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Nonequilibrium superoperator GW equations
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Hedin’s equations �Phys. Rev. 139, 796 �1965�� for the one-particle equilibrium Green’s function of
a many-electron system are generalized to nonequilibrium open systems using two fields that
separately control the evolution of the bra and the ket of the density matrix. A closed hierarchy is
derived for the Green’s function, the self-energy, the screened potential, the polarization, and the
vertex function, all expressed as Keldysh matrices in Liouville space. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2161177�
I. INTRODUCTION

Equilibrium, zero and finite temperature Green function
techniques are widely used in electronic-structure
calculations.1–4 Hedin’s GW formulation5 closes the many-
body hierarchy by expanding the self-energy of the one-
particle Green function in terms of the screened Coulomb
interaction. This provides a convenient starting point for
many useful approximations and applications6 to photoemis-
sion spectroscopy and optical absorbtion in metals,7–10

semiconductors,11–16 and molecules.17,18

Treating externally driven open systems, such as current-
carrying states of molecular wires coupled to electrodes19–23

requires an extension of the GW approach to nonequilibrium
conditions. Nonequilibrium Green function theory �NEGFT�
is widely used for computing molecular currents,20,23–29 plas-
mas, quantum transport in semiconductors,30 and high-
energy processes in nuclear physics.31 Most molecular cur-
rent simulations assume noninteracting electrons but include
electron-phonon interactions. Few studies30,32 have incorpo-
rated electron-electron interactions using Anderson’s slave
boson model. The NEGFT calculation of molecular currents
is based on the Keldysh’s Green function technique, also
known as the closed time-path formalism,33 which depends
on an artificial time parameter ��� that runs on an imaginary
contour �Keldysh loop�.30,34 � is a formal device that has no
direct physical meaning, but was introduced in order to ob-
tain a self-consistent Dyson-type equations for the Keldysh
Green function using Schwinger’s functional derivative
technique.35 Transforming the Dyson equations to real time
by varying � over the Keldysh loop results in a self-
consistent matrix equation for nonequilibrium Green
functions.36 It was shown by Schmutz37 that the Keldysh
artificial-time formulation of NEGFT can be avoided by re-
formulating quantum statistical mechanics in terms of super-
operators acting in Liouville space.38 One can then work
directly in physical time and no analytical continuation from
artificial �real or imaginary� time is required. A perturbative
scheme based on Wick’s theorem was suggested for comput-
ing the superoperator Greens functions.37 This expansion in
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Liouville space is analogous to the standard expansion of the
equilibrium zero temperature Green function.

In this paper we extend Hedin’s approach to superopera-
tors in Liouville space and combine it with NEGFT to derive
a closed hierarchy which incorporates electron-electron inter-
actions in nonequilibrium Green’s functions.35 This is ac-
complished by introducing two external potentials, the “left”
��L� and the “right” ��R�, that control the evolution of the
bra and the ket of the density matrix, respectively. In the next
section, we summarize the Liouville space superoperator al-
gebra. In Sec. III, we use Schwinger’s functional derivative
technique to close the Liouville space hierarchy. We con-
clude with a discussion in Sec. IV.

II. THE INTERACTION PICTURE FOR FERMI
SUPEROPERATORS IN LIOUVILLE SPACE

We consider a many-electron system subjected to an ex-
ternal potential ��t� and described by the Hamiltonian

H = H0 + H� + H�. �1�

The reference �H0� and interaction �H�+H�� parts are given
by

H0 =� dr1h0�r1��†�r1���r1� ,

H� =� � dr1dr2v�r1,r2��†�r1��†�r2���r2���r1� , �2�

H� =� dr1��x1��†�r1���r1� ,

where h0�r�=−�2�2 / �2M�+U�r� with electron mass M, and
v�r1 ,r2�=1/ �r1−r2� is the bare Coulomb potential. U is an
external time-independent potential. We further use abbrevi-
ated notation for space-time coordinates, xn= �rn , tn�. ��x1�
=0 for t1�0.

In Liouville space, the elements of the N�N density
matrix, ��t�, or any Hilbert space operator, are arranged as a
vector �bra or ket� of length N2. Operators of N2�N2 dimen-
sion in this higher-dimensional space are denoted superop-

erators. We define a Liouville space vector �A��= �m ,n��
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which corresponds to the Hilbert space operator A= �m��n�,
where �n� is the particle number eigenstate, �i

†�i�n�=ni�n�.
With any Hilbert space Fermi operator �, we associate two
superoperators, the left ��L� and the right ��R�, defined
through their action on the state vector �A�� as37

�iL�m,n� 	 �i�m��n�, �iL
† �m,n� 	 �i

†�m��n� , �3�

�iR�m,n� 	 �− 1���m��n��i,

�4�
�iR

† �m,n� 	 �− 1��+1�m��n��i
†,

where �=m−n. The n-electron state �n� is constructed by
applying n creation operators, �i

†, to the vacuum state,
�n�=�i1

†
¯�in

† �0�. Thus m+n permutations of Fermi operators
are required to bring the �R to rightmost in Eq. �4�. Each
permutation gives a negative sign, which is taken care by the
factor �−1�� in Eq. �4�. Using Eqs. �3� and �4�, it can be seen
that Fermi superoperators, �	, 	=L, R, satisfy the same an-
ticommutation relations as their Hilbert space counterparts,


�i	,� j

† � = �	
�ij ,

�5�

�i	,� j
� = 
�i	

† ,� j

† � = 0.

