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Recursive relations are derived for nonlinear optical response functions of a two-level chromophore with
stochastic frequency fluctuations described by a continuous-time random walk. Stationary ensembles are con-
structed and signatures of anomalous relaxation in the photon echo signal are discussed for a two state jump
modulation with a power law waiting time density function ��t�� t−�−1. Stretched exponential decay of the
photon echo signal is predicted for 0���1 and power law asymptotics for 1���2.
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I. INTRODUCTION

Spectral line broadening reveals the dynamics of the en-
vironment as it modulates the frequency of a chromophore.
The stochastic Liouville equations �SLE� proposed by Kubo
and Anderson �1–3� describe the absorption line shapes of a
two level chromophore undergoing a Markovian stochastic
frequency modulation. Stochastic models may be derived
from microscopic models of fluctuations. For example, the
Uhlenbeck-Ornstein process �4,5� is obtained from the spin-
boson model �6� in the limit of overdamped oscillator spec-
tral density and at infinite temperature. Memory effects are
commonly modelled by using various types of master equa-
tions �7–12�.

Multipoint correlation functions obtained from studies of
single molecules �13,14� and from nonlinear spectroscopy
�15� are fundamental characteristics of dynamical models
which carry more information than two-point quantities �16�.
The SLE are time-local Markovian equations whose Green
functions may be used to calculate multipoint quantities. In
the absence of a Markovian description this modeling is
much more complex �17,18�.

Stochastic trajectories of single protein molecules and
quantum dots show stretched-exponential C�t��exp�−t�� or
power-law C�t�� t−� two-point correlation functions of fluo-
rescence intensities �19–24�. Continuous time random walks
�CTRW� �25–31� generalize ordinary random walks by intro-
ducing a waiting time probability density function �WTDF�
��t� for stochastic jumps, and provide a convenient formal-
ism for describing long time memory effects. Broad waiting
time distributions result in long-tailed correlation functions
of the stochastic variable �31–33�. Broad distributions of step
lengths �Lévy flights� have been studied as well �33–36� but
will not be considered here. The asymptotic properties of
random walks with these broad distributions were studied
extensively and related to Lévy stable distributions �36–41�.

By assuming that all particles made a jump at the
time origin we obtain a nonstationary process. This ensemble
never becomes equilibrated for WTDF with infinite mean
t̄=�0

�t��t�dt; this effect is known as aging �42�.

To describe a stationary process, we must assume a spe-
cial WTDF for the first jump. This can only be established
for WTDF with a finite mean t̄ �43�, e.g., ��t��1/ t1+�, with
��1. For 1���0 a step function �44� or an exponential
�45� long time cutoff were introduced to keep the first mo-
ment finite. This was applied to two state CTRW model of
fluorescence on/off time statistics or absorption lineshape,
respectively.

The application of CTRW to spectral diffusion in line-
shapes and nonlinear spectroscopy requires its extension to
describe optical coherence. Recently, the two state jump
�TSJ� model with CTRW modulation of bath fluctuations
was applied to absorption lineshapes �linear response� �45�.
This is a two point correlation function that depends on
phase fluctuations which cause the decay of coherence
�dephasing�. The model was further extended to include mul-
tistate bath fluctuations �46–48�.

In this paper we calculate multipoint correlation functions
by introducing auxiliary quantities: densities of jumps �18�.
This strategy goes back to the early days of the CTRW
model �25�. An alternative procedure is to add a variable
describing the time from the last jump �46�. The WTDF for a
jump are then interpreted as Markovian rates for transitions
from the state associated with a particular time from the last
jump. The CTRW is thus embedded into a higher-
dimensional Markovian process, and multitime correlation
functions may be calculated using the SLE. This approach
which resembles the age-dependent master equations ADME
�49,50� has not been implemented for simulations of multi-
point quantities.

In Sec. II we consider a two level system with a fluctuat-
ing frequency and calculate the lineshape for the TSJ CTRW
model of frequency modulation. Stationary ensembles for
WTDF with power-law long time decays are introduced to
study the signatures of anomalous relaxation in lineshapes.
The algorithm for calculating multipoint Liouville space cor-
relation functions with CTRW fluctuations, which is the cen-
tral result of this work, is presented in Sec. III. Signatures of
anomalous diffusion in the photon echo technique are then
predicted in Sec. IV and discussed in Sec. V.

II. SPECTRAL LINE SHAPES; LINEAR RESPONSE

We consider a two-level system with a ground �g� and an
excited state �e�, transition frequency �eg, and dipole mo-*Email address: smukamel@uci.edu
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ment 	 interacting with an optical field E with frequency �
and described by the Hamiltonian

ĤS = �e���eg + 
�eg�t��	e�

− E	��g�	e�exp�− i�t� + �e�	g�exp�i�t�� . �1�


�eg�t� are frequency fluctuations caused by interaction with
the environment.

The absorption line shape is given by

I��� 

1

�
Re �

0

�

dtei��−�eg�tS�t� , �2�

where

S�t� 
 �exp
− i�
0

t


�eg���d��� �3�

is the linear response function �1,51�. The line shape may be
expressed using the Laplace transform of the response func-

tion S̃�s�
�0
�e−stS�t�dt

I�� + �eg� =
1

�
Re S̃�− i�� . �4�

Equation �3� can be calculated by solving the differential
equation for the fluctuating optical coherence

d
eg�t�
dt

= − i
�eg�t�
eg�t� �5�

with 
eg�0�=1. We then have S�t�= 	
eg�t��.
In the TSJ model �1–3� the frequency fluctuations are

caused by coupling the chromophore to a two-level bath.

�eg can then assume the values −�0 and �0, when the bath
is in the state a and b, respectively. The Liouville operator is
represented in a ,b space as

L̂ = 
− i�0 0

0 i�0
� . �6�

The stochastic dynamics of the bath is described as a
CTRW �31�. The survival probability ��t� that no jump had
occurred for time t is connected with the waiting time den-
sity function ��t� by

��t� = �
t

�

��t��dt�,

or in Laplace space:

�̃�s� =
1 − �̃�s�

s
. �7�

We define the matrix of jump rates in the a ,b space:

�̂�t� = 
 0 ��t�
��t� 0

� �8�

and the corresponding matrix of survival probabilities

�̂�t� = 
��t� 0

0 ��t�
� . �9�

The first jump is special, since its WTDF �� depends on the
nature of the initial ensemble. This is particulary important
when ��t� has long algebraic tails and the memory of the first
jump may persist for long times. If the moments of � are
finite the memory of the first jump is erased and does not
affect the long-time behavior.

Assuming that the CTRW starts at t=0 we can set
��t�=���t� and obtain a nonstationary ensemble. For the en-
semble to be stationary we must have �43,52�

���t� = ��t�/ t̄ �10�

where t̄ is the mean waiting time �first moment of ��:

t̄ = �
0

�

�����d� = − � d�̃�s�
ds

�
s=0

.

A stationary CTRW is only possible provided the WTDF has
a finite mean. Equation �10� is a consequence of microscopic
reversibility: At equilibrium, we observe the same WTDF for
the first jump forward ����t�� or for the backward evolution.
The latter is a product of the survival function ��t� and equi-
librium density of jumps 1/ t̄.

The Green function solution to Eq. �5� is

S�t� = 	
eg�t�� = 	Ĝ�t�
eg�0�� . �11�

For the TSJ model it is represented in the a ,b space by a
2�2 matrix, and the response function is obtained by aver-
aging over initial and summing over final states

S�t� = �
j,l=a,b

Gjl�t��
eg�l�0� . �12�

Anomalous relaxation models are characterized by long
algebraic tails for WTDF ��t�� t−��+1�. In Laplace space, the
moments of � are obtained as

	tk� = �− 1�k� dk�̃�s�
dsk �

s=0
.

