciton eigen-
states is avoided.

The NEE response is expressed in terms of one-exciton
Greens functions, which represent the time evolution of coher-
ences between the ground and the one-exciton states. The
general Green function expressions for the response are given
in ref 68. The simplified expressions given below neglect

∑
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population relaxation and therefore hold only for short second
time delayst2. ThekI signal is

and for thekIII signal we get

where

is the one-exciton Green’s function and

is the two-exciton Green’s function.
The broadeningγe can be obtained either from simulations

or from experiment.
The exciton scattering matrixΓe4e3,e2e1(Ω)64 expresses the two-

exciton resonances in terms of one-exciton Green’s functions.
The four indices represent the two incoming (e1 and e2) and
two outgoing (e3 ande4) excitons (we denote this the scattering
configuration). The matrix is frequency dependent and shows
the two-exciton resonances. The magnitude of the scattering
matrix for some scattering configuration reflects its contribution
to the spectrum. We note thatΓe4e3,e2e1 ) Γe4e3,e1e2 ) Γe3e4,e2e1,
due to permutation symmetry of excitons.

The apparent∼N4 scaling of the computational effort for NEE
is the same as in the SOS, however, the number of terms can
be greatly reduced when excitons are localized and the anhar-
monicities are local, resulting in a much more favorable scaling.
To that end, we define the exciton overlap factor

This parameter relates two excitons in real space: Fore ) e′,
we haveηee′

(1) ≡ 1. For uncoupled chromophores,Jmn ) 0 and
ηee′

(1) ) δee′, indicating that the excitons do not interact.
Assuming that the excitons only scatter provided they spatially
overlap, we can quantify the probability of this event by
assuming that exciton pairs (e1e2) scatter only provided their
overlap is larger than a certain cutoffηC, ηe1e2

(1) > ηC. This
criterion may also be used for pairs of final outgoing states-
(e4e3). It restricts the distance between two initial excitons and
between two final excitons in the scattering matrix due to the
local nature of the anharmonicity. When this cutoff is applied,
the number of relevant scattering matrix elements should scale
asN2 rather thanN4.

An additional constraint comes from the exciton-exciton
scattering radius. This is related to how far two excitons can
travel during their interaction and restricts the distance between

initial and final excitonse3e2. We introduce a second overlap
parameter

η(2) is the amplitude of a path going frome to e′ through all
possible intermediate statese1. We will useηee′

(2) to select the
dominante3e2 pairs in the scattering matrix.

Using the cutoff parametersηC
(1) and ηC

(2), we retained only
those scattering matrix elementsΓe4e3,e2e1 which satisfyηe2e1

(1) >
ηC

(1), ηe4e3

(1) > ηC
(1), ηe3e2

(1) > ηC
(2), ηe3e1

(1) > ηC
(2), ηe4e2

(1) > ηC
(2), andηe4e1

(1)

> ηC
(2). The scaling of the NEE effort with system size reduces

to ∼N for large systems with localized excitons. The efficiency
of this truncation stems from two reasons: (i) We can identify
the important exciton statesbeforecalculating the scattering
matrix itself. Their number will be much smaller thanN4. The
scattering matrix is then calculated only for the selected set of
scattering combinations. (ii) The numerical effort required for
calculating the signal using multiple summations is greatly
reduced when the scattering matrix is sparse.

A different truncation procedure can be obtained by calculat-
ing the complete scattering matrix (which scales as∼N4) and
neglecting all matrix elements smaller than some cutoffΓ(C).
This allows us to identify the important scattering configurations.
The scattering matrix values for all relevant frequencies must
be added for each selected scattering configuration. This method
is more straightforward to apply and does not require physical
arguments regarding exciton localizations in space. However,
unlike the above truncation, it still requires the calculation of
the entire scattering matrix. Both truncation schemes should be
optimized for specific applications.