These simple anticommutation relations, which are identical
for those of ordinary Fermi operators, are the consequence of
the �−1�� factors in Eq. �4�. For a product of operators, we
have the identity,

��i ¯ � j�L = �iL ¯ � jL, ��i ¯ � j�R = � jR ¯ �iR. �6�

The same relations hold if we change any of the �i to �i
†. We

next define “plus” and “minus” linear combinations of left
and right superoperators

A− = AL − AR, A+ = 1
2 �AL + AR� , �7�

where A is any function of Fermi operators. The plus and
minus operators obey same anticommutation relations as op-
erators L and R, Eq. �5�. This is very convenient because Eq.
�5� holds when the indices 	, 
 are either +, − or L, R. In
other words, this is simply a basis set transformation of su-
peroperators. The formulation in terms of + and − operators
is particularly useful if one wants to work directly with the
observables �response and correlation functions� �see Appen-
dix B�.

In previous studies39,40 we used an alternative definition
for the right operators, which does not include the �−1��

factors in Eq. �4�. All L superoperators then commute with R
superoperators while two “L” or two “R” superoperators
�	=
� follow the same anticommutation relations as in Eq.
�5�. Since no simple commutation �or anticommutation� re-
lation can be defined for + and − operators, in that case it
becomes difficult to work with them. With the current defi-
nitions, Eqs. �3� and �4�, both L, R and +, − operators satisfy
the same anticommutation relations and one can work with
either representations.

In Liouville space, the density matrix, ��t� is a vector
whose time dependence is determined by the Liouville

equation,

Downloaded 07 Feb 2006 to 128.200.11.116. Redistribution subject to
d�

dt
= −

i

�
H−� , �8�

whose solution is

��t1� = S�t1,t0���t0� , �9�

with the propagator

S�t1,t0� = T exp�−
i

�
�

to

t1

H−���d�
 , �10�

and H− is the superoperator corresponding to the Hamil-
tonian �Eq. �2��. T is the Liouville space time-ordering op-
erator; when acting on a product of superoperators, it rear-
ranges them in increasing order of time from right to left.
Unlike Hilbert space, where the time dependence of the ket
and the bra is governed by forward and backward time-
evolution operators, respectively, in Liouville space one
keeps track simultaneously of both bra and ket, and all ob-
servables can be calculated by propagating the density ma-
trix forward in time. Note that, since the Hamiltonian, Eq.
�2�, contains products of equal number of � and �† operators
�electrons are conserved�, the �−1�� factor in Eq. �4� does not
effect H− and Eq. �8�.

To introduce the interaction picture in Liouville space,
we extend the partitioning, Eq. �1�, to superoperators,

H− = H0− + H�− + H�−. �11�

Substituting Eqs. �6� and �7� in Eq. �2�, the superoperator H−

can be expressed in terms of �	�	=L ,R� as

H0− =� dr1h0�r1���L
†�r1��L�r1� − �R�r1��R

†�r1�� ,

H−� =� � dr1dr2v�r1,r2���L
†�r1��L

†�r2��L�r2��L�r1�

− �R�r1��R�r2��R
†�r2��R

†�r1�� , �12�

H�− =� dr1��L�x1��L
†�r1��L�r1�

− �R�x1��R�r1��R
†�r1�� .

In Eq. �12� we allow the potentials acting form the left ��L�
and from the right ��R� to be different. This gives a formal
flexibility in the following manipulations by allowing to in-
dependently control the ket and the bra.

Using the partitioning �11�, Eq. �10� can be written in the
interaction picture,

S�t1,t0� = S0�t1,t0�SI�t1,t0� , �13�

where S is the generalization of Eq. �10� to allow for two
different external fields. S0 is the time evolution with respect
to H0,

S0�t1,t0� = ��t1 − t0�exp�−
i

�
H0−�t1 − t0�
 . �14�
The interaction picture propagator can be factorized as
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SI�t1,t0� = TS�I�t1,t0�S�I�t1,t0� , �15�

where

S�I�t1,t0� = exp�−
i

�
�

t0

t1

d�H̃−����
 ,

�16�

S�I�t1,t0� = exp�−
i

�
�

t0

t1

d�H̃�−���
 .

We shall label superoperators in the interaction picture
by a �~�,

Ã	�t1� 	 S0
†�t1,t0�A	�t0�S0�t1,t0� , �17�

where 	=+, − or L,R. H̃−��H̃�−�� is the interaction picture
representation of H−��H�−��. Superoperