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Nonequilibrium superoperator Green’s function theory is used to calculate the fluorescence signal of mol-
ecules induced by currents in scanning tunneling microscope junctions. The spectrum of benzene and its
variation with tip position and bias are simulated at the density functional theory level. The formal analogy
with laser-induced fluorescence is pointed out. Many-body effects can be accounted for through self-energies
and the Keldysh Dyson equations. The sum-over-orbital expressions obtained within density functional theory
may not be expressed as an amplitude square. This is due to dephasing effects induced by the many-electron
excitations, which act as a bath.
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I. INTRODUCTION

The radiative recombination of electrons and holes in-
jected into molecular materials such as conducting polymers
and carbon nanotubes, known as electroluminescence, is an
interesting process involving the complex interplay of
charge-carrier transport with trapping and disorder.1 Current
induced fluorescence �CIF� forms the basis for many techno-
logical applications, e.g., light-emitting diodes. The observa-
tion of light emission induced by the electric current
in single molecular junctions,2 carbon nanotubes,3 and
nanowires4 is a remarkable recent development. The scan-
ning tunneling microscopy �STM� tip or metal wires allow
the control of electron and hole injection into specific posi-
tions within a molecule, and ensemble averaging is totally
eliminated. Laser-induced fluorescence �LIF�, in contrast, is
determined by the long-wavelength �dipole� approximation
and may not be controlled spatially beyond the �100 nm
resolution of near-field techniques. Furthermore, STM is not
subjected to optical selection rules and can access a broader
range of excited states. Experiments performed on porphy-
rines and phthalocynines2 have shown a strong variation of
the spectrum as the tip is scanned across the molecule.

There have been several studies on the reverse process of
photoinduced current in laser-driven molecular wires.5–7 Le-
hmann et al.6 have used Floquet formalism to study the
quantum rectification properties of a molecular wire ratchet
driven by an external laser field in absence of applied dc
bias. Charge transfer through a molecular junction under an
applied dc bias has been investigated8–17 using the nonequi-
librium Green’s function technique �NEGFT�.18–20

In this paper we use the density matrix Liouville space
nonequilibrium superoperator Green’s function theory21–25

�NESGFT� to calculate CIF in molecular junctions. In anal-
ogy with LIF,26 the fluorescence is expressed in terms of
various Liouville space pathways �LSPs�. Electron transfer
in donor-bridge-acceptor systems has been formulated
similarly.27,28 The fundamental formal analogy between co-
herent �tunneling� and Raman signals, and between incoher-
ent �hopping� transport and fluorescence spectra, is most
clearly seen when these processes are described using the
density matrix in Liouville space.26,29 Closed expressions are
derived by combining the density matrix approach with

many-body theory. These are recast in terms of nonequilib-
rium Green’s functions which may be computed using stan-
dard quantum chemistry techniques.

In the next section, we present the superoperator Liouville
space description of conventional LIF. This simpler process
will allow us to introduce the formalism and notation, and
the necessary time-ordered pathways and Feynman dia-
grams, setting the stage for computing the current-induced
fluorescence in Sec. III. In Sec. IV we present simulations
for benzene. We conclude in Sec. V with a discussion.

II. SUPEROPERATOR EXPRESSIONS FOR OPTICALLY
INDUCED FLUORESCENCE

We consider a molecule driven by an optical field with a
complex envelop E�t� and frequency �L. In the rotating wave
approximation the molecule-field interaction is given by

Hint = E�t�B†exp�− i�Lt� + E*�t�B exp�i�Lt� . �1�

B†�B� are the creation �annihilation� operators for an elec-
tronic excitation and �=B+B† is the dipole operator.

The time- �t� and frequency- ��S� resolved fluorescence
signal is given by the Fourier transform of the two-point time
correlation function of the dipole operator30,31 �Appendix A�

S��S,�L,t� =
1

�2�
−�

�

d� e−i�S��B†�t�B�t − ���D. �2�

Here �¯�D denotes a nonequilibrium average for the driven
system whose time evolution is in the Heisenberg picture

B�t� � exp� i

�
�

t0

t

d�HT���	B�t0�exp�−
i

�
�

t0

t

d�HT���	
�3�

where HT=H+Hint is the total Hamiltonian for the molecule
�H� and its coupling with the external field. We further define
the time evolution in the interaction picture,

B̃�t� � e�i/��H�t−t0�B�t0�e−�i/��H�t−t0�. �4�

NESGFT is formulated in terms of Liouville space
superoperators.21,31,32 We shall briefly introduce the basic el-
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ements of this technique. With each Hilbert space operator
Q, we associate two superoperators, denoted as QL �left� and
QR �right�, defined through their left or right action on some
Hilbert space operator X,

QLX � QX, QRX � XQ . �5�

We further define the linear combinations of these superop-
erators Q+��QL+QR� /2 and Q−�QL−QR. Thus a +�−� op-
eration in Liouville space corresponds to an anticommutation
�commutation� operation in Hilbert space, Q+X��QX
+XQ� /2 and Q−X�QX−XQ.

A key tool in the following manipulations is the time-
ordering operator in Liouville space, T; when acting on a
product of superoperators, it reorders them so that time in-
creases from right to left. Since the trace of a commutator
vanishes, we have

�TQi
+�t�Qj

−�t��� = 0, t � t�. �6�

One notable advantage of the +/−, compared to the L /R
representation, is that causal and noncausal quantities appear
naturally. �TQi

+�t�Qj
−�t��� is causal while �TQi

+�t�Qj
+�t��� is

noncausal, and �TQi
−�t�Qj

−�t��� vanishes identically. From
these definitions it follows that

�TQL�t�QR
†�t��� = 	�t − t���QL�t�QR

†�t��� + 	�t� − t�


�QR
†�t��QL�t�� � �Q†�t��Q�t�� . �7�

Using Eq. �7�, Eq. �2� can be expressed in terms of super-
operators,

S��S,�L,t� =
1

�2 � d� e−i�S��TBL�t − ��BR
†�t��D. �8�

Standard derivations of S��S ,�L , t� use normal ordering of
ordinary Hilbert space operators.30,33,34 This is not necessary
in the present time-ordered form of superoperators.

We next switch to the interaction picture,32

�TBL�t − ��BR
†�t��D = 
TB̃L�t − ��B̃R

†�t�


exp�−
i

�
� d�1E��1�B̃−

†��1�e−i�L�1

−
i

�
� d�2E*��2�B̃−��2�ei�L�2	� . �9�

Here �¯� represents the trace with respect to the density
matrix of the material alone. To second order in the external
field, which is the lowest order necessary to generate the
fluorescence signal, we get

S��S,�L,t� = −
1

�4 � � � d� d�1d�2e−i�S�−i�L��1−�2�


�TB̃L�t − ��B̃R
†�t�B̃−

†��1�B̃−��2��E��1�E*��2� .

�10�

Other second-order terms which contain E��1�E��2� and

E*��1�E*��2� do not contribute to the signal because their
trace vanishes.

Recasting the +/− operators in Eq. �10� in the L /R repre-
sentation, and keeping in mind that only traces with a pair of
left and a pair of right operators survive, Eq. �10� reduces to

S��S,�L,t� =
− 1

�4 � � � d� d�1d�2e−i�S�−i�L��1−�2�


�TB̃L�t − ��B̃R
†�t�B̃L

†��1�B̃R��2��E��1�E*��2� .