The kth moment diverge for k��. The small s behavior is

connected to the moments of ��t� as �̃�s��1−st̄+s2	t2� /2
+ . . . .

We have simulated the following three models of spectral
diffusion.

�i� Markovian fluctuations �model M�
CTRW is generally a non-Markovian process; knowing

the present state of the system is not sufficient to predict its
future evolution since it also depends on the distribution of
prior jumps �history�. An exception is when ��t�=�e−�t

where the bath may be described by ordinary Markovian rate
equations and the system-bath dynamics is described by the
SLE �1�
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d
eg�t�
dt

= L̂
eg�t� + ��̂�0� − �1̂�
eg�t� . �13�

This is known as the Kubo-Anderson model �1–3� for spec-
tral diffusion.

�ii� Weak anomalous fluctuations �model W�
When ��t�� t−1−� with 1���2, t̄ is finite but 	t2� di-

verges �37,48�. In Laplace space ��s��1−s+s�, s→0. The
central limit theorem does not apply, and broad distributions
of waiting times for k steps can persist for k→� �38–40�.
We assume �18�

�̃W�s� =
1

1 + �1s/�1 + ���s��−1�
.

By using Eqs. �7� and �10� we have

�̃W� �s� =
1

1 + �1s + ���s��−1 , �̃W� �s� =
�1s + ���s��−1

s�1 + �1s + ���s��−1�
.

This implies for long times

�W�t� �
��

�−1�1

��− ��t�+1 , �W� �t� �
− ��

�−1

��1 − ��t� ,

�W� �t� �
��

�−1

��2 − ��t�−1 .

This asymptotic result applies when �s�1, i.e., for t���

and �1s� ����s�−1, i.e., t��1
1/�2−�� /��

��−1�/�2−��.
�iii� Truncated anomalous fluctuations �model T�
For ��t�� t−1−� with 0���1, all moments of ��t� in-

cluding the first t̄ diverge. In Laplace space �̃�s��1− ��s��

at s→0. To construct a stationary ensembles �18,44,45� we
add a long-time exponential cutoff. This gives �18�

�̃T�s� =
1 + �����

1 + ���s + ���� , t̄ =
��−1

1 + ����−� ,

�̃T��s� =
�s + ��� − ��

st̄��−� + �s + ����
, �T��s� =

1

s
−

�s + ��� − ��

s2t̄��−� + �s + ����
.

�14�

It describes the algebraic ��t���� / t��+1 decay at interme-
diate time scale �t�1 with a crossover to exponential e−�t

decay at long times. For ���1, the long time asymptotics
t /�→� are

�T�t� �
e−�t��

��1 − ��t1+� , �T��t� �
e−�t

����1 − ��t1+� ,

FIG. 1. Absorption line shapes
�Eq. �4�; �eg=0�, for models M
�left column� �Eq. �18��, W �cen-
tral column� �Eq. �19��, and T
�right column� �Eq. �21��. Param-
eters interpolate from the fast �top
row� to the slow �bottom row�
fluctuation regime. Parameters
�from top to bottom�. M: �0 /�
=0.2, 2, 20, 200. W: �=1.5,
�1 /��=1.5, �0�1=0.2, 2, 20. T:
�=0.5, ��=0.01, �0�=0.02,
�dash-dotted line� 0.2, 2, 20.
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�T��t� �
e−�t

��1 − ����t�1+� .

We have calculated the linear response function using the
approach of �45�. Our notation follows the non-Markovian

SLE introduced in �46�. We define the auxiliary matrix R̂�t1�
which describes the contribution to the Green function Ĝ�t1�
from a path whose last jump occurred precisely at time t1. R̂
is given by �45,46�

R̂�t1� = �̂��t1�exp�L̂t1�

+ �
0

t1

dt1��̂�t1 − t1��exp�L̂�t1 − t1���R�t1�� . �15�

The Green function is finally given by

Ĝ�t1� = �̂��t1�exp�L̂�t1��

+ �
0

t1

dt1��̂�t1 − �1�exp�L̂�t1 − t1���R̂�t1�� . �16�

Using the initial equilibrium distribution 
a�0�=
b�0�
=0.5, for a stationary ensemble we substitute Eqs. �10� and
Eq. �12� in Eq. �16� and obtain in Laplace space �see Appen-
dix A� �45�

2S̃�s� =
1

s + i�0
+

1

s − i�0
−

�1 − �̃�s + i�0���1 − �̃�s − i�0��

t̄�1 − �̃�s − i�0��̃�s + i�0��

�
 1

s + i�0
−

1

s − i�0
�2

. �17�

We now compare the absorption lineshapes for the three
models. For model M we get �1�

I�� + �eg� =
2��0

2

����2 − �0
2�2 + 4�2�2�

. �18�

These are plotted in the left column of Fig. 1. From top to
bottom they interpolate between the fast fluctuation �mo-
tional narrowing, large �0 /�� and the slow fluctuation
�static, small �0 /�� limits.

The line shape for the W model

I�� + �eg� =
2�0

2

���0
2 − �2�2 � Re

1

�1 + ��
�−1��i�0 − i���−2 + �− i� − i�0��−2� + i�� − �0�−1 + i�� + �0�−1 �19�

is displayed in the middle column. The fraction of particles that remained at the initial position is significant �not exponentially
small� over all time scales. Consequently the lineshape �Eq. �19�� has peaks at s= ± i�0

I��0 + �eg� � cos ��1 − �/2���
�−1�� − �0��−2/2. �20�

The upper panel of Fig. 2 shows the power law divergence as straight lines in log-log plot with slope �−2. The peaks at
�= ±�0 are universal and reflect the asymptotic power law exponent of ���t�.

The lineshape for the T model

I�� + �eg� =
2�0

2

�t̄��0
2 − �2�2

Re
1

1 + ��� + �−��� 1

�� + i��0 − ���� − �� +
1

�� − i��0 + ���� − ��� �21�

is displayed in the right column of Fig. 1. With decreasing �
the static limit �bottom panel� is approached. The Kubo-
Anderson theory is recovered for ���1 or for �→1. For
�t�1 the response function �Eq. �21�� decays exponentially,
and we have finite absorption at ±�0 peaks eventually di-
verging in �→0 limit.

The signatures of power-law decay may be best seen
for ���1, where we have two peaks at �=�eg±�0,
which for �� ��−�0���0 ,�−1 behave as 1/ ��±�0�2−�.
This power law is seen in the lower panel of Fig. 2 for ��
=10−6.

These results are in qualitative agreement with �45� where
the line shape was calculated for a Levy WTDF

�̃�s�=exp(−�rs��). In the next section we present multipoint
quantities for the same models.

III. RECURSION RELATIONS FOR MULTIPOINT
RESPONSE FUNCTIONS

The response functions for nonlinear spectroscopies are
given by correlation functions which represent Liouville
space pathways � �15�. The interactions with the electric
field divide the time to intervals tj 
� j −� j−1, during which
the density matrix is in a given state ���j�� whose frequency
��

�j� fluctuates with the state of the bath. The density matrix
elements of the two level system �Eq. �1�� are �ee�, �gg�, �eg�,
or �ge� with corresponding frequencies 0, 0, �eg or −�eg
respectively.

As an example, we consider the following pathway for the
third order response �photon echo� �gg�→ �ge�→ �eg�→ �gg�
represented by the Feynman diagram in Fig. 3�a�. The sec-
ond and third interaction times coincide �1=�2, t2=0 and the
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frequencies during the intervals t1 �t3� are ��1�=−�eg ���3�

=�eg�. More generally, we define the nth order response
function for the � pathway

S�
�n��tn, . . . ,t1� = 	
�� =��

j=1

n

exp�− i�
�j−1

�j


��
�j��� j�d� j�� .

�22�

The generating function 
� is given by the solution of

d
�

dt
= − i
���t�
�, �23�

where 
���t�=
��j��t� for t� �� j−1 ,� j�.
In the bath space, 
� is represented by Eq. �6�. The Green

function is represented in a ,b space by a matrix Ĝ�n� whose
jl elements account for contributions to S�n� from paths with
fixed initial state l and final state j

S�n��tn, . . . ,t1� = �
jl

Gjl
�n��tn, . . . ,t1��
��l�0� . �24�

For a Markovian modulation of bath jumps, the stochastic
Liouville equation �Eq. �13�� may be readily used to calcu-
late Green functions and multipoint quantities. For nonmark-
ovian processes, such as CTRW, the Green function may not
be factorized into two point quantities. For a general ��t� we
must use recurrence relations to express higher order corre-
lations functions in terms of lower ones �18�. We define a

matrix R̂�k��tk , . . . , t1�, whose jl element represents the den-
sity of contributions to S�k��tk , . . . , t1� from paths which
started in state l at �0 and a jump had occurred exactly at

time �k�=�0+�i=1
k ti� to state j. R̂�k� is Ĝ�k� restricted to paths

with a jump at �k. It may be factorized into a product of
factors representing all jumps up to the last one preceding �k

�say at �k�� and the contribution �̂��k−�k��exp��
�k�
�kL̂����d���

from the Liouville space evolution from that moment in a
fixed state of the bath. The jump preceding �k could occur
either in the same time interval �the second term in Eq. �25��
or during any of the previous intervals. The latter contribu-

tions are described by another matrix �̂�k��tk , . . . , t1� whose jl
element represents the density of contributions to S�k�

��tk , . . . , t1� from paths which started in state l at �0 and
where the first jump after �k−1�=�0+�i=1

k−1ti� had occured
exactly at time �k to state j. This leads to the following

equation for R̂�k�

FIG. 2. Upper panel: Absorption line shapes for model W for
�� /�=2, �0�1=2, and �=1.3 �dashed line�, 1.5�dotted line�, 1.7
�solid line�. Log-log plot for ���0 shows the power law
��−�0��−2 divergence at peaks �= ±�0. Lower panel: Absorption
line shape for model T for small ��=10−6. The log-log plot shows
the power laws ��−�0�2−� when �−1, �0� ��−�0��� for �0�
=10 and �=0.3 �dashed line�, �=0.5 �dotted line�, �=0.7 �solid
line�.

FIG. 3. �a� Double sided Feynman diagram for two pulse
photon echo technique—response in kS=2k2−k1 direction. �b� Two
double sided Feynman diagrams for the response in the
kS=k1+k2−k2 direction.

FIG. 4. Frequency correlation function C�t�

	
�eg�t�
�eg�0�� /�0

2 �Eq. �31��. Top row: W model with �top left
panel� changing �� /�1=1 �dotted line�, 2 �solid line�, 10 �dashed
line� for ��=1.5� or �top right panel� varying �=1.3 �dashed line�,
1.5 �solid line�, 1.7 �dotted line� �for �� /�1=2�. Bottom row: T
model with �bottom left panel� changing ��=0.1 �dotted line�,
0.01�solid line�, 0.001 �dashed line� for �=0.5 and with �bottom
right panel� changing �=0.3 �dashed line�, 0.5 �dotted line�, 0.7
�solid line� for ��=0.01.
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R̂�k��tk, . . . ,t1� = �̂�k��tk, . . . ,t1� + �
0

tk

dtk��̂�tk − tk��

�exp�L̂�k��tk − tk���R̂
�k��tk�,tk−1, . . . ,t1� .

�25�

To calculate �̂�k� we need to sum over all possible realiza-
tions of the jump before the last to occur in some previous
time interval tj�k.

�̂�k��tk, . . . ,t1�

= �̂�
�
i=1

k

ti�exp��
q=1

k

L̂�q�tq� + �
j=1

k−1 �
0

tj

�̂
�
i=j

k

ti − tj��
�exp�− L̂�j�tj� + �

q=j

k

L̂�q�tq�R̂�j��tj�,tj−1, . . . ,t1�dtj�. �26�

The first term represents paths with only a single jump
�at �k�.

Equations �25� and �26� form a closed system for �̂�k� and

R̂�k�, given R̂�j� for j�k. These can be solved recursively
starting with R�1� �Eq. �15��. The Green function is finally
obtained by

Ĝ�n��tn, . . . ,t1�

= �̂�
�
i=1

n

ti�exp��
q=1

n

L̂�q�tq� + �
k=1

n �
0

tk

�̂
�
i=k

n

ti − tk��
�exp�L̂�k��tk − tk�� + �

q=k+1

n

L̂�q�tq�
�R̂�k��tk�,tk−1, . . . ,t1�dtk�. �27�

The solution to Eqs. �25�–�27� is given in Laplace space
by the recurrence relations developed in Appendix B, and
S�

�n� is finally calculated using Eq. �24�. These results recover
the two-point correlation functions �Eqs. �15� and �16��.

IV. THE THIRD-ORDER RESPONSE

We have applied our recursion relations to calculate the
third order polarization:

P�3��t� = �
0

�

dt3�
0

�

dt2�
0

�

dt1S�3��t3,t2,t1�

�E�t − t3�E�t − t3 − t2�E�t − t3 − t2 − t1� .

S�3� is obtained by setting 
��2�=0 and 
��1�= ±
��3� into

FIG. 5. �Color online� The photon echo signal
�Eq. �C1�� for model M �left panels�, W �central
panels�, and T �right panels�. The parameters in-
terpolate from the fast �upper panels� to slow
fluctuation limit �bottom panels�. Parameters as
used for the absorption line shapes in Fig. 1.
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Eq. �22�, the various signs correspond to different Liouville
space pathways �.

We first consider the limit when the time intervals t1 and
t3 are short compared to the random walk timescale �. The
Liouville space contributions for these intervals then factor-
ize as exp�±i�0−��tj, j=1,3 and the response only depends
on the two point joint probability density function P for
CTRW

S�3��t3,t2,t1� = �
x1=a,b

�
x2=a,b

P�x2x1,t2�ei
�x1
t1e±i
�x2

t3. �28�

This response function which is related to hole-burning
spectroscopy �15� can be expressed in terms of ordinary two
point frequency correlation function C�t�

	
�eg�t�
�eg�0�� /�0

2= P�aa�+ P�bb�− P�ba�− P�ab� as

S�3��t3,t2,t1� = �cos��0t1�cos��0t3�

� C�t2�sin��0t1�sin��0t3��/2. �29�

The two-point joint probability distribution function for
our TSJ models is

P̃�aa,s� = P̃�bb,s� =
1

2s
−

�̃��s�

2s„1 + �̃�s�…

and

P̃�ab;s� = P̃�ba;s� =
�̃��s�

2s„1 + �̃�s�…
. �30�

By combining Eq. �10� with Eq. �30� the correlation function
is given in the Laplace space by

C̃�s� =
1

s
−

2„1 − �̃�s�…

t̄s2
„1 + �̃�s�…

. �31�

The Markovian model gives a simple exponential decay
CM�t�=e−2�t. For the W model the correlation function is

C̃W�s� =
1

s
�1 −

1

1 + ���s��−1 + �1s/2
�

with the long time power laws CW�t����� / t��−1 as shown at
Fig. 4, top row. �� /�1 varied in the left panel, determines the
time scale when the long-time behavior is reached. In the
right panel we varied � parameter which determines the
asymptotic slope CW�t��1/ t�−1. This long time form can be
attributed to dominant contributions of the nonfluctuating
particles ���t�.