VII. Vibrational Response of NMA

The amide I band of NMA has one fundamental and one
overtone frequency and no coupling. The NMA structure
obtained from ref 51 was placed in a simulation box with 1000
water molecules. The CHARMM package44 was then used to
carry out the MD simulation with the NMA molecule con-
strained as a rigid body using the “SHAPE” command.44 The
Charmm27 force field44 is used for NMA with TIP3 water. A
4 fs time step 1 ns trajectory was then generated. All water
molecules were included in the bath. The ground state (0
cm-1),the fundamental (∼1650 cm-1), and the overtone (∼3300
cm-1) are well separated. The frequency fluctuation (∼15 cm-1)
is much smaller than these frequencies, making CGF the method
of choice. Interestingly, we found that the fluctuations of the
amide I mode anharmonicity and its fundamental frequency are
uncorrelated.51

Figure 6 shows the simulated CGF linear absorption spectra
of the amide I band. Neglecting vibrational relaxation (green
line), the fwhm is 19 cm-1, after adding the experimental
lifetime broadening 450 fs65(red line), the fwhm becomes 30
cm-1, which is remarkably close to the experiment (29 cm-1).

The simulatedkI spectra are presented in Figure 7 both
excluding (upper panel) and including (middle panel) vibrational
relaxation. The finite vibrational lifetime is significant in this
case. For comparison, we have carried out an NEE simulation.
Both linear absorption (Figure 6, black) and thekI signal (Figure
7, lower panel) are broader than the CGF. The inhomogeneous
averaging protocol assumes that the energy fluctuations are
much slower than their inverse magnitude. Obviously, this
assumption is not justified for NMA where motional narrowing,
included in the CGF, should be taken into account.

ηee′
(2) ) ∑

e1,m,n

|ψe1,m
||ψe1,n

||ψe,m||ψe′,n| (27)S ν4ν3ν2ν1

kI (Ω3,t2 ) 0,Ω1) ) 2i ∑
e4...e1

〈µe4

ν4 µe3

ν3 µe2

ν2 µe1

ν1〉o ×

Ie1

/ (-Ω1)Ie4
(Ω3)Γe4e1e3e2

(Ω3 + εe1
+ iγe1

)Ie3e2
(Ω3 + εe1

+

iγe1
) (22)

S ν4ν3ν2ν1

kIII (Ω3,Ω2,t1 ) 0) ) 2i ∑
e4...e1

〈µe4

ν4 µe3

ν3 µe2

ν2 µe1

ν1〉o ×

Ie4
(Ω3)Ie3

/ (Ω2 - Ω3)[Γe4e3,e2e1
(Ω2)Ie2e1

(Ω2) - Γe4e3,e2e1
(Ω3 +

εe3
+ iγe3

)Ie2e1
(Ω3 + εe3

+ iγe3
)] (23)

Ie(Ω) ) i
Ω - εe + iγe

(24)

Iee′(ω) ) i
ω - εe - εe′ + i(γe+ γe′)

(25)

ηee′
(1) ) ∑

m

|ψe,m||ψe′,m| (26)

Femtosecond Vibrational Spectra of Peptides J. Phys. Chem. B, Vol. 110, No. 7, 20063367



VIII. Vibrational Response of YKKKH17

Our MD simulation of theR-helical peptide used the velocity
verlet algorithm and includes all the atoms of one YKKKH17
molecule and 4330 water molecules. Four chloride ions were
added into the simulation box to make the system neutral. The
initial YKKKH17 structure was obtained from the maestro
package.69 The Charmm27 force field44 was employed for all
interactions with a cutoff of 12 Å for the nonbonded interactions.
Long-range electrostatic interactions were calculated using the
Ewald sum.70 The simulation was carried using the CHARMM
package.44 The structure was first refined in a vacuum using a
4000 step energy minimization procedure with the adopted basis
Newton-Raphson method (ABNR).44 The molecule was then
embedded in a cubic unit cell of TIP3 water with box length of
52 Å. To release the internal tension, a 10 000 steps adopted
basis Newton-Raphson energy minimization was performed.44