�11�

Depending on the time ordering of various operators, Eq.
�11� can be separated into various Liouville space pathways.
BL�t−�� destroys an exciton at time t−� from the left. Thus
in order to have a finite signal, we must first create an exci-
ton from the left at an earlier time. BL

†��1�, which creates the
exciton from the left, must therefore act before BL�t−��. That
is, we must have t−���1. A similar argument holds for the
right operators and BR��2�, which creates an exciton from
right, must act before BR

†�t�, which destroys the exciton. Thus
we have t��2. The various time orderings result in the six
pathways whose Feynman diagrams are shown in Fig. 1. The
three pathways corresponding to ��0 and ��0 are complex
conjugates and the fluorescence signal

FIG. 1. Double-sided Feynman diagrams corresponding to the
six time-ordered interactions that contributing to LIF, Eq. �11�. The
three processes in �a� for ��0 are complex conjugates to ��0,
shown in �b�. Feynman diagrams for CIF from a negatively �posi-
tively� charged molecule can be obtained by replacing the two B
operators acting at times �1 and �2 with �k

†��k� and �l��l
†�, respec-

tively. For CIF, �a�, �b�, �c�, and �d� correspond to states with dif-
ferent number of electrons �see text�. Time increases from bottom to
top.
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S��S,�L,t� = −
2

�4Re�
0

�

d��
−�

t−�

d�1�
−�

t

d�2e−i�S�e−i�L��1−�2�


�TB̃L�t − ��B̃R
†�t�B̃L

†��1�B̃R��2��E��1�E*��2�

�12�

can be written as

S��S,�L,t� = −
2

�4Re
SI��S,�L� + SII��S,�L� + SIII��S,�L��

�13�

where the three contributions 
Fig. 1�a�� are given by

SI��S,�L,t� = �
0

�

d��
−�

t−�

d�1�
−�

�1

d�2e−i�S�e−i�L��1−�2�


 �B̃R
†�t�B̃L�t − ��B̃L

†��1�B̃R��2��E��1�E*��2� ,

�14�

SII��S,�L,t� = �
0

�

d��
−�

t−�

d�2�
−�

�2

d�1e−i�S�e−i�L��1−�2�


 �B̃R
†�t�B̃L�t − ��B̃R��2�B̃L

†��1��E��1�E*��2� ,

�15�

SIII��S,�L,t� = �
−�

t

d�2�
t−�2

�

d��
−�

t−�

d�1e−i�S�e−i�L��1−�2�


 �B̃R
†�t�B̃R��2�B̃L�t − ��B̃L

†��1��E��1�E*��2� .

�16�

Changing integration variables and recasting the correlation
functions in Hilbert space,

�B̃R
†�t�B̃L�t − ��B̃L

†�t − � − �1�B̃R�t − � − �1 − �2��

� �B̃�t − � − �1 − �2�B̃†�t�B̃�t − ��B̃†�t − � − �1�� ,

�17�

�B̃R
†�t�B̃L�t − ��B̃L

†�t − � − �1 − �2�B̃R�t − � − �1��

� �B̃�t − � − �1�B̃†�t�B̃�t − ��B̃†�t − � − �1 − �2�� ,

�18�

�B̃R
†�t�B̃R�t − �2�B̃L�t − � − �2�B̃L

†�t − � − �1 − �2��

� �B̃�t − �2�B̃†�t�B̃�t − � − �2�B̃†�t − � − �1 − �2�� ,

�19�

we obtain

SI��S,�L,t� = �
0

�

d��
0

�

d�1�
0

�

d�2e−i�S�e−i�L�2E�t − � − �1�


E*�t − � − �1 − �2�


�B�t − � − �1 − �2�B†�t�B�t − ��B†�t − � − �1�� .

�20�

SII��S,�L,t�

= �
0

�

d��
0

�

d�1�
0

�

d�2e−i�S�ei�L�1


E�t − � − �1 − �2�E*�t − � − �2�


�B�t − � − �2�B†�t�B�t − ��B†�t − � − �1 − �2�� .

�21�

SIII��S,�L,t�

= �
0

�

d��
0

�

d�1�
0

�

d�2e−i��S−�L��e−i�S�2ei�L�1


E�t − � − �1 − �2�E*�t − �2�


�B�t − �2�B†�t�B�t − � − �2�B†�t − � − �1 − �2�� .

�22�

We now insert a complete set of many-body states de-
noted by �a�, �b�, �c�, and �d�, where �a� and �c� are vibronic
states belonging to the ground electronic state and �b� and �d�
denote the excited states. This gives

�B�t − � − �1 − �2�B†�t�B�t − ��B†�t − � − �1��

= �
a,b,c,d

P�a�BabBbc
† BcdBda

†


 ei��bc+i
bc��ei��bd+i
bd��1ei��ba+i
ba��2. �23�

Here P�a� is the equilibrium probability of finding the sys-
tem in state �a�, Bab��a�B�b� and �ab��a−�b is the transi-
tion frequency between states �a� and �b�. 
ab= ��a+�b� /2

+ 
̂ab is the dephasing rate of the �a�→ �b� transition.26 Sub-
stituting Eq. �23� in Eq. �20�, carrying out the time integrals,
and assuming stationary field envelopes 
E�t�=1�, we obtain

Eq. �9.14� of Ref. 26�

SI��S,�L� = − i �
a,b,c,d

P�a�BabBbcBcdBda� 1

��bc − �S + i
bc���bd + i
bd���ba − �L + i
ba�	 . �24�

Similarly for the other pathways, we get

SII��S,�L� = − i �
a,b,c,d

P�a�BabBbcBcdBda� 1

��L − �da + i
da���bd + i
bd���bc − �S + i
bc�
	 , �25�
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SIII��S,�L� = − i �
a,b,c,d

P�a�BabBbcBcdBda� 1

��L − �S − �ca + i
ca���bc − �S + i
bc���L − �da + i
da�	 . �26�

In the absence of dephasing, 
ab=0, substituting Eqs. �24�–�26� in Eq. �13� gives

S��S,�L� =
2�

�4 �
ac

P�a���
b

BcbBba

�L − �ba + i��2

���L − �S − �ca� , �27�

where � is an infinitesimal positive number. This is the stan-
dard expression for spontaneous light emission spectra.26

In the next section, we follow the same steps to compute
the fluorescence signal induced by an electric current in a
molecular junction.

III. THE CURRENT-INDUCED FLUORESCENCE
SPECTRUM

In a STM junction an electron or a hole is injected from
the tip to the substrate. To describe this process in an open
system, where the number of electrons is not fixed, we can
no longer work with exciton variables �B� alone and need to
use electron creation and annihilation operators �† and �,
which satisfy the Fermi anticommutation relations

��i,� j
†� = �ij, ��i,� j� = ��i

†,� j
†� = 0. �28�

We shall use latin �i , j ,k� and greek �� ,� ,�� indices for the
substrate and the tip orbitals, respectively.

The total Hamiltonian is given by35–37

HT = Ht + Hs + Hts. �29�

It represents the tip �Ht�, the substrate �Hs�, and their cou-
pling

Hts = C† + C , �30�

where

C† = �
i

�i
†�i, C = �

i

�i
†�i �31�

with �i=��Ji��� , Ji� are the tunneling matrix elements be-
tween the tip and the substrate. In LIF an excitation is cre-
ated via the interaction with the external electric field
whereas in CIF it is created through coupling with the STM
tip. The excitation energy is controlled by the applied bias
across the STM junction. Thus the bias voltage �V� plays the
same role as the frequency �L in LIF.

To calculate the fluorescence signal we need the dipole
operator �=B+B†, where

B = �
i�j

�ij�i
†� j ,

B† = �
i�j

� ji� j
†�i, �32�

and �ij is the transition dipole between the ith and jth orbit-
als with energies �i and � j, respectively. In the summations in

Eq. �32�, we only include terms with � j ��i. Thus B lowers
the molecular energy by transferring an electron from a
higher orbital j to a lower orbital i while B† represents the
reverse process.

Following the same steps of the previous section, the sig-
nal Eq. �8� can be written in the interaction picture 
Eq. �4��
where H=Ht+Hs. The lowest-order contribution �second or-
der in tip-molecule interaction�, in analogy with Eq. �10�,
gives

S��S,V,t� = −
1

2�4 � d�� d�1� d�2e−i�S�


�TB̃L�t − ��B̃R
†�t�H̃ts

− ��1�H̃ts
− ��2�� . �33�

The bias �V� dependence on the right-hand side of Eq. �33� is
contained in the density matrix ��t→−�� over which the
trace is taken. We shall make the V dependence explicit by
factorizing the average in Eq. �33�. Expressing Hts

− in terms
of L /R operators 
Eq. �5�� and noting that for the signal not
to vanish we must have one pair of operators acting from the
left and another pair acting from the right, Eq. �33� reduces
to

S��S,V,t� =
1

�4 � d�� d�1� d�2e−i�S�


�TB̃L�t − ��B̃R
†�t�H̃L

ts��1�H̃R
ts��2�� �34�

where H�
ts=C�

† +C� , �=L ,R, are superoperators correspond-
ing to Eq. �34�, which is analogous to Eq. �11�. Using Eq.
�30�, it can be separated into two terms S=Sn+Sp, where

Sn��S,V,t� =
1

�4 � d�� d�1� d�2e−i�S�


�TB̃L�t − ��B̃R
†�t�C̃L

†��1�C̃R��2�� , �35�

Sp��S,V,t� =
1

�4 � d�� d�1� d�2e−i�S�


�TB̃L�t − ��B̃R
†�t�C̃L��1�C̃R

†��2�� �36�

The operators CL
† and CR, Eq. �31�, transfer an electron

from the tip to the molecule while CL and CR
† remove an

electron from the molecule. Thus Sn and Sp represent two
scenarios for the fluorescence coming from either a nega-
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tively or a positively charged molecule, respectively. These
contributions are controlled by the polarity of the applied
bias.