The correlation function for the T model is displayed in
the lower panel

C̃T�s� =
1

s
�1 +

��1 + �������1 − �1 + s/����
s�„1 + �������1 + �1 + s/����/2…� .

The complete third-order response function is calculated
in Appendix D. Assuming t2=0, the response function which
depends on two-intervals t1, t3 can be expressed in the form

G̃
ˆ �3��s3,t2 = 0,s1� = �̃

ˆ �s3 − L̂�3���1 − �̃
ˆ �s3 − L̂�3���−1

„�̃
ˆ
��s1 − L̂�1�� − �̃

ˆ
��s3 − L̂�3��…

1

s3 − L̂�3� − s1 + L̂�1�
+ �̃

ˆ �s3 − L̂�3��

��1 − �̃
ˆ �s3 − L̂�3���−1

„�̃
ˆ �s3 − L̂�3�� − �̃

ˆ �s1 − L̂�1��…
1

�s1 − L̂�1� − s3 + L̂�3��
�1 − �̃

ˆ �s1 − L̂�1���−1�̃
ˆ
��s1 − L̂�1��

+ „�̃
ˆ �s3 − L̂�3�� − �̃

ˆ �s1 − L̂�1��…
1

�s1 − L̂�1� − s3 + L̂�3��
�1 − �̃

ˆ �s1 − L̂�1���−1�̃
ˆ
��s1 − L̂�1��

+ „�̃
ˆ
��s3 − L̂�3�� − �̃

ˆ
��s1 − L̂�1��…

1

s1 − L̂�1� − s3 + L̂�3�
, �32�

where s1, s3 are the Laplace conjugates to t1 and t3, respec-
tively. This correlation function represents the two-pulse
experiment shown in the double sided Feynman diagram
�Fig. 3.�

We consider the pathway Fig. 3�a� by applying Eq. �32�
with L̂�1�=−L̂�3�. The first pulse �with wave vector k1� creates
a coherence and the second pulse �wave vector k2� reverses
it. The photon echo signal is detected after time t3+ t1 in
the direction kS=2k1−k2. Assuming a large static inhomog-
enous broadening the signal rapidly vanishes except for
t1= t3.

For the other Feynman diagrams �Fig. 3�b�� represent the

signal in the ks=k1 direction and we set L̂�1�= L̂�3� in Eq.
�32�. The interaction at t1 does not change the state of the
system. The response is described by the two point function
and carries no additional information compared to the linear
response.

The response function for the pathway �Fig. 3�a�� which
may be obtained by substituting Eqs. �A3�–�A5� in Eq. �32�
is given by Eq. �C1�. We first discuss two limiting cases for
the Markovian model. For fast fluctuations ���0 we get by
inverting Eq. �C2�
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S�3��t3,0,t1� = e−��t3+t1�
−
�0

2

�2 cosh���t3 − t1��

+
�2

�2 cosh���t3 + t1�� +
�

�
sinh���t3 + t1��� ,

�33�

where �=��2−�0
2.

More interesting is the opposite case �0�� where

S�3��t3,0,t1� = e−��t3+t1�
�0
2

�2 cos���t3 − t1��

−
�2

�2 cos���t3 + t1�� +
�

�
sin���t3 + t1��� ,

�34�

and �=��0
2−�2

The impulsive response to short pulses is given by

P�3��t1 + t3� = 
 i

�
�3

E2E2
*E1S�3��t3,0,t1� .

The signal is finally obtained by

M�t3,t1� � �P�3��t1 + t3��2. �35�

Figure 5 shows the photon echo signal �Eqs. �C1� and
�35�� for models M �left column�, W �middle column�, and T
�right column�. The calculations interpolate between the fast
�upper panels� to the slow �lower panels� fluctuation limits.
Each panel in Fig. 5 has a corresponding panel in Fig. 1.

The photon echo peak at t1= t3 is known to dominate the
response of systems with large disorder. In the static limit
this arises from a constructive interference from two contri-
butions with phase ±�0�t3− t1� attributed to a particular state
of bath. For the present TSJ model, interference exists not
only for t1= t3 but whenever the phases differ by 2�k and the
response shows oscillations along t3 with period 2� /�0.
Small oscillations best show at the diagonal �t1= t3� slice in
Fig. 6. For M these correspond to the second and the third
terms in Eq. �34�. The differences show up in the decay of
the envelope which is subexponential for W and T, compared
to exponential for M.

The M signal �left panel of Fig. 5� is dominated by the
first term of Eq. �34�, showing cos2(�0�t1− t3�) oscillations
with exponential decay e−2��t1+t3�. The ratio �0 /� is varied in
Fig. 5. Decreasing this parameter shows a transition from

FIG. 6. The photon echo signal �Eq. �C1�� is plotted at the
diagonal t1= t3 �left panels� and fixed t1 sections �right panels� for
M �upper panel� �0 /�=20, W �central panel� �=1.5, �1 /��=0.5,
�0�1=2, and T �lower panel� ���=0.01, �=0.5, �0�=2� models.

FIG. 7. The diagonal t1= t3 section of the photon echo signal
�Eq. �C1��. Transition from fast �dash-dotted lines, �0 /�, ��→0�
to slow fluctuations �solid lines, �0 /�, �0�→�� is shown for the
M �upper panel�, T �central panel�, and W �lower panel� models for
parameters used. M: �0 /�=2 �dash-dotted line�, 20 �solid line�,
200 �dashed line�. T: �=0.5, ��=0.01, ��0=0.2 �dash-dotted line�,
2 �dashed line�, 20 �solid line�. W: �=1.5, �1 /��=1.5, �1�0=0.2
�dash-dotted line�, 2 �dashed line�, 20 �solid line�.
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oscillations �lower panel� to damped signal �upper panel�, the
oscillatory modulation at t1= t3 slope becomes important in
accordance with the � /� factor in Eq. �34� and the oscilla-
tion period �2� /��0

2−�2� becomes longer. The middle col-
umn shows the transition from fast fluctuations �0�1=0.2
�upper panel� to slow fluctuations �0�1=20.0 �lower panel�
for the W model. The long tailed power law asymptotic de-
cay of the signal is observed in both limits as there is no time
scale where the fraction of nonfluctuating particle becomes
exponentially small, in contrast to M �and T�.

Figure 7 compares the effect of slow and fast fluctuations
by varying �0 for t1= t3. In all cases as �0 is decreased the
solution oscillates around the large �0 limit. The long time
power laws are further shown in Fig. 8 for the W model with
varying � together with the M model with the same �1
=�−1 and the same �0�=2 �dash-dotted line� or �0�=20
�dash-dot-dotted line�. The linear-linear plot shows the rapid
Markovian relaxation compared the W model, this is further
shown by linear-log plot �middle panel, exponential function
is linear� and log-log plot �lower panel, power law is linear�.

Asymptotically the correlation function for CTRW with
long-tailed WTDF reflects the the fraction of particles that
did not move as described by a survival function for the

first jumps ���t�. This nomenclature is somewhat unfortu-
nate, since ���t� represents the stationary state and not
simply the first jump probability. The ensemble becomes
stationary after some time, no matter how fast the initial
jump is. Right after the jump the particle has a higher prob-
ability to jump again than a particle residing at one position
for a long time as �W�t� /�W�t��� / t �for t→��. The contri-
bution of the fluctuating particles thus vanishes asymptoti-
cally more rapidly. The W model has ���t��1/ t�−1 with cor-
relation function CW�t��1/ t�−1, the peaks in linear
absorption I��+�0+�eg����−2 and the photon echo signal
MW�t3 , t1��1/ �t1+ t3�2��−1�.

To demonstrate the capability of nonlinear spectroscopy
to distinguish between various models of anomalous spectral
diffusion with the same peak in linear line shape we assume
the same peak in linear absorption we consider the Brownian
oscillator model �Gaussian bath� �15� with peak I������−2

corresponding to S�1��t1��1/ t1
�−1. The Brownian oscillator

model is fully described by the line broadening function g�t�,
connected to response function SG

�1��t1�=exp�−g�t1��. The
third order response function for the diagram Fig. 3�a� is
recast using cumulants �15�

FIG. 8. The diagonal t1= t3 section of the photon echo signal.
We compare the W and M models using linear plots �upper panel�,
linear-log plot �central panel, exponential function e−t becomes
straight lines� and log-log plots �lower panel, power laws become
straight lines� for parameters. W: �� /�1=2, �0�1=2 and �=1.3
�solid line�, 1.5 �dotted line�, 1.7 �dashed line�; M: �1=�−1,
�0 /�=��1=2 �dot-dashed line�, and �0 /�=20 �dash-dot-dotted
line�.

FIG. 9. The diagonal t1= t3 section for the photon echo signal.
The log t vs log�−log M�t ,0 , t�� plot shows the stretched exponen-
tial decays as straight lines. Relaxation is exponential for M �upper
panel� in all cases �0 /�=20 �dotted line�, 200 �dashed line�, and
2000 �solid line�. Model T is well fitted to stretched exponential e−t�

with complex dependence on both cutoff �central panel�,
��=0.001 �solid line�, ��=0.01 �dashed line�, ��=0.1 �dotted line�
for ��=0.5, �0�=2�, and � �lower panels�, �=0.3 �dashed�, 0.5
�dotted line�, 0.7 �solid line� �for ��=0.001, �0�=2�.
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SG
�3��t3,0,t1� = exp�− g�t1� − g*�t1� − 2g*�t3� + g*�t3 + t1��

= �S�1��t1��2�S�1�*�t3��2�S�1�*�t1 + t3��−1. �36�

The photon echo signal �Eq. �35�� at t1= t3 for the Gaussian
model decays as MG�t , t��1/ t6��−1� whereas for W model
MW�t , t��1/ t2��−1�.

The photon echo for the T model �Fig. 5, right column� is
qualitatively similar to M: it has �0 oscillations, slight oscil-
latory modulation at t1= t3 slices and the slow and fast limit.
The T model has three timescales �0 ,� ,�. The role of � ,�
was discussed in �18�.

The right column displays various values of �0� with
fixed ��=0.01. It again shows the transition between
damped �0 /�=0 and oscillatory �0 /�=0 limits. Besides the
effects seen for M we observe a subexponential decay. In an
earlier study �18� we provided fit of the frequency correlation
function to a stretched exponential, f�t��e−t� which is de-
picted as linear in log(−log�f�t��� vs log�t� with slopes deter-
mined by �.

The diagonal decay plots log�−log�M�t3= t , t1= t��� vs
log�t� are shown in Fig. 9 for M and T. After the initial
period �0t�� we observe the straight lines slightly modu-
lated by oscillations. The slopes calculated over this period
show exponential decay �=1.0 for the M �upper panel� and
the subexponential values ��1 for T �middle and lower
panels�. With increasing �� the exponential relaxation is ap-

proached with complex dependence of � on �� �middle� and
� �lower panel� similar to the frequency correlation function
�18�.

In summary, the photon echo signal with anomalous re-
laxation corresponds to a Markovian process except that the
envelope decays similarly to the frequency correlation func-
tion �Eq. �31��. Asymptotically this is given by the survival
function for the first jump.

Secondary peaks or other sections �e.g., t1 fixed, varying
t3 in left panel of Fig. 6� also show long-time subexponential
decay. We expect the decay at t1= t3 to be the clearest sign of
subexponential relaxation, because constructive interference
is present for more disordered spectra, while the secondary
peaks will be suppressed �15�. This is motivated by the
asymptotic form for the W model

S�3��t3,t2,t1� �� d�C�t1 + t2 + t3�exp i��t3 − t1� ̃���

= C�t1 + t2 + t3� �t3 − t1� ,

where  ̃��� is the equilibrium density of particles with
gap frequency � and  �t� is its Fourier transform. The
f�t3+ t1�g�t3− t1� functional form is compatible with our other
results as the secondary peaks ��t3− t1�=k� decay quite
similarly to the diagonal peak for W.

V. DISCUSSION

We have simulated the nonlinear response function for a
two-level system undergoing stochastic frequency flucta-
tions. The stochastic Liouville equation approach is general-
ized for non-Markovian fluctuations. The continuous time
random walk was used to model memory effects resulting
from arbitrary waiting time distributions between successive
jumps.

Applications were made to the photon echo signal for a
TSJ model with anomalous bath kinetics and power law WT-
DF’s. We found power law �or stretched exponential� long
time decay, rather then exponential of the Markovian case,
similar to the ordinary frequency correlation function of the
frequency. For random walks with broad distributions of
waiting times some particles remain trapped at their initial
position. These particles may dominate the long time behav-
ior and result in the anomalous kinetics. Similar trends have
been seen for anomalous diffusion in a potential �10,18�. The
present formalism may also be applied to photon statistics
which for weak fields may be expressed in tems of four-point
correlation functions �53,54�.

Even though we only studied stationary ensembles, our
recursive algorithm can be readily used to nonstationary ran-
dom walks by a proper choice of the WTDF for the first
jump. However, nonstationarity breaks down the time-
translation invariance of correlation functions and the substi-
tution ���t�=��t� in Eqs. �15� and �16� does not give the
absorption line shape as Eq. �2� is no longer valid �45�. For
the same reasons the ensemble-averaged and time-averaged
function are not identical for nonergodic CTRW so that C�t�
should not be applied in single molecule spectroscopy
�42,55�.

FIG. 10. Diagram for the Ĝ1-Ĝ8 contributions to the Green
function Eq. �D3� for the third order response. Contributions repre-
sent paths with �line meets the axis� or without �line does not meet
the axis� some jump in the particular time interval.
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The results of Sec. III and Appendixes B and D may be
extended for multistate bath or for continuous bath variable

by constructing proper L̂, �̂, and �̂ matrices. An interesting
application will be to spectral diffusion in a harmonic poten-
tial �11,18�.
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APPENDIX A: THE TWO-STATE-JUMP CTRW MODEL
FOR LINE SHAPES

We introduce the Laplace space quantities

R̃
ˆ �s� 
 �

0

�

e−stR̂�t�dt, �̃
ˆ �s − L̂� 
 �

0

�

e−st�̂�t�exp�L̂t�dt ,

G̃
ˆ �s� 
 �

0

�

Ĝ�t�e−stdt, �̃
ˆ �s − L̂� 
 �

0

�

e−st�̂�t�exp�L̂t�dt .