The system was equilibrated under NPT ensemble71 with 1 fs
time step for 2 ns to obtain the right system density and box
size, the extended system method was used to keep the
temperature and pressure constant, and the final box length was
50.19 Å. This was followed by an NVE equilibration with 2 fs
time step for 10 ns. After the equilibration phase, a 1 ns
trajectory was recorded by applying the NVE ensemble with a
1 fs time step. The structure was saved in 4 fs increments,
giving a total of 2.5× 105 sample points. The peptide unit
(OdCdNsH) is first aligned into the geometry optimized
NMA structure of.51

The fluctuating vibrational Hamiltonian was created for all
snapshots along the trajectory. All water molecules were
included in the bath.

In the NEE simulations, 100 snapshots with 20 ps time
intervals are selected from the 2 ns trajectory and used for the
inhomogeneous averaging (sampling was tested using a 4 ns
trajectory which gave very similar inhomogeneous averaged
linear absorption). A 5.5 cm-1 homogeneous dephasing rateγ
was added.72 Unlike NMA, the inhomogeneously averaged
linear absorption is much broader and is not sensitive to the
precise value ofγ. The simulated linear absorption is compared
with experiment73 in Figure 8. Both the line width and the weak
shoulder at 1655 cm-1 are well reproduced.

The bottom panel of Figure 9 gives the distribution of
eigenstate energies (density of states). A comparison with the
linear absorption spectrum (top) shows that the mid-band states
have the largest transition dipoles.

The simulatedkI spectrum presented in the left column of
Figure 10 is elongated along the diagonal, this is most clearly
seen in the imaginary part (left middle); the diagonal (anti-
diagonal) fwhm of the absolute magnitude of the signal (left
top) is around 40 cm-1 (25 cm-1). This is close to the
experimental observation in the amide I spectra of a similar 25
residue R-helical peptide.72 The simulatedkIII spectrum is
presented in the right column. TakingΩ2 ) 1/2Ω1 as the

Figure 6. Simulated absorption spectra of the amide I band of NMA.
CGF, excluding lifetime broadening (green), fwhm (19 cm-1), with
lifetime broadening (red), the fwhm becomes 30 cm-1, which is very
close to the experiment (29 cm-1).65 The inhomogeneous NEE simulated
signal (black) overestimates the line width (52 cm-1).

Figure 7. CGF simulatedk I spectrum of NMA (imaginary plot)
without (top) and with (middle) vibrational relaxation. NEE simulation
(bottom).
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diagonal line, we obtain∼40 cm-1 for the diagonal and
“antidiagonal” width in the amplitude plot (right top).kI is
expected to have a smaller antidiagonal width, since it eliminates
some inhomogeneous broadening; this is one major advantage
of kI, known as the photon echo.kIII spreads the signal along
Ω in a region twice as large as that inkI which improves the
resolution.

A nonfluctuating experimental anharmonicity-16 cm-1 72

has been assumed in many earlier studies of amide I spectra.
To estimate the role of anharmonicity fluctuations, we have
calculated the relative difference (RD), defined as the difference
between the fluctuating anharmonicity and fixed-anharmonicity
signals divided by the fixed-anharmonicity signals. The largest
RD is 2% for kI and 5% forkIII , indicating thatkIII is more
sensitive to anharmonicity fluctuations.

Isotopic substitutions are commonly used in the interpretation
of vibrational spectra and their relationship to structure.72-74

Of particular interest to coherent IR applications is the use of
isotopes to shift frequencies into regions where the behavior of
that local unit can be measured, free from interference with other
modes. For the amide I mode, the approximate-67 cm-1 shift
by 13Cd18O substitution is large enough to displace the
substituted amide group frequencies beyond the range of the
natural distribution of frequencies found in most secondary
structures. Isolated bands can also be obtained by using other
chromophores. For example, the nitrile group (CtN) attached
to the side chains provides a distinct band at∼2235 cm-1. It
can be used as IR environmental probes, due to the sensitivity
of the CN stretching vibration to hydration as well as other
factors.75

The participation ratio76 of the exciton statee

provides a convenient measure for exciton localization which
can be used to quantify how much the isotope band is separated
from the main band. For a localized exciton,We ) 1, whereas
whene is completely delocalized, and has equal contributions
from all the 17 local modes,|Ψem| will equal 1/(17)1/2 and
We ) 17.