We first consider Sn. The Feynman diagram for this pro-
cess is depicted in Fig. 2�a�. In Eq. �35�, �¯� represents the
trace with respect to the initial density matrix of the
molecule+tip system at t→−�, which is a product of density
matrices of the tip and the molecule alone. The operators BL
and BR

† bring the injected electron to one of the lower energy
orbitals. In order to have a finite signal, CL

† and CR must act
before BL and BR

† . That is, t−���1 and t��2 and we have

Sn��S,V,t� =
1

�4 � d��
−�

t−�

d�1�
−�

t

d�2e−i�S�


�TB̃L�t − ��B̃R
†�t�C̃L

†��1�C̃R��2�� . �37�

We next express the operators BL, BR
† , CL

†, and CR in terms of

the field operators 
Eqs. �31� and �32��. Noting that the initial
density matrix ��t→−�� is a direct product of ground-state
density matrices for the tip and the molecule, the average in
Eq. �37� can be factorized into a product of tip and molecule
terms,

Sn��S,V,t� =
i

�3 � d��
−�

t−�

d�1�
−�

t

d�2e−i�S�


�
i�j

�
i��j�

�
kl

�
��

�ij�i�j�Jk�Jl�


GLR
����1,�2��T�̃iL

† �t − ���̃ jL�t − ���̃ j�R
† �t��̃i�R�t�


�̃kL
† ��1��̃lR��2�� �38�

where

GLR
����1,�2� = −

i

�
�T�̃�L��1��̃�R

† ��2��tip �39�

is the nonequilibrium tip Green’s function24 where �¯�tip

represents the trace with respect to the tip density matrix. In
Hilbert space notation, GLR

�� corresponds to the “lesser”
Green’s function G��

� ,19,23

GLR
����1,�2� � G��

� ��1,�2� =
i

�
��̃�

†��2��̃���1��tip. �40�

Hereafter �¯� will represent the trace with respect to the
density matrix of the molecule alone.

We shall model the metal tip as a free electron gas at zero
temperature. We then have

�
��

GLR
����1,�2� =

i

�
�
�

occ

e−�i/������1−�2� �41�

where �� is the energy of the �th orbital and sum runs over
the all occupied states. Assuming that the tip energy bands
constitute a continuum, we write

�
��

GLR
����1,�2� =

i

�
�

−�

EF+eV

d� ����e−�i/�����1−�2� �42�

where EF is the Fermi energy of the metal and V is the
applied bias. EF+eV is the highest filled energy and ���� is
the tip density of states.

Substituting Eq. �42� in Eq. �38�, we obtain

Sn��S,V,t�

=
1

�4 � d��
−�

t−�

d�1�
−�

t

d�2�
−�

EF+eV

d�


�
i�j

�
i��j�

�
kl

�ij�i�j�Jk���Jl�������e−i�S�e−�i/�����1−�2�


�T�̃iL
† �t − ���̃ jL�t − ���̃ j�R

† �t��̃i�R�t��̃kL
† ��1��̃lR��2��

�43�

where Jk��� is the coupling between the kth orbital of the
molecule and the energy continuum of the tip. In analogy to

FIG. 2. Double-sided Feynman diagrams for CIF. The molecule
is initially in the ground state with N electrons. �a� Emission from a
negatively charged molecule �Sn�. An electron is transferred from
the tip to the molecular orbital �LUMO+1�, creating an excited
state of the �N+1�-electron system �represented by a star�. The sys-
tem then relaxes to the ground N+1 electron state by emitting a
phonon. �b� Emission from a positively charged molecule �Sp�. An
electron is transferred from the molecular orbital HOMO−1 to the
tip. This creates an excited state of the �N−1�-electron system. The
system relaxes to the ground N−1 electron state by transferring an
electron from HOMO to HOMO−1 orbital accompanied by a
photon emission.
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LIF 
Eq. �11��, depending on the time ordering of various
operators, Sn contains contributions from six LSPs. The
Feynman diagrams for these LSPs can be obtained from Fig.
1 by replacing the first two B operators acting at times �1 and
�2 with Fermi operators �k

† and �l, respectively. The total

signal Sn= �Sn
I +Sn

II+Sn
III�+c.c., where Sn

I , Sn
II, and Sn

III are
computed in Appendix B. For a more direct correspondence
with LIF, we shall consider the derivative of the signal with
respect to the applied bias �V�. This gives in Hilbert space
�Appendix B�,

dSn
I ��S,V,t�

dV
=

e

�4�
0

�

dt1�
0

�

dt2�
0

�

dt3�
i�j

�
i��j�

�
kl

�ij�i�j�Jk�EF + eV�Jl�EF + eV�e−i�St1��EF + eV�e−�i/���EF+eV�t3


��̃l�t − t1 − t2 − t3��̃ j�
† �t��̃i��t��̃i

†�t − t1��̃ j�t − t1��̃k
†�t − t1 − t2�� , �44�

dSn
II��S,V,t�

dV
=

e

�4�
0

�

dt1�
0

�

dt2�
0

�

d�3�
i�j

�
i��j�

�
kl

�ij�i�j�Jk�EF + eV�Jl�EF + eV�e−i�St1��EF + eV�e�i/���EF+eV�t3


��̃l�t − t1 − t2��̃ j�
† �t��̃i��t��̃i

†�t − t1��̃ j�t − t1��̃k
†�t − t1 − t2 − t3�� , �45�

dSn
III��S,V,t�

dV
=

e

�4�
0

�

dt1�
0

�

dt2�
0

�

dt3�
i�j

�
i��j�

�
kl

�ij�i�j�Jk�EF + eV�Jl�EF + eV���EF + eV�e−i�S�t1+t3�e−�i/���EF+eV��t2+t3�


��̃l�t − t3��̃ j�
† �t��̃i��t��̃i

†�t − t1 − t2��̃ j�t − t1 − t2��̃k
†�t − t1 − t2 − t3�� . �46�

Equations �44�–�46� are analogous to Eqs. �20�–�22�. Expanding them in many-body molecular states �a�, �b�, �c�, and �d� and
neglecting dephasing gives �see Appendix C�,

dSn��S,V�
dV

=
2�e

�
�
ac

P�a���
i�j

�
k

�
b

�ij�a��k�b��b�� j
†�i�c�Jk�EF + eV�

EF + eV − ��ba + i� �2

��EF + eV���EF + eV − ��S + ��ca� . �47�

Unlike LIF, the many-body states �a�, �b�, and �c� in Eq. �47�
correspond to a molecule with different numbers of elec-
trons. �a� is the ground state �N� with N electrons. �b� repre-
sents the excited state �N+1��**� with N+1 electrons, and �c�
represents some lower lying excited state �N+1��*� of N+1
electrons. Jk�EF+eV� is the coupling of the kth molecular
orbital with the highest-energy band of the tip. Since molecu-
lar orbitals have different spatial profiles, Jk�EF+eV�, which
depends on the overlap of the molecular orbitals with the tip
states, and the fluorescence spectrum will vary as the tip is
scanned across the molecule.

In summary when the tip is negatively biased with respect
to the molecule, an electron is injected into one of the unoc-
cupied orbitals of the molecule. This electron then makes a
radiative transition to one of the lower orbitals, emitting a
photon, before moving to the metal surface. In order to ob-
serve CIF, the electron from the tip must be transferred to
any orbital higher than the lowest unoccupied molecular or-
bital �LUMO�, so that the negative ion is created in an elec-
tronically excited state.

Following the same steps that lead from Eq. �35� to Eq.
�38�, the signal Sp 
Eq. �36�� from a positively charged mol-
ecule can be expressed as

Sp��S,V,t�

=
i

�3 � d��
−�

t−�

d�1�
−�

t

d�2e−i�S�


�
i�j

�
i��j�

�
kl

�
��

�ij�i�j�Jk�Jl�GRL
����2,�1�


�T�̃iL
† �t − ���̃ jL�t − ���̃ j�R

† �t��̃i�R�t��̃kL��1��̃lR
† ��2��

�48�

with the Green’s function24

GRL
����2,�1� = −

i

�
�T�̃�R��2��̃�L

† ��1��t. �49�

This process is shown in Fig. 2�b�. In Hilbert space, GRL
��

corresponds to the “greater” Green’s function G��
� ,19,21

GRL
����1,�2� � − G��

� ��1,�2� =
i

�
��̃���2��̃�

† ��1�� . �50�

Assuming the tip to be a free electron gas, we can write
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�
��

GRL
����2,�1� =

i

�
�
�

unocc

e−�i/������2−�1� �51�

where � runs over all unoccupied orbitals. Substituting this
in Eq. �48� and assuming that the tip energy states form a
continuum, we get

Sp��S,V,t�

=
− 1

�4 �
i�j

�
i��j�

�
kl

�ij�i�j�� d��
−�

t−�

d�1�
−�

t

d�2


�
EF+eV

�

d� Jk���Jl�������e−i�S�e−�i/�����2−�1�


�T�̃iL
† �t − ���̃ jL�t − ���̃ j�R

† �t��̃i�R�t��̃kL��1��̃lR
† ��2�� .