Equation �15� is then solved by

R̃
ˆ �s� = �1 − �̃

ˆ �s − L̂��−1�̃
ˆ
��s − L̂� �A1�

and Eq. �16� reads

G̃
ˆ �s� = �̃

ˆ
��s − L̂� + �̃

ˆ �s − L̂�R̃ˆ �s� . �A2�

With Eqs. �8� and �9� we have

�̃
ˆ �s − L̂� = 
 0 �̃�s − i�0�

�̃�s + i�0� 0
� , �A3�

�̃
ˆ �s − L̂� = 
�̃�s + i�0� 0

0 �̃�s − i�0�
� . �A4�

For the TSJ model the propagator is straightforwardly cal-
culated as

�1 − �̃
ˆ �s − L̂��−1 =

1

1 − �̃�s + i�0��̃�s − i�0�

�
 1 �̃�s − i�0�

�̃�s + i�0� 1
� �A5�

and by combining Eqs. �A1�–�A5� the Green function is
solved

G̃aa�s� = �̃��s + i�0� +
�̃�s + i�0��̃�s − i�0��̃��s + i�0�

1 − �̃�s − i�0��̃�s + i�0�
,

G̃ab�s� =
�̃�s + i�0��̃��s − i�0�

1 − �̃�s − i�0��̃�s + i�0�
,

G̃ba�s� =
�̃�s − i�0��̃��s + i�0�

1 − �̃�s − i�0��̃�s + i�0�
,

G̃bb�s� = �̃��s − i�0� +
�̃�s − i�0��̃�s + i�0��̃��s − i�0�

1 − �̃�s − i�0��̃�s + i�0�
.

�A6�

Setting Eqs. �10� and �A6� to Eq. �12� gives Eq. �17�.

APPENDIX: B RECURRENCE RELATIONS
FOR MULTIPOINT CORRELATION FUNCTIONS

To derive the 4-point nonlinear response function, we start
by solving Eqs. �26� and �25� by introducing Laplace space
conjugates to t1 , . . . , tk

R̃
ˆ �k��sk, . . . ,s1� = �

0

�

. . . �
0

�

e−�j=1
k sjtjR̂�k��tk, . . . ,t1�dt1 . . . dtk

and similary for the matrices Ĝ ,�̂.
The solution of Eq. �25� is

R̃
ˆ �k��sk, . . . ,s1� = �1 − �̃

ˆ �sk − L̂�k���−1�̃
ˆ �k��sk, . . . ,s1�

�B1�

and Eq. �26� gives

�̃
ˆ �k��sk, . . . ,s1�

= �
−i�

i� dsk
*

2�i
�̃
ˆ
��sk

*��
q=1

k
1

sq − L̂�q� − sk
*

+ �
j=1

k−1 �
−i�

i� �
−i�

i� dsj�

2�i

dsk
*

2�i
�̃
ˆ �sk

*�� 1

sj − sj�
−

1

sj − L̂�j� − sk
*�

�
1

sj� − sk
* − L̂�j�

�
q=j+1

k
1

sq − L̂�q� − sk
*
R̃
ˆ �j��sj�,sj−1, . . . s1� .

�B2�

The Green function Eq. �27� is also obtained in Laplace
space

G̃
ˆ �n��sn, . . . ,s1�

= �
−i�

i� dsn
*

2�i
�̃
ˆ
��sn

*��
q=1

n
1

sq − L̂�q� − sn
*

+ �̃
ˆ �sn − L̂�n��R̃ˆ �n�

��sn, . . . ,s1� + �
k=1

n−1 �
−i�

i� dsk�

2�i
�

−i�

i� dsn
*

2�i
�̃
ˆ �sn

*�� 1

sk − sk�

−
1

sk − L̂�k� − sn
*� �

1

sk� − sn
* − L̂�k�

�
q=k+1

n
1

sq − L̂�q� − sn
*

�R̃
ˆ �k��sk�,sk−1 . . . ;s1� . �B3�

The residue theorem can be used to integrate Eqs.
�B2� and �B3�. Finally the nth interval correlation function is
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a sum of 2n contribution each characterized by whether
some jumps occurred or not in particular interval. Figure 10
shows diagrams for particular case of the third order re-
sponse function which are interpreted as follows: The jumps
occurred in intervals where the line touches the time axis.
The particular contribution is a matrix product of the follow-
ing factors.

If there is some jump in the kth interval one should ac-

count �1−�̃
ˆ �sk− L̂�k���−1 for propagation through kth interval.

For the jump from kth to �k+1�th interval one should

account for (�̃
ˆ �sk+1− L̂�k+1��−�̃

ˆ �sk− L̂�k��) �sk− L̂�k�−sk+1

− L̂�k+1��−1.
For the jump from kth to �k+2�th interval

�̃
ˆ �sk+2 − L̂�k+2��

�
1

sk+1 − L̂�k+1� − sk+2 + L̂�k+2�

1

sk − L̂�k� − sk+2 + L̂�k+2�

+ �̃
ˆ �sk+1 − L̂�k+1��

�
1

sk+2 − L̂�k+2� − sk+1 + L̂�k+1�

1

sk − L̂�k� − sk+1 + L̂�k+1�

+ �̃
ˆ �sk − L̂�k��

�
1

sk+2 − L̂�k+2� − sk + L̂�k�

1

sk+1 − L̂�k+1� − sk + L̂�k�
.

For the third order response jumps over more periods do
not occur. For higher order a specific term is given by inte-
grations of the second term in �B3� for any number of inter-
vals in between successive jumps.

The factors �̃
ˆ
��s1−L�1��, �̃

ˆ �sn−L�n�� for the first jump or
surviving from the last jump respectively if the first jump is
in the first interval �survival is from the last interval�. In case
the first jump only comes in later intervals we have the same
factor as above with replacing �→��, �→��.

APPENDIX C: THIRD-ORDER RESPONSE FOR TWO
STATE JUMP MODEL

By substituting Eqs. �A3�–�A5� in Eq. �32� we get the
response function for the pathway given in Fig. 3�a�

2S̃�3��s3,t2 = 0,s1� =
��̃�s3 − i�0� + �̃�s3 + i�0��̃�s3 − i�0��

�1 − �̃�s3 + i�0��̃�s3 − i�0����1 − �̃�s1 − i���̃�s1 + i�0���

�
��̃�s3 + i�0� − �̃�s1 − i�0����̃�s1 + i�0��̃��s1 − i�0� + �̃��s1 + i�0��

s1 − i�0 − s3 − i�0

+
��̃�s3 + i�0� + �̃�s3 − i�0��̃�s3 + i�0��

�1 − �̃�s3 + i�0��̃�s3 − i�0���1 − �̃�s1 − i�0���s1 + i�0��

�
��̃�s3 − i�0� − �̃�s1 + i�0����̃�s1 − i�0��̃��s1 + i�0� + �̃��s1 − i�0��

s1 + i�0 − s3 + i�0

+
��̃�s3 + i�0��̃�s3 − i�0� + �̃�s3 − i�0����̃��s3 + i�0� − �̃��s1 − i�0��

�1 − �̃�s3 + i�0��̃�s3 − i�0���s1 − i�0 − s3 − i�0�

+
��̃�s3 − i�0��̃�s3 + i�0� + �̃�s3 + i�0����̃��s3 − i�0� − �̃��s1 + i�0��

�1 − �̃�s3 + i�0��̃�s3 − i�0���s1 + i�0 − s3 + i�0�

+
��̃�s3 + i�0� − �̃�s1 − i�0����̃�s1 + i�0��̃��s1 − i�0� + �̃��s1 + i�0��

�s1 − i�0 − s3 − i�0��1 − �̃�s1 − i�0��̃�s1 + i�0��

+
��̃�s3 − i�0� − �̃�s1 + i�0����̃�s1 − i�0��̃��s1 + i�0� + �̃��s1 − i�0��

�s1 + i�0 − s3 + i�0��1 − �̃�s1 − i�0��̃�s1 + i�0��
+

�̃��s3 + i�0� − �̃��s1 − i�0�
s1 − i�0 − s3 − i�0

+
�̃��s3 − i�0� − �̃��s1 + i�0�

s1 + i�0 − s3 + i�0
. �C1�

Numerical inversion of Eq. �C1� to time domain is used for plotting the photon echo signal. For model M Eq. �C1� simplifies
to
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2S̃M�s3,t2 = 0,s1� = �
1 +
�

s3 + i�0 + �
� �

�s3 + ��2 + �0
2 − �2 +

1

s3 + i�0 + �
� � �
1 +

�

s1 − i�0 + �
� �

�s1 + ��2 + �0
2 − �2

+
1

s1 − i�0 + �
� + �
1 +

�

s3 − i�0 + �
� �

�s3 + ��2 + �0
2 − �2 +

1

s3 − i�0 + �
�

��
1 +
�

s1 + i�0 + �
� �

�s1 + ��2 + �0
2 − �2 +

1

s1 + i�0 + �
� . �C2�

Equations �33� and �34� are obtained by inverting Eq. �C2� to time domain.