When the first residue is isotopically labeled,We of the lower
frequency (1570 cm-1) eigenstates for 1000 configurations has
an average value of 1.078 with a standard deviation 0.067.|Ψe1|2
has an average value of 0.96, with standard deviation 0.003,
indicating that the dominant contribution for this state is from
the isotopically labeled unit. A similar trend is seen when the
10th residue is isotopically labeled. Figure 11 shows the isotope
region of the inhomogeneously averaged simulated linear
absorption of the full helix where the first unit is isotopically
labeled (red, the isotope peak can be fitted to a Gaussian (black
dash) with 28.5 cm-1 fwhm), the NEE simulated linear
absorption of the labeled mode is given by the green line, with
fwhm 26 cm-1, and the CGF simulated linear absorption of
isotope labeled mode is given by the blue line (14.3 cm-1).
Recent experiment on a similar helical peptide72 gives a 15.2
cm-1 fwhm for the C13O18 labeled peak, in close agreement
with the CGF simulation.

Figure 12 shows the isotope region of the NEE simulatedkI

signal of the full helix (top panel) and of the isotopically labeled
mode (NEE, middle and CGF, bottom). Because the isotope
band is spectrally isolated, the NEE simulated isotope mode
signal mainly reproduces the width and shape of the isotope
region of the simulated full helix spectrum, while the CGF
simulated isotope mode signal is much narrower (motional
narrowing).

Isotope labeling also affects the main peak line shape, in a
way that depends on the labeled site. In the upper panel of Figure
13, we show the linear absorption of native, first residue labeled
(green) and 10th residue labeled (red) helices simulated by NEE.
Labeling the 10th residue significantly changes the line shape,
while labeling the first hardly affected it. This is more clearly
demonstrated using the relative difference of linear absorption
between the isotopomer and the unlabeled helix, shown in the
lower panel of Figure 13.

IX. Discussion

We have developed first-principles protocols for simulating
the coherent IR spectra of the amide I band of peptides. Two
methods, the CGF and NEE, which make different approxima-

Figure 8. NEE simulated (dashed line) and experimental73 (solid line)
absorption spectrum of YKKKH17. The experimental (simulation) peak
position is 1633 cm-1 (1643 cm-1), fwhm 36 cm-1 (36 cm-1). The
simulated peak was red shifted by 6 cm-1 for a better comparison of
the line shape.

Figure 9. Absorption spectrum (top) and the density of states (bottom)
of YKKKH17. Comparing the two panels shows that the mid-band
states have the strongest oscillator strength.

We ≡ 1

∑
m

|Ψem|4
(28)
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tions and reproduce a broad range of properties were compared.
These are the first attempts to systematically address the issue
of simulating the coherent nonlinear signals in large peptides.

The NEE approach only uses the one-exciton basis and
attributes the nonlinear response to exciton-exciton scattering.

Homogeneous broadening is explicitly incorporated in the
equations of motion, and inhomogeneous contributions are added
by ensemble averaging. Classifying the broadening mechanisms
as either homogeneous or inhomogeneous is not always possible
and does not apply for intermediate fluctuation time scales as
required for short peptides. The complete scattering matrix size
and the computational effort scales to the fourth power in size.
Predicting the dominant scattering configurations (e4e3e2e1) in
the scattering matrix based on the exciton overlap parameters
η(2) and η(1) leads to a truncation scheme based on the
assumption that excitons cannot scatter unless they spatially
overlap. This truncation applies for anharmonicities with a finite
interaction range. It identifies the possible scattering configura-
tionsbeforecalculating the scattering matrix itself. The number
of scattering configurations and therefore the size of the effective
scattering matrix are greatly reduced. Linear scaling of the
simulation cost with system size for systems larger than the
exciton coherence size makes them particularly attractive for
large peptides.