�52�

Proceeding along the steps that led from Eq. �43� to Eq. �47�,
the rate of change of Sp with respect to applied bias is ob-
tained as

dSp��S,V�
dV

=
2�e

�
�
ac

P�a�


��
i�j

�
k,b

�a��k
†�b��b�� j

†�i�c��ijJk�EF + eV�
EF + eV − ��ab + i� �2


 ��EF + eV���EF + eV + ��S + ��ca� �53�

where �a� denotes the ground state of N electrons, �b� and �d�

are excited states �N−1��**� of a molecule with N−1 elec-
trons, and �c� is a lower excited state �N−1��*� with N−1
electrons.

In Sp, an electron is transferred from one of the occupied
orbitals lying below the highest occupied molecular orbital
�HOMO� of the molecule to the tip. This creates a positive
ion in an electronically excited state. To observe CIF, an
electron from one of the orbitals makes a transition to the
orbital from which electron is transferred. Sn involves ini-
tially unoccupied orbitals and takes place in the negatively
charged molecule whereas Sp involves initially occupied lev-
els and takes place in the positively charged substrate.
Electroluminescence3 involves the simultaneous injection of
both an electron and a hole into the molecule, and the light is
emitted from the neutral molecule. This is a higher-order
process �fourth order in Hts� that goes beyond the present
theory.

IV. GREEN’S FUNCTION EXPRESSIONS FOR THE
FLUORESCENCE SPECTRUM

At the density-functional �or Hartree Fock� level,38 the
electronic states are given by a single Slater determinant and
the fluorescence signals Eqs. �35� and �36� can be expanded
in terms of the orbital energies. The time evolution of opera-
tors in the interaction picture is

�̃i�t� = eiHt�ie
−iHt = e−i�it�i, �54�

where H is the molecular Hamiltonian and �i is the energy of
the ith orbital. In this case Eq. �43� gives �see Appendix D�

dSn��S,V�
dV

=
2e

�
Im �

i��j,j��

unocc

�
j j�

unocc
�ij�ij�Jj�EF + eV�Jj��EF + eV���EF + eV�

�EF + eV − � j + i
Vj��� j� − EF + eV + i
 j�V��EF + eV − �i − ��S + i
iV�
, �55�

where 
Vj is the dephasing rate of the coherence between the jth molecular orbital and tip state with energy EF+eV. Similarly,
for Sp we obtain

dSp��S,V�
dV

=
2e

�
Im �

ii���j�

occ

�
j

occ
�ij�i�jJi�EF + eV�Ji��EF + eV���EF + eV�

��i − EF − eV + i
Vi��EF + eV − �i� + i
i�V��� j − EF − eV − ��S + i
Vj�
. �56�

Note that the sums in Sn�Sp� only run over unoccupied �oc-
cupied� orbitals.

It is interesting to note that Eqs. �55� and �56� cannot be
recast as the modulus square of a complex amplitude, as was
the case with the expressions derived using the many-
electron states 
Eqs. �47��. This is related to the distinction
between Raman and fluorescence processes.26 When sum-
ming over many-body states and in the absence of a bath
�e.g., phonons�, we can think of electron tunneling + photon
emission as a single coherent event �like Raman emission in

LIF� which can be described by an amplitude. A single-
electron picture in terms of orbitals is a reduced description
where the many-body states act as a bath of quasiparticles.
This bath, as well as other phonon baths, causes the process
to be sequential �incoherent�. This can no longer be de-
scribed by an amplitude, as in fluorescence in LIF.26

Using Wick’s theorem for Fermi superoperators,25 the CIF
signals Eqs. �35� and �36� can be expressed in terms of the
nonequilibrium superoperator Green’s functions for the non-
interacting tip and molecule �Appendix E�
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dSn��S,V�
dV

= ie�2�
i�j

�
i��j�

�
kl

��EF + eV�Jk�EF + eV�Jl�EF + eV��ij�i�j�� d�

2�
� d��

2�
�Gji

0T���Gi�j�
0T̃ ����Glk

0��EF + eV − ��S�

��S
2 + �2

−
Gji

0T���Glj�
0T̃����Gi�k

0��EF + eV − ��S�

���S + i����� + EF + eV − i��
−

Gi�i
0����Gjj�

0�����Glk
0���� − � − ��S − EF − eV�

���S + � − ���2 + �2

+
Gjk

0T���Glj�
0T̃����Gi�j

0��EF + eV − ��S�

�EF + eV − �� + i���EF + eV − � − i��
+

Gli
0����Gi�k

0�����Gjj�
0��� + �� + ��S − EF − eV�

�EF + eV − �� + i���EF + eV − � − i��

−
Gjk

0T���Gi�j�
0T̃ ����Gli

0��EF + eV − ��S�

�EF + eV − � + i�����S − i��
	 . �57�

Similarly for Sp, we obtain

dSp��S,V�
dV

= − ie�2�
i�j

�
i��j�

�
kl

��EF + eV�Jk�EF + eV�Jl�EF + eV��ij�i�j�� d�

2�
� d��

2�


 �Gi�i
0����Gjj�

0�����Gkl
0��� − �� + ��S + EF + eV�

��� − � − ��S�2 + �2 +
Gi�i

0����Gjl
0�����Gkj�

0��� − �� + ��S + EF + eV�

���� − � − ��S + i���EF + eV − �� + i��

−
Gji

0T���Gi�j�
0T̃ ����Gkl

0����S + EF + eV�

�2�S
2 + �2 −

Gji
0T���Gi�l

0T̃����Gkj�
0��EF + eV + ��S�

���S + i���EF + eV − �� + i��

+
Gki

0T���Gi�l
0T̃����Gjj�

0��EF + eV + ��S�

�EF + eV + � + i���EF + eV − �� + i��
+

Gki
0T���Gjl

0��EF + eV + ��S�Gi�j�
0T̃ ����

�EF + eV − � − i�����S + i��
	 . �58�

Sn�Sp� involves the tip Green’s function G��G�� 
Eqs.
�E3� and �E4��, which corresponds to the occupied �unoccu-
pied� density of states of the tip.18,22 In order for Sn to be
finite, an electron has to move from one of the occupied tip
states to a molecular orbital. This is guaranteed by the tip
Green’s function G� in Eq. �E6�. Similarly, G��

� in Eq. �E7�
makes sure that electrons are transferred from the molecule
to one of the unoccupied states of the tip.

All many-body interactions �electron-electron, electron-
phonon, etc.� in the CIF signals Sn and Sp are formally in-
cluded in Eqs. �38� and �48�. However, computing the nec-
essary six-point �three-particle� Green’s functions for a
many-body system is a difficult task. They can be computed
approximately by replacing all the zeroth-order Green’s
functions in Eqs. �E6� and �E7� 
or Eqs. �57� and �58�� with
the full Green’s functions �i.e., traced with respect to the
density matrix of the interacting system�. Invoking this ap-
proximation amounts to replacing all the zeroth-order
Green’s functions G0T, etc., in Eqs. �E6� and �E7� with full
Green’s functions GT, etc. The same resummation is usually
done in equilibrium calculations of the density-density cor-
relation functions by splitting the average of four operators
into the product of two Green’s functions, ignoring the ver-
tex corrections.39,40 Although this approximation completely
ignores the interaction between excitons, it works reasonably

well for many systems.40 The four Green’s functions GT, GT̃,

G�, and G� can be obtained from the solution of a coupled
Keldysh Dyson equation18,19,41

�GT G�

G�
GT̃ 	 = �G0T G0�

G0�
G0T̃ 	

+ �G0T G0�

G0�
G0T̃ 	��T ��

��
�T̃ 	�GT G�

G�
GT̃ 	 ,

�59�

where the self-energies � include the effect of all many-body
interactions and can be expressed in terms of the Green’s
functions themselves.24,37,42 The Green’s functions are then
computed by solving Eq. �59� self-consistently together with
the self-energies. The Green’s function expressions provide a
way to incorporate the effect of many-body interactions to
the fluorescence signal through self-energies and are particu-
larly useful when the interacting bath of electrons and
phonons is under nonequilibrium conditions. In that case a
perturbative treatment of many-body interactions does not
capture the nonequilibrium effects and one needs to solve the
Dyson equation self-consistently.