APPENDIX D: THE THIRD-ORDER RESPONSE FUNCTION

We apply Eq. �B1� and Eq. �B2� to the third order response function by setting n=4, L�2�=0, L�1�= ±L�3�. For the first
interval we restore Eq. �A1�:

R̃
ˆ �1��s1� = �1 − �̃

ˆ �s1 − L̂�1���−1�̃
ˆ
��s1 − L̂�1�� .

Straightforward application of Eqs. �25� and �26� gives for the second interval:

R̃
ˆ �2��s2,s1� = �1 − �̃

ˆ �s2��−1��̃ˆ ��s1 − L̂�1�� − �̃
ˆ
��s2��

1

s2 − s1 + L̂�1�
+ �1 − �̃

ˆ �s2��−1��̃ˆ �s2� − �̃
ˆ �s1 − L�1���

1

�s1 − L̂�1� − s2�

��1 − �̃
ˆ �s1 − L̂�1���−1�̃

ˆ
��s1 − L̂�1�� �D1�

and for the third interval

R̃
ˆ �3��s3,s2,s1� = �1 − �̃

ˆ �s3 − L̂�3���−1��̃
ˆ
��s3 − L̂�3��

1

�s2 − s3 + L̂�3���s1 − L̂�1� − s3 + L̂�3��
+ �̃

ˆ
��s2�

1

�s3 − L̂�3� − s2��s1 − L̂�1� − s2�

+ �̃
ˆ
��s1 − L̂�1��

1

�s2 − s1 + L̂�1���s3 − L̂�3� − s1 + L̂�1��
�

+ �1 − �̃
ˆ �s3 − L̂�3���−1��̃

ˆ �s3 − L̂�3��
1

�s2 − s3 + L̂�3���s1 − L̂�1� − s3 + L̂�3��
+ �̃

ˆ �s2�
1

�s3 − L̂�3� − s2��s1 − L̂�1� − s2�

+ �̃
ˆ �s1 − L̂�1��

1

�s2 − s1 + L̂�1���s3 − L̂�3� − s1 + L̂�1��
� � �1 − �̃

ˆ �s1 − L̂�1���−1�̃
ˆ
��s1 − L̂�1�� + �1 − �̃

ˆ �s3 − L̂�3���−1

���̃ˆ �s3 − L�3�� − �̃
ˆ �s2��

1

�s2 − s3 + L̂�3��
�1 − �̃

ˆ �s2��−1 � ���̃ˆ ��s1 − L̂�1�� − �̃
ˆ
��s2��

1

s2 − s1 + L̂�1�

+ ��̃ˆ �s2� − �̃
ˆ �s1 − L�1���

1

�s1 − L̂�1� − s2�
�1 − �̃

ˆ �s1 − L̂�1���−1�̃
ˆ
��s1 − L̂�1��� . �D2�

The Green function Eq. �D3� is obtained by substituting Eqs.
�A1�, �D1�, and �D2� into Eq. �B3�. The Green function is
given by a sum of 8 terms:

G̃
ˆ �3��s3,s2,s1� = �

j=1

8

G̃
ˆ

j�s3,s2,s1� .

Each represents one type of path in the bath space, which

is characterized by the presence or absence of any jump in a
particular time interval as shown in Fig. 10

G̃
ˆ

1 = �̃
ˆ �s3 − L̂�3���1 − �̃

ˆ �s3 − L̂�3���−1��̃ˆ �s3 − L�3�� − �̃
ˆ �s2��

�
1

�s2 − s3 + L̂�3��
�1 − �̃

ˆ �s2��−1 � ��̃ˆ �s2� − �̃
ˆ �s1 − L�1���

�
1

�s1 − L̂�1� − s2�
�1 − �̃

ˆ �s1 − L̂�1���−1�̃
ˆ
��s1 − L̂�1�� ,
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G̃
ˆ

2 = �̃
ˆ �s3 − L̂�3���1 − �̃

ˆ �s3 − L̂�3���−1��̃ˆ �s3 − L�3�� − �̃
ˆ �s2��

�
1

�s2 − s3 + L̂�3��
�1 − �̃

ˆ �s2��−1��̃ˆ ��s1 − L̂�1�� − �̃
ˆ
��s2��

�
1

s2 − s1 + L̂�1�
,

G̃
ˆ

3 = �̃
ˆ �s3 − L̂�3���1 − �̃

ˆ �s3 − L̂�3���−1��̃
ˆ �s3 − L̂�3��

�
1

�s2 − s3 + L̂�3���s1 − L̂�1� − s3 + L̂�3��
+ �̃

ˆ �s2�

�
1

�s3 − L̂�3� − s2��s1 − L̂�1� − s2�

+ �̃
ˆ �s1 − L̂�1��

1

�s2 − s1 + L̂�1���s3 − L̂�3� − s1 + L̂�1��
�

��1 − �̃
ˆ �s1 − L̂�1���−1�̃

ˆ
��s1 − L̂�1�� ,

G̃
ˆ

4 = �̃
ˆ �s3 − L̂�3���1 − �̃

ˆ �s3 − L̂�3���−1��̃
ˆ
��s3 − L̂�3��

�
1

�s2 − s3 + L̂�3���s1 − L̂�1� − s3 + L̂�3��

+ �̃
ˆ
��s2�

1

�s3 − L̂�3� − s2��s1 − L̂�1� − s2�

+ �̃
ˆ
��s1 − L̂�1��

1

�s2 − s1 + L̂�1���s3 − L̂�3� − s1 + L̂�1��
� ,

G̃
ˆ

5 = ��̃ˆ �s3 − L̂�3�� − �̃
ˆ �s2��

1

s2 − s3 + L̂�3�
�1 − �̃

ˆ �s2��−1

���̃ˆ �s2� − �̃
ˆ �s1 − L�1���

1

�s1 − L̂�1� − s2�

��1 − �̃
ˆ �s1 − L̂�1���−1�̃

ˆ
��s1 − L̂�1�� ,

G̃
ˆ

6 = ��̃ˆ �s3 − L̂�3�� − �̃
ˆ �s2��

1

s2 − s3 + L̂�3�
�1 − �̃

ˆ �s2��−1

���̃ˆ ��s1 − L̂�1�� − �̃
ˆ
��s2��

1

s2 − s1 + L̂�1�
,

G̃
ˆ

7 = ��̃
ˆ �s3 − L̂�3��

1

s2 − s3 + L̂�3�

1

s1 − L̂�1� − s3 + L̂�3�
+ �̃

ˆ �s2�
1

s3 − L̂�3� − s2

1

s1 − L̂�1� − s2

+ �̃
ˆ �s1 − L̂�1��

1

s3 − L̂�3� − s1 + L̂�1�

1

s2 − s1 + L̂�1���1 − �̃
ˆ �s1 − L̂�1���−1�̃

ˆ
��s1 − L̂�1�� ,

G̃
ˆ

8 = �̃
ˆ
��s3 − L̂�3��

1

s2 − s3 + L̂�3�

1

s1 − L̂�1� − s3 + L̂�3�
+ �̃

ˆ
��s2�

1

s3 − L̂�3� − s2

1

s1 − L̂�1� − s2

+ �̃
ˆ
��s1 − L̂�1��

1

s3 − L̂�3� − s1 + L̂�1�

1

s2 − s1 + L̂�1�
. �D3�

All necessary matrices �̃
ˆ �s− L̂�, �̃

ˆ �s− L̂�, and �1−�̂�s− L̂��−1 are readily calculated in Appendix A.