We next illustrate the reduction in computational cost obtained
using ηee′

(1) in eq 26. Figure 14 compares the calculatedkI

spectrum with all scattering configurations (left),η(1) ) 0.3
(middle), andη(1) ) 0.5 truncation (right) (we usedηee′

(1) ) ηee′
(2)).

The red circles in the top plot give the half-maximum contour.
The left spectrum took 35 h on an AMD Opteron 244 CPU,
compared with 2 h for the middle spectrum. The right spectrum
(20 min) reproduces the main pattern. The diagonal and
antidiagonal fwhm’s obtained from the truncated schemes
coincide with the complete scattering matrix, however, some

Figure 10. Left column, the NEE simulatedk I spectra of YKKKH17 (eq 3): (top) absolute magnitude, the diagonal (solid) and antidiagonal
(dashed) lines are marked. The half-maxima contour is shown in red. Black (red) arrows mark the diagonal (antidiagonal) width. The middle
represents the imaginary part and the bottom the real part. The right column repeats these calculations fork III .

Figure 11. Isotope region of the NEE simulated linear absorption of
the full YKKKH17 helix (red line) and the isotope peak fitted to a
Gaussian (black dashed line) with 28.5 cm-1 fwhm. The NEE simulated
linear absorption of the isotope labeled mode is represented by the green
line (fwhm 26 cm-1), and the CGF simulated linear absorption of the
isotope labeled mode is represented by the blue line (14 cm-1). The
NEE simulated isotope mode reproduces the width and shape of the
isotope region of the simulated full helix spectrum. The CGF simulated
isotope mode signal is much narrower.
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of the details are lost. The effect of this favorable scaling should
be more dramatic for larger proteins.

This truncation cannot be applied in SOS calculations which
require the complete set of two-exciton states. Multiple interfer-
ences between different Liouville space pathways then determine
the contributions of the various eigenstates. This is especially
important for weakly anharmonic systems. The nonlinear
response of the system of harmonic oscillators vanishes identi-
cally. In the NEE, this interference is naturally built in whereas
in the SOS it is obtained only when all possible contributions
are combined. The SOS simulation time including numerical
matrix diagonalization scales as∼N3 with system size.

Periodic systems (such as J aggregates and molecular crystals)
have strict selection rules. A few transition dipoles may be very
large, and many dark states can be eliminated before calculating
the signals. This could be used to speed up both NEE and SOS
simulation. However, the spectra of disordered proteins have
no obvious selection rules; they depend on many contributions
with similar transition dipole amplitudes. The CGF, which is
based on the SOS, describes fluctuations with arbitrary time
scales and relies on the adiabatic approximation of energy levels.

It is, thus, most suitable for small localized modes such as in
isotope substitutions and artificially implemented chromophores
such as nitrile groups.75

Isotope substitutions in vibrational spectroscopy provide an
ideal local probe for structure and dynamics. This is conceptually
similar to mutations used extensively in studies of biomolecular
complexes. By labeling specific sites, isotopes can be used to
explore local amide environments and coupling dependence on
distances and orientations of amide groups. The CGF is suitable
for simulating systems with well-separated energy levels and
reproduces the motional narrowing effect caused by fast
fluctuations. Inhomogeneous averaging of slow bath motions
can be combined with CGF for intermediate size systems.
However, due to its∼N3 scaling, this procedure is expensive.
A detailed analysis of the line widths as a function of residue
along the helix and the variation of the motional narrowing with
the environment will be of interest for a future study.

The zero-order frequencies in our Hamiltonian were obtained
from an electrostatic DFT map, which describes the frequency
shift of the amide I mode in response to a spatially nonuniform
external electric field. This map which allows the simulations
of any peptide and solvent neglects covalent interactions of the
amide unit with the surrounding molecules. This may account
for the lower accuracy of the frequency shift compared with
the cluster methods (56 cm-1 vs ∼62 cm-1, the experimental

Figure 12. Isotope region of the NEE simulatedkI signal (imaginary
plot) of the full YKKKH17 helix (upper panel). Simulation of the
isotopically labeled mode alone (NEE, middle panel and CGF, lower
panel).