V. COMPUTATIONAL RESULTS

In this section we present computational results for
current-induced fluorescence in benzene. Specifically, we ex-
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amine the derivative of the fluorescence signal with respect
to voltage originating from transitions between the unoccu-
pied molecular orbitals of the benzene anion which occur at
positive applied bias; cf. Eq. �55�. The unoccupied molecular
orbital energies �i and dipole moment integrals �ij determine
the spectral positions and relative intensities of the peaks in
the emission spectrum. These quantities are calculated at the
density functional theory �DFT� level with the B3LYP
exchange-correlation functional and a modest 3-21G basis
set as implemented in the GAUSSIAN 03 package.44

Peaks in the fluorescence are expected for transitions be-
tween unoccupied orbitals j→ i�j� i� at photon energies
��S=� j −�i when the applied bias energy exceeds a threshold
determined by energy difference −EF+� j. We fixed the Fermi
energy of the system EF=−2.6 eV at the midpoint between
the HOMO and LUMO. The dephasing rates 
Vi give a finite
width to the molecular orbital energies and determine the
line shape of the electronic transitions. These rates have con-
tributions coming from both the substrate and also the cou-
pling to the tip. We treat these as energy-independent param-
eters with a constant value 
Vi=0.8 eV for all molecular
orbitals i. Figure 3 shows the energy level diagram for the 15
lowest unoccupied orbitals. The orbitals are represented as
horizontal lines, labeled relative to the LUMO, with the left
ordinate axis corresponding to the respective eigenenergies.
The dipole-allowed transitions are depicted as vertical ar-
rows where the abscissa axis corresponds to the energy of the
emitted photons. The right ordinate axis corresponds to the
bias energy threshold at which a given unoccupied molecular
orbital opens up to tunneling.

The spatial dependence of the emission signal is deter-
mined by the spatial variation of the coupling elements
Ji�EF+eV� between the molecule orbitals and the STM tip as
the position of tip is scanned across the molecule. In the
Tersoff-Hamann approach to STM,45 the wave function at
the apex of the tip is represented by an s-wave �r0� centered
about the position r0. Since the tip has only a single orbital
with energy EF+eV, the tip density of states ���� is unity at
�=EF+eV and zero for all other energies. The coupling be-
tween this tip orbital and a molecular orbital ��i� can be
approximated by the overlap integral

Ji�EF + eV� � ��i�r0� . �60�

STM images are related to the local density of states

�LDOS�E,r0� � �
i

�Ji�E��2��E − �i� �61�

at energy E=EF+eV. The overlap couplings are computed by
introducing an extra s-type basis function centered at the
desired tip position and evaluating the atomic overlap inte-
grals with the other basis functions used in the DFT calcula-
tion. We include a 51
51
1 grid of ghost atomic centers
positioned 1 Å above and parallel to the molecular plane of
the benzene molecule. Each ghost atom is given a single 1s
orbital using parameters taken from the 3-21G basis set for
silver atoms. The atomic orbital overlaps between the ghost
basis functions and real atomic orbitals are combined with
the molecular orbital coefficients to compute the Ji cou-
plings. In Fig. 4 we examine the spatial dependence of the
coupling elements for the 15 LUMOs identified in Fig. 3.
Each panel illustrates the x and y dependence of the �Ji�2
coupling at a distance of z=1 Å above the molecular plane.
The orbitals are labeled relative to the LUMO; the bias
threshold energies at which tunneling electrons may populate
these orbitals are also given. The LUMO+9 through
LUMO+14 are quite extended and therefore have the largest
overlap with the tip orbital. We will use these plots of the
individual orbitals to better understand the spatial depen-
dence of the emission signal which may involve contribu-
tions from multiple unoccupied orbitals.

Figure 5 shows the dSn /dV signal calculated using Eq.
�55� as a function photon energy and bias potential with the
tip centered at different positions above benzene molecule,
see points labeled 1–9 in Fig. 7�a�. The different spectra
contain peaks with similar structure but the relative intensi-
ties of the peaks clearly depend on the tip’s position. The
signals at positions 1, 3, 4, and 9 have been scaled by five
times to show the underlying spectral features which are sup-
pressed due to the smaller tip-molecule overlap in these
regions of space. In Figs. 6�a� and 6�b� we analyze more
closely the bias dependence of the peaks enclosed between
the dashed lines at positions 5 and 7, respectively. Both cases
show that the spectral positions of peak maxima are blue-
shifted as the applied bias is increased. Also, the intensities
of the dSn /dV peaks first increase and then decrease as the
voltage is scanned over the threshold bias energy for the
corresponding transitions. We expect the peak intensity of Sn
should to saturate to a value determined by the overlap cou-
pling strength and transition dipole moment. However, as the

FIG. 3. Energy level scheme for several unoccupied molecular
orbitals of neutral benzene. The states are labeled relative to the
LUMO �L�. The Fermi energy EF=2.6 eV is taken to be the mid-
point between the HOMO and LUMO energy levels. Arrows depict
the transitions which contribute strongly to the current-induced
fluorescence involving the negative anion at positive bias voltage.
The left ordinate axis depicts the orbital energies �i while the right
axis indicates the applied bias energy required to induce a transition
from a given orbital, eV=−EF+�i. The spatial variation of the emis-
sion originating from these transitions is examined in Figs. 7–9.

MANY-BODY THEORY OF CURRENT-INDUCED ¼ PHYSICAL REVIEW B 73, 075211 �2006�

075211-9



bias energy increases more tunneling channels will open up,
so that state to state transitions between higher lying unoc-
cupied energy levels will also contribute to the Sn. For larger
molecules with a more congested electronic spectrum
dSn /dV should be a more useful quantity than Sn since
nearly degenerate transitions can be more easily distin-
guished if they have distinct threshold bias energies. Note
also that dSn /dV is the more direct analog of LIF.

We next turn to the spatial dependence of the fluorescence
peaks. Figure 7�a� shows a contour plot of the local density
of states at 12.5 eV and sliced 1Å above the molecular plane.
The structure is superimposed on the image as a visual ref-
erence. The LUMO+5 through LUMO+8 orbitals strongly
contribute to the local density at this bias energy. Shown in
panel �b� are the dSn /dV signals �at constant bias� for the tip

positions corresponding to the white numbers in panel �a�.
The dashed lines labeled �c�–�f� indicate the photon energies
at which significant peaks are found. Again, it is clear that
for certain tip positions, different peaks are suppressed or
enhanced depending on the overlap coupling. The zero-
energy peak �c� stems from transitions between degenerate
and near-degenerate orbitals and has large intensity at posi-
tions 5, 7, and 8. The spatially resolved peak is shown in Fig.
7�c� and comparison with the overlap couplings in Fig. 4
indicates that the LUMO+7 is the dominant orbital contrib-
uting to the spatial structure of this peak with emission to the
LUMO+5,6 degenerate orbital pair. Similarly, the spatial de-
pendence of the peak at �d� 1.1 eV resembles both the
LUMO+5 and LUMO+7; however, since the transition from
LUMO+5 to LUMO+3,4 is dipole forbidden this peak is
attributed to the LUMO+7 to LUMO+3,4 transition. The
peak at �e� 3.0 eV has several contributions but is dominated
by the transition from the LUMO+5 to the LUMO+2. The
map of the peak at �f� 5.8 eV appears nearly identical to
LUMO+8 and corresponds to emission to the ground state �
LUMO+0,1� of the benzene anion.