�1� R. Kubo, J. Math. Phys. 4, 174 �1963�.
�2� R. Kubo, in Flucutation, Relaxation and Resonance in Mag-

netic Systems, edited by D. ter Haar �Oliver & Boyd, Edin-
burgh, 1962�, p. 23.

�3� P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag.
25, 1 �1971�.

�4� G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823
�1930�.

�5� H. Risken, The Fokker-Plank Equation �Springer, Berlin,
1989�.

�6� A. O. Caldeira and A. Leggett, Physica A 121, 587 �1983�.
�7� R. Zwanzig, in Lectures in Theoretical Physics, edited by W.

E. Brittin, B. W. Downs, and J. Downs �Interscience, New
York, 1961�, Vol. III, p. 106.

�8� H. Mori, Prog. Theor. Phys. 33, 423 �1965�.
�9� M. Tokuyama and H. Mori, Prog. Theor. Phys. 55, 411 �1976�.

F. ŠANDA AND S. MUKAMEL PHYSICAL REVIEW E 73, 011103 �2006�

011103-14



�10� R. Metzler, E. Barkai, and J. Klafter, Phys. Rev. Lett. 82, 3563
�1999�.

�11� R. Metzler and J. Klafter, Phys. Rep. 339, 1 �2000�.
�12� H. P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems �Oxford University Press, New York, 2002�.
�13� S. C. Kou and X. S. Xie, Phys. Rev. Lett. 93, 180603 �2004�.
�14� W. Min, G. Luo, B. J. Cherayil, S. C. Kou, and X. S. Xie,

Phys. Rev. Lett. 94, 198302 �2005�.
�15� S. Mukamel, Principles of Nonlinear Optical Spectroscopy

�Oxford University Press, New York, 1995�.
�16� R. J. Glauber, in Quantum Optics and Electronics, edited by C.

De Witt, A. Blandin, and C. Cohen-Tannoudji �Gordon and
Breach, New York, 1965�, p. 65.

�17� V. Barsegov and S. Mukamel, J. Phys. Chem. A 108, 15
�2004�.

�18� F. Šanda and S. Mukamel, Phys. Rev. E 72, 031108 �2005�.
�19� H. Yang, G. Luo, P. Karnchanaphanurach, T-M. Louie, I. Rech,

S. Cova, L. Xun, and X. S. Xie, Science 302, 262 �2003�.
�20� O. Flomenbom, K. Velonia, D. Loos, S. Masuo, M. Cotlet, Y.

Engelborghs, J. Hofkens, A. E. Rowan, R. J. M. Nolte, F. C. de
Schryver, and J. Klafter, Proc. Natl. Acad. Sci. U.S.A. 102,
2368 �2005�.

�21� L. Edman, Z. Földes-Papp, S. Wennmalm, and R. Rigler,
Chem. Phys. 247, 11 �1999�.

�22� M. Kuno, D. P. Fromm, H. F. Hamman, A. Gallagher, and D. J.
Nesbitt, J. Chem. Phys. 112, 3117 �2000�.

�23� K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, S. A.
Empedocles, W. K. Woo, and M. G. Bawendi, Phys. Rev. B
63, 205316 �2001�.

�24� G. Messin, J. P. Hermier, E. Giacobino, P. Desbioles, and M.
Dahan, Opt. Lett. 26, 1891 �2001�.

�25� W. E. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 �1965�.
�26� H. Scher and M. Lax, Phys. Rev. B 7, 4491 �1973�.
�27� J. W. Haus and K. W. Kehr, Phys. Rep. 150, 263 �1987�.
�28� B. B. Mandelbrot, The Fractal Geometry of Nature �Freeman,

San Francisco, 1983�.
�29� H. Sher and W. E. Montroll, Phys. Rev. B 12, 2455 �1975�.
�30� G. Zumofen, A. Blumen, and J. Klafter, Phys. Rev. A 41,

R4558 �1990�.
�31� G. H. Weiss, Aspects and Applications of the Random Walks

�North-Holland, Amsterdam, 1994�.

�32� M. F. Shlesinger, Annu. Rev. Phys. Chem. 39, 269 �1988�.
�33� J. P. Bouchard and A. Georges, Phys. Rep. 195, 127 �1990�.
�34� F. Bardou, J. P. Bouchard, A. Aspect, and C. Cohen-Tannoudji,

Lévy Statistics and Laser Cooling: How Rare Events Bring
Atoms to Rest �Cambridge University Press, Cambridge, UK,
2002�.

�35� E. Gudowska-Nowak and K. Weron, Phys. Rev. E 65, 011103
�2001�.

�36� J. Kotulski, J. Stat. Phys. 81, 777 �1995�.
�37� M. F. Shlesinger, J. Stat. Phys. 10, 421 �1974�.
�38� B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions

for Sums of Independent Random Variables �Addison-Wesley,
Reading, MA, 1954�.

�39� A. Gut, Stopped Random Walks Limit Theorems and Applica-
tions �Springer, New York, 1988�.

�40� M. M. Meerschaert and H. Scheffler, Limit Theorems for Sum
of Independent Vectors; Heavy Tails in Theory and Practice
�Wiley, New York, 2001�.

�41� A. Jurlewicz, Dissertationes Mathematicae 431, 1 �2005�.
�42� G. Bel and E. Barkai, Phys. Rev. Lett. 94, 240602 �2005�.
�43� W. Feller, An Introduction to Probability Theory and its Appli-

cation �Willey, New York, 1971�.
�44� R. Verberk and M. Orrit, J. Chem. Phys. 119, 2214 �2003�.
�45� Y. Jung, E. Barkai, and R. Silbey, Chem. Phys. 284, 181

�2002�.
�46� A. I. Shushin, Phys. Rev. E 67, 061107 �2003�.
�47� A. I. Shushin, Physica A 340, 283 �2004�.
�48� A. I. Shushin, cond-mat/0409578, 2004.
�49� M. O. Vlad, V. T. Popa, and E. Segal, Phys. Lett. 100, 387

�1984�.
�50� M. O. Vlad and A. Pop, Physica A 155, 276 �1989�.
�51� C. Cohen-Tanoudji, J. Dupon-Roc, and G. Gryndberg, Atom

Photon Interaction �Wiley, New York, 1957�.
�52� D. R. Cox, Renewal Theory �Methuen, London, 1962�.
�53� Y. Jung, E. Barkai, and R. Silbey, Adv. Chem. Phys. 123, 199

�2002�.
�54� F. Šanda and S. Mukamel, Phys. Rev. A 71, 033807 �2005�.
�55� G. Margolin and E. Barkai, Phys. Rev. Lett. 94, 080601

�2005�.

ANOMALOUS CONTINUOUS-TIME RANDOM-WALK… PHYSICAL REVIEW E 73, 011103 �2006�

011103-15