Figure 13. (top) NEE simulated absorption spectrum of the native
helix (black) and the central 10th residue C13O18 isotope labeled (red)
and first residue labeled (green) helices. The isotopic effect is simulated
by adding a-67 cm-1 shift to the local frequencyεm(Q) in eq 8.
(bottom) The relative difference of linear absorption signal between
isotopomer and native helix. The 10th residue is labeled red, and first
residue is labeled green. Labeling the central residues has a stronger
effect on the line shape.
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value is 91 cm-1). Nevertheless, the electrostatic fluctuations
model seems to adequately reproduce the dominant feautures
of the vibrational spectra. We have used a 19 component vector
CT to describe the electric field property at one amide unit. This
vector is obtained by doing a least-squares fitting of the electric
field components of 67 points in the TCD region. In a previous
work,51 different sampling schemes were tested for the calcula-
tion of linear spectra of all amide bands (III, II, I, and A) of
NMA. For amide I and A stretching motions,CT can be obtained
by fitting the electric field at the amide atom positions (C, O,
N, and H, however, the global sampling were found to be crucial
for the bending modes (III and II)). Overall the global sampling
works best.

Lifetime broadening is significant in NMA, however, CGF
simulated isotope peaks which neglect lifetime broadening agree
with experiment, implying that vibrational relaxation is less
important in the vibrational line shapes ofR-helical peptides.
Predicting the 2DIR signatures of vibrational relaxation and
transport behavior of different peptide structures is an interesting
open problem. These are expected to show up in thet2 variation
of photon echo or pump probe experiments.

The present protocols should help the interpretation of
nonlinear vibrational signals from a broad range of biological
systems. The vibrational relaxation of N-H stretching in nucleic
acids83-85 is believed to play an important role in the photo-
physics of DNA and RNA. Time-resolved IR spectra can be
simulated. Another promising example is carbonhydrates, whose
dynamics are faster than the time resolution of NMR but may
be studied in the IR.86 One potential application is to amyloid
fibrils, which form in Alzheimer’s disease and whose structure
and dynamics are under extensive study. Recently, the fibrils
have been crystalized and the structure has been resolved by
X-ray.77 However, the early stage of the fibril formation, during

which the randomly coiled or helical peptides collide in the
solution, change into hairpins, start to form the oligomers, and
finally become the fibrils,78-80 is still unresolved. Because of
its sensitivity to H-bonding structure, backbone angles, and
electrostatic environment, multidimensional IR spectroscopy
should help resolve this problem. Recent modeling of thekI

and kIII spectra of idealâ-sheets and helices64 show that by
tuning the pulse polarizations, significant difference can be
observed in thekIII spectra between helices and sheets due to
differences in local chirality. Time-domain chiral techniques can
be used to detect the early dynamics of amyloid fibrils formation.

Most effort in IR spectroscopy of peptides has so far been
focused on the amide I band and its cross-peaks. The cross-
peak pattern of other amide bands such as amide II and A can
provide additional structural information. A DFT map for all
amide bands has been constructed.51

The CGF and NEE approaches were originally developed for
electronic spectroscopy87 and have been used to predict
multidimensional electronic spectroscopy in conjugated poly-
mers and photosynthetic aggregates. Electronic spectra are more
complex than vibrational spectra, and their simulations pose
additional challenges. 2D measurements of photosynthetic
complexes have been reported.88,89

Both CGF and NEE methods hold for equilibrated fluctuations
or slow nonequilibrated adiabatic dynamics. For faster fluctua-
tions, the direct simulation involves multiple-level crossings and
becomes much more expensive. In this case, an alternative
approach will be to include explicitly the relevant collective
bath modes and work in an extended phase space using the
stochastic Liouville equations.81,82
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