We can apply this same analysis to the fluorescence peaks
predicted at higher bias voltage energies. Figure 8�a� shows
the local density of states at 16.7 eV and has strong contri-
butions from LUMO+9,10 and LUMO+11,12 degenerate
pairs. The spatially resolved emission spectra, shown in
panel �b�, are markedly different compared to those shown in
Fig. 7�b�. The spatially resolved peaks in panels �c�, �d�, and
�f� share common features and appear to be a combination of
the LUMO+11,12 degenerate orbitals. They also have simi-
lar relative intensities at positions 2, 4-6, and 8. We attribute
the low-energy peak at �c� 0.6 eV to transitions from the
LUMO+11 to the LUMO+9,10 �note that similar transitions
from the LUMO+12 are dipole forbidden�. The peak at �d�
4.3 eV involves transitions from LUMO+11,12 to LUMO
+5,6 through LUMO+8 orbitals and the higher-energy peak
�f� 7.5 eV to emission to the LUMO+2 orbital. Panel �e� is
somewhat different from the other three maps and has addi-
tional contributions coming from the LUMO+9,10 orbitals
and involves emission at 5.6 eV to the LUMO+3,4 orbitals.
Figure 9 is similar to Figs. 7 and 8 except that the bias
energy is tuned up to 24.5 eV and we see only two major
peaks. The peak �c� 7.4 eV corresponds to transitions from
LUMO+13 to LUMO+9 and LUMO+11 but not to
LUMO+10 and LUMO+12, which are dipole forbidden.
The peak at �d� 11.5 eV corresponds to emission from the
LUMO+14 to LUMO+5.

VI. DISCUSSION

We have developed a many-body theory of single-
molecule fluorescence in STM junctions. The Liouville space
superoperator formulation makes it possible to interpret and
distinguish between various physical processes that contrib-
ute to the signal in real time using double sided Feynman
diagrams, and offers a convenient bookkeeping device for
the various possible time orderings of interactions. Equations
�38� and �48� express the fluorescence signal from negatively
and positively charged molecules in terms of the nonequilib-

FIG. 4. �Color online� Contour plots of the overlap coupling
Ji��F+eV�2 between 15 LUMOs and the tip orbital positioned at a
height of 1Å above the molecular plane. The molecular structure of
benzene is superimposed over the images as a visual reference. The
threshold bias energy at which these orbitals will accept tunneling
electrons are also given. The coupling strength ranges from �red� 0
to �magenta� 1.5
10−5. LUMO+9 through LUMO+14 have the
strongest coupling orbitals and are scaled by 10−1.
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rium Green’s functions of the tip. The expansions in many-
body states, Eqs. �47� and �48�, include all many-body inter-
actions and are exact. Ignoring many-body interactions
�electron-electron, electron-phonon, etc.� in the molecule and
using Wick’s theorem,25 the three-point correlation functions

Eqs. �38� and �48�� can be alternatively expressed in terms
of nonequilibrium Green’s functions of the molecule, Eqs.
�E6� and �E7�.

The signal dependence on tip position comes through the
tunneling coefficients Jk�E� which couple the kth orbital of

the molecule with the energy band of the tip at energy E.
These elements are proportional to the overlap of the tip and
molecular orbitals. Their variations as the tip is scanned
across the molecule, controls the fluorescence signal. For
zero bias �V=0�, the signal should vanish. This can be most

FIG. 5. �Color online� Panels �1�–�9� show
the two-dimensional current-induced fluores-
cence spectrum of benzene as a function of pho-
ton energy ��s and bias energy eV at different
lateral tip positions 
cf. Fig. 7�a��, at constant
height 1Å above the molecule. The intensities are
normalized so that from red to magenta is on the
order of unity. The weaker spectra for positions
�3�, �4�, and �9� have been scaled by five times.

FIG. 6. �Color online� �a� and �b� show two families of one-
dimensional spectra calcualted at different bias energies between
the dashed lines of panels �5� and �7� of Fig. 5, respectively. The
spectra demonstrate a blueshift in the peak maximum as the bias
voltage increases and are offset vertically for visual clarity.

FIG. 7. �Color online� �a� depicts a slice of the local density of
states, Eq. �61�, of benzene at a bias energy of 12.5 eV. White
numbers indicate the lateral position of the tip for the calculated
spectra shown in �b� which have been offset for visual clarity. The
dashed lines �c�–�f� indicate the energies of the major peaks. Panels
�c�–�f� show two-dimensional contour plots of the spatially resolved
fluorescence intensity dSn /dV at a potential bias of eV=12.5 eV
and photon energies ��s= �c� 0.0, �d� 1.1, �e� 3.0, and �f� 5.8 eV.
The emission signal is sliced at 1Å above the molecular plane.
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clearly seen from the molecular orbital expression Eq. �D4�,
where the upper limit of the energy integral is then EF. The
coefficient Jk��� then represents the transfer matrix element
between the filled states of the tip with the unoccupied
�higher energy� orbitals of the molecule, which vanishes at
zero temperature.

The linewidth 
, which describes the dephasing rate of
many-body states in Eqs. �24�–�26�, originates from the
electron-electron and electron-phonon interactions in the
molecule and interaction with the medium. It can be com-
puted microscopically42,43 in terms of the nonequilibrium
Green’s functions of the molecule.24 This requires a self-
consistent calculation for various nonequilibrium Green’s
functions, Eq. �59�. Such a calculation is necessary when the
phonon system is out of equilibrium and should lead to
excited-state phonon signatures in the fluorescence signal.
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APPENDIX A: CORRELATION FUNCTION EXPRESSION
FOR FLUORESCENCE

To derive Eq. �2�, we treat the emitted photon quantum
mechanically and its interaction with the system is described
by the Hamiltonian

Hint� = asB
† + as

†B �A1�

where as�as
†� are photon annihilation �creation� field opera-

tors for the sth mode with frequency �S. These satisfy the
boson commutation relation

asas�
† − as�

† as = �ss�, as
†as�

† − as�
† as

† = 0, asas� − as�as = 0.

�A2�

To define the time- and frequency-resolved LIF signal we
consider the operator representing the rate of change of the
photon occupation of the s�th mode,26

Ns =
d

dt
as

†as =
i

�

Hint� ,as

†as� �A3�

where Hint� is given by Eq. �A1�. Using Eqs. �A1� and �A2� in
Eq. �A3�, we obtain

Ns =
i

�
�asB

† − as
†B� . �A4�

The LIF signal is given by expectation value of Ns,

S��S,�L,t� � �Ns�T = −
2

�
Im��asB

†�T� �A5�

where �¯�T represents the trace with respect to the total
density matrix in presence of the incoming and outgoing
fields with frequencies �L and �S, respectively.

We next expand Eq. �A5� to first order in Hint� . The time

dependence of an interaction picture operator Q̃�t� is defined
as

Q̃�t� = U†�t,0�AU�t,0� �A6�

where U�U†� are the Hilbert space time evolution operators

U�t,t0� = T exp�−
i

�
�

t0

t

d� H0���	

FIG. 8. �Color online� The spatial varation of �LDOS, Eq. �61�,
for benzene at eV=16.7 eV is shown in �a� and is plotted on the
same scale as Fig. 7�a�. �b� shows emission spectra calculated with
the tip centered at positions 1–9 indicated in �a�. Panels �c�–�f�
show the spatial maps �at z=1 Å� of the fluorescence peaks at this
potential bias and photon energies ��s �c� 0.6, �d� 4.3, �e� 5.6, and
�f� 7.5 eV. The signal intesity in �e� and �f� has been scaled by two
times in order to enhance the contrast.

FIG. 9. �Color online� The panels are similar to those shown in
Figs. 7 and 8 except that the potential bias energy is set to eV
=24.5 eV. Only two peaks contribute to the emission spectrum.
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U†�t,t0� = T*exp�−
i

�
�

t0

t

d� H0���	 . �A7�

H0 is the noninteracting Hamiltonian and T�T*� is the Hilbert
space-time-ordering operator; when acting on a product of
operators it rearranges them in increasing order of time from
right �left� to left �right�. In the interaction picture we get

S��S,�L,t� = −
2

�
Im�
Tãs�t�B̃+�t�


exp�−
i

�
�

−�

t

d� L̃int���	�
D
� �A8�

where L is the Liouville operator corresponding to the
Hamiltonian Hint� and �¯�D represents the trace with respect
to the density matrix driven by the incoming field. To first
order in Hint� , which is the lowest order that gives a finite
signal, we obtain

S��S,�L,t� =
2

�2Re��
−�

t

d�
�as�t�as
†����D�B†�t�B����D

− �as
†���as�t��D�B���B†�t��D�	 . �A9�

Since the scattered mode is initially in the vacuum state,
�as

†���as�t��D=0 and �as�t�as
†����D=e−i�S�t−��, we obtain

S��S,�L,t� =
2

�2Re��
0

�

d� e−i�S��B†�t�B�t − ���D	 .

�A10�

Using the time-reversal symmetry �B†�t�B�t−���D
*

= �B†�t�B�t+���D,

S��S,�L,t� =
1

�2�
0

�

d� e−i�S��B†�t�B�t − ���D

+
1

�2�
0

�

d� ei�S��B†�t�B�t + ���D �A11�

which gives Eq. �2�.

APPENDIX B: LIOUVILLE SPACE PATHWAYS FOR CIF

As shown in Fig. 1, Eq. �43� can be separated into three
terms representing different time orderings of various super-
operators,

Sn
I ��S,V,t� =

1

�4�
0

�

d��
−�

t−�

d�1�
−�

�1

d�2�
−�

EF+eV

d��
i�j

�
i��j�

�
kl

�ij�i�j�Jk���Jl�������e−i�S�e−�i/�����1−�2�


��̃ j�R
† �t��̃i�R�t��̃iL

† �t − ���̃ jL�t − ���̃kL
† ��1��̃lR��2�� , �B1�

Sn
II��S,V,t� =

1

�4�
0

�

d��
−�

t−�

d�2�
−�

�2

d�1�
−�

EF+eV

d��
i�j

�
i��j�

�
kl

�ij�i�j�Jk���Jl�������e−i�S�e−�i/�����1−�2�


��̃ j�R
† �t��̃i�R�t��̃iL

† �t − ���̃ jL�t − ���̃lR��2��̃kL
† ��1�� , �B2�

Sn
III��S,V,t� =

1

�4�
−�

t

d�2�
t−�2

�

d��
−�

t−�

d�1�
−�

EF+eV

d��
i�j

�
i��j�

�
kl

�ij�i�j�Jk���Jl�������e−i�S�e−�i/�����1−�2�


��̃ j�R
† �t��̃i�R�t��̃lR��2��̃iL

† �t − ���̃ jL�t − ���̃kL
† ��1�� . �B3�

Equations �B1�–�B3� are analogous to Eqs. �14�–�16�. Note that they do not include the time-ordering operator explicitly.
Making the change of variables �= t1 , �1= t− t1− t2 , �2= t− t1− t2− t3 in Eq. �B1�, we obtain

Sn
I ��S,V,t� =

1

�4�
0

�

dt1�
0

�

dt2�
0

�

dt3�
−�

EF+eV

d��
i�j

�
i��j�

�
kl

�ij�i�j�Jk���Jl�������e−i�St1e−�i/���t3


��̃ j�R
† �t��̃i�R�t��̃iL

† �t − t1��̃ jL�t − t1��̃kL
† �t − t1 − t2��̃lR�t − t1 − t2 − t3�� . �B4�

Similarly, substituting �= t1 , �2= t− t1− t2 , �1= t− t1− t2− t3 in Eq. �B2� gives
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Sn
II��S,V,t� =

1

�4�
0

�

dt1�
0

�

dt2�
0

�

dt3�
−�

EF+eV

d��
i�j

�
i��j�

�
kl

�ij�i�j�Jk���Jl�������e−i�St1e�i/���t3


��̃ j�R
† �t��̃i�R�t��̃lR�t − t1 − t2��̃iL

† �t − t1��̃ jL�t − t1��̃kL
† �t − t1 − t2 − t3�� �B5�

and in Eq. �B3�, we substitute �= t2− t1 , �1= t− t1− t3 , �2= t− t2, to get

Sn
III��S,V,t� =

1

�4�
0

�

dt1�
0

�

dt2�
0

�

dt3�
−�

EF+eV

d��
i�j

�
i��j�

�
kl

�ij�i�j�Jk���Jl�������e−i�S�t1+t2�e−�i/����t2+t3�


��̃ j�R
† �t��̃i�R�t��̃lR�t − t3��̃iL

† �t − t1 − t2��̃ jL�t − t1 − t2��̃kL
† �t − t1 − t2 − t3�� . �B6�

Hilbert space expressions for Sn
I , Sn

II, and Sn
III can be ob-

tained by substituting

��̃ j�R
† �t��̃i�R�t��̃iL

† �t − t1��̃ jL�t − t1�


�̃kL
† �t − t1 − t2��̃lR�t − t1 − t2 − t3��

� ��̃l�t − t1 − t2 − t3��̃ j�
† �t��̃i��t��̃i

†�t − t1��̃ j�t − t1�


�˜ k
†�t − t1 − t2�� , �B7�

��̃ j�R
† �t��̃i�R�t��̃iL

† �t − t1��̃ jL�t − t1��̃lR�t − t1 − t2�


�̃kL
† �t − t1 − t2 − t3��

� ��̃l�t − t1 − t2��̃ j�
† �t��̃i��t��̃i

†�t − t1��̃ j�t − t1�


�˜ k
†�t − t1 − t2 − t3�� , �B8�

��̃ j�R
† �t��̃i�R�t��̃lR�t − t3��̃iL

† �t − t1 − t2��̃ jL�t − t1 − t2�


�˜ kL
† �t − t1 − t2 − t3��

� ��̃l�t − t3��̃ j�
† �t��̃i��t��̃i

†�t − t1 − t2�


�̃ j�t − t1 − t2��̃k
†�t − t1 − t2 − t3�� . �B9�

Making these substitutions and taking the derivative with
respect to the applied bias V gives Eqs. �44�–�46�.

APPENDIX C: EXPANDING CIF IN MANY-BODY STATES

As was done in Eq. �23�, we insert the many-body states
into Eq. �B7� and substitute in Eq. �B4� to get

Sn
I ��S,V,t� =

1

�4�
i�j

�
i��j�

�
kl

�
abcd

P�a��a��l�b��b�� j�
† �i��c�


�c��i
†� j�d��d��k

†�a��ij�i�j�


 �
0

�

dt1�
0

�

dt2�
0

�

dt3�
−�

EF+eV

d� Jk���Jl���


ei��bc−�S+i
bc�t1ei��bd+i
bd�t2e�i/�����ba−�+i
ba�t3

�C1�

where �a��̃�t��b�= �a���b�e−i��ba+i
ba�t, etc.
The time integrals in Eq. �C1� can now be performed to

get

Sn
I ��S,V� = −

i

�3�
i�j

�
i��j�

�
kl

�
abcd

P�a��a��l�b��b�� j�
† �i��c�


�c��i
†� j�d��d��k

†�a��ij�i�j�



1

��bc − �S + i
bc���bd + i
bd�


�
−�

EF+eV

d�
Jk���Jl���

��ba − � + i
ba
. �C2�

Following similar steps, we get for Sn
II and Sn

III

Sn
II��S,V� = −

i

�3�
i�j

�
i��j�

�
kl

�
abcd

P�a��a��l�b��b�� j�
† �i��c�


�c��i
†� j�d��d��k

†�a��ij�i�j�



1

��bc − �S + i
bc���bd + i
bd�


�
−�

EF+eV

d�
Jk���Jl���

� − ��da + i
da
, �C3�

Sn
III��S,V�

= −
i

�2�
i�j

�
i��j�

�
kl

�
abcd

P�a��a��l�b��b�� j�
† �i��c��c��i

†� j�d�


�d��k
†�a��ij�i�j�

1

��bc − � + i
bc�


�
−�

EF+eV

d�
Jk���Jl���

���ac − ��S + � + i
ac��� − ��da + i
da�
.

�C4�

In the absence of dephasing, the total signal from a nega-
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tively charged molecule, Sn���=2Re
Sn
I ���+Sn

II���
+Sn

III����, is given by

Sn��,V� =
2�

�
�
ac

P�a��
−�

EF+eV

d�


��
i�j

�
k

�
b

�ij�a��k�b��b�� j
†�i�c�Jk���

� − ��ba + i� �2


����S + ��ca − �� . �C5�

Taking the derivative of Eq. �C5� with respect to V gives Eq.
�47�.

APPENDIX D: DERIVATION OF EQS. (55) and (56)

Using Eq. �54� in �B1� and substituting in Eq. �B7� we
obtain

SI��S,V� =
i

�
�

i��j,j��

unocc

�
j j�

unocc
�ij�ij�

�� j� − �i − ��S + i
 j�i��� j� − � j + i
 j�j�
�

−�

EF+eV

d�
Jj���Jj��������

� j� − � + i
 j��

�D1�

where the sum over i , j , j� runs over all unoccupied orbitals and 
ij is the dephasing rate between orbitals i and j. 
�j� inside
the integral represents the dephasing rate between the jth molecular orbital and the tip state with energy �. Similarly for SII and
SIII, we obtain

SII��S,V� =
i

�
�

i��j,j��

unocc

�
j j�

unocc
�ij�ij�

�� j� − �i − ��S + i
 j�i��� j� − � j + i
 j�j�
�

−�

EF+eV

d�
Jj���Jj��������

� − � j + i
�j
, �D2�

SIII��S,V� =
i

�
�

i��j,j��

unocc

�
j j�

unocc
�ij�ij�

� j� − �i − ��S + i
 j�i
�

−�

EF+eV

d�
Jj���Jj��������

�� − �i − ��S + i
�i��� − � j + i
�j�
. �D3�

The total signal is

Sn��S,V� =
2

�
Im �

i�j,j�

unocc

�
j,j�

unocc

�ij�ij��
−�

EF+eV

d�
Jj���Jj��������

�� − � j + i
�j��� j� − � + i
 j����� − �i − ��S + i
�i�
. �D4�

Similar expressions are obtained for the signal Sp from a positive molecule,

Sp��S,V� =
2

�
Im �

i��j�

occ

�
i���j�

occ

�
J

occ

�ij�i�j�
EF+eV

�

d�
Ji���Ji��������

��i − � + i
i���� − �i� + i
�i���� j − � − ��S + i
 j��
. �D5�

Taking the derivative of Eqs. �D4� and �D5�, with respect to V gives Eqs. �55� and �56�, respectively.

APPENDIX E: GREEN’S FUNCTION EXPRESSIONS
FOR CIF

Adopting the electron gas model for the molecule, the trace of the product of six Fermi operators in Eq. �38� taken over the
molecular density matrix can be expressed in terms of the products of averages of pairs of operators using the superoperator
Wick’s theorem,25

�T�iL
† �t − ��� jL�t − ��� j�R

† �t��i�R�t��kL
† ��1��lR��2��0 = �T�iL

† �t − ��� jL�t − ���0
�T� j�R
† �t��i�R�t��0�T�kL

† ��1��lR��2��0

+ �T� j�R
† �t��lR��2��0�T�i�R�t��kL

† ��1��0��T�iL
† �t − ���i�R�t��0



�T� jL�t − ��� j�R
† �t��0�T�kL

† ��1��lR��2��0 − �T� jL�t − ���kL
† ��1��0


�T� j�R
† �t��lR��2��0� + �T�iL

† �t − ���lR��2��0


 
�T� jL�t − ��� j�R�t��0�T�i�R�t��kl
† ��1��0

+ �T� jL�t − ���kL
† ��1��0�T� j�R

† �t��i�R
† �t��0� �E1�

where �¯�0 denotes that the trace is with respect to the noninteracting density matrix.
Using the Liouville space Green’s function
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G��
ij �t1,t2� = −

i

�
�T�i��t1�� j�

† �t2��, �,� = L,R . �E2�

Equation �38� can be factorized as

Sn��,t� = �
−�

�

d��
−�

t−�

d�1�
−�

t

d�2e−i�S��
i�j

�
i��j�

�
kl

�
��

�ij�i�j�Jk�Jl�GLR
����1,�2��GLL

0ji�t − �,t+ − �+�
GRR
0i�j��t,t+�GRL

0lk��2,�1�

− GRR
0lj���2,t�GRL

0i�k�t,�1�� − GRL
0i�i�t,t − ��
GLR

0j j��t − �,t�GRL
0lk��2,�1� − GLL

0jk�t − �,�1�GRR
0lj���2,t�� + GRL

0li��2,t − ��



GLR
0j j��t − �,t�GRL

0i�k�t,�1� − GLL
0jk�t − �,�1�GRR

0i�j��t,t+��� . �E3�

Similarly, we obtain for Sp,

Sp��S,V,t� = �
−�

�

d��
−�

t−�

d�1�
−�

t

d�2e−i�S��
i�j

�
i��j�

�
kl

�
��

�ij�i�j�Jk�Jl�G��
� ��2,�1��GLL

0ji�t − �,t+ − �+�
GRR
0i�j��t,t+�GLR

0kl��1,�2�

− GLR
0kj���1,t�GRR

0i�l�t,�2�� − GRL
0i�i�t,t − ��
GLR

0j j��t − �,t�GLR
0kl��1,�2� + GLR

0jl�t − �,�2�GLR
0kj���,t�� + GLL

0ki��1,t − ��



GLR
0j j��t − �,t�GRR

0i�l�t,�2� − GLR
0jl�t − �,�2�GRR

0i�j��t,t+��� . �E4�

Each superoperator Green’s function corresponds to one
of the Keldysh Green’s functions in Hilbert space.21,25 Re-
placing the Liouville space Green’s functions with their Hil-
bert space counterparts,

GLL
ij �t1,t2� = Gij

T�t1,t2�, GRR
ij �t1,t2� = − Gij

T̃�t1,t2�

GLR
ij �t1,t2� = Gij

��t1,t2�, GRL
ij �t1,t2� = − Gij

��t1,t2� , �E5�

where GT, GT̃, G�, and G� are, respectively, time-ordered,
anti-time-ordered, lesser, and greater Green’s functions in
Hilbert space,18,19 we obtain

Sn��S,t� = �
−�

�

d��
−�

t−�

d�1�
−�

t

d�2e−i�S��
i�j

�
i��j�

�
kl

�
��

�ij�i�j�Jk�Jl�G��
� ��1,�2��Gji

0T�t − �,t+ − �+�
Gi�j�
0T̃ �t,t+�Glk

0���2,�1�

− Glj�
0T̃��2,t�Gi�k

0��t,�1�� − Gi�i
0��t,t − ��
Gjj�

0��t − �,t�Glk
0���2,�1� − Gjk

0T�t − �,�1�Glj�
0T̃��2,t��

+ Gli
0���2,t − ��
Gjj�

0��t − �,t�Gi�k
0��t,�1� − Gjk

0T�t − �,�1�Gi�j�
0T̃ �t,t+��� , �E6�

where a 0 superscript denotes that the trace is taken with respect to the density matrix of the noninteracting molecule. Note that
the tip Green’s function G��

� involves all many-body interactions. Similarly, for a positively charged molecule we obtain

Sp��S,V,t� = �
−�

�

d��
−�

t−�

d�1�
−�

t

d�2e−i�S��
i�j

�
i��j�

�
kl

�
��

�ij�i�j�Jk�Jl�G��
� ��2,�1��Gi�i

0��t,t − ��
Gjj�
0��t − �,t�Gkl

0���1,�2�

+ Gjl
0��t − �,�2�Gkj�

0���,t�� − Gji
0T�t − �,t+ − �+�
Gi�j�

0T̃ �t,t+�Gkl
���1,�2� − Gkj�

0���1,t�Gi�l
0T̃�t,�2��

− Gki
0T��1,t − ��
Gjj�

0��t − �,t�Gi�l
0T̃�t,�2� − Gjl

0��t − �,�2�Gi�j�
0T̃ �t,t+��� . �E7�

Assuming the free electron gas model for the tip, we can replace the tip Green’s functions G� and G� using Eqs. �41� and �51�,
respectively. This gives

Sn��S,t� =
i

�
�

−�

�

d��
−�

t−�

d�1�
−�

t

d�2�
−�

EF+eV

d� ����e−i�S��
i�j

�
i��j�

�
kl

�ij�i�j�Jk���Jl���e−i���1−�2��Gji
0T�t − �,t+ − �+�



Gi�j�
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0��t,t − ��
Gjj�

0��t − �,t�Glk
0���2,�1� − Gjk

0T�t − �,�1�Glj�
0T̃��2,t��

+ Gli
0���2,t − ��
Gjj�

0��t − �,t�Gi�k
0��t,�1� − Gjk

0T�t − �,�1�Gi�j�
0T̃ �t,t+��� , �E8�
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t

d�2�
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0T̃ �t,t+��� . �E9�

Taking the derivative of Eqs. �E8� and �E9� with respect to the bias V, we obtain

dSn
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�
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t
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�
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0���2,�1�

− Gjk
0T�t − �,�1�Glj�
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0���2,t − ��
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0��t − �,t�Gi�k
0��t,�1� − Gjk

0T�t − �,�1�Gi�j�
0T̃ �t,t+��� , �E10�

dSp
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ie
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t−�

d�1�
−�

t

d�2��EF + eV�e−i�S��
i�j

�
i��j�

�
kl

�ij�i�j�Jk�EF + eV�Jl�EF + eV�e−�i/���EF+eV���2−�1�


 �Gi�i
0��t,t − ��
Gjj�

0��t − �,t�Gkl
0���1,�2� + Gjl

0��t − �,�2�Gkj�
0���,t�� − Gji

0T�t − �,t+ − �+�
Gi�j�
0T̃ �t,t+�Gkl

���1,�2�

− Gkj�
0���1,t�Gi�l
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0T̃ �t,t+��� . �E11�

Transforming in the frequency domain, we obtain Eqs. �57� and �58�.
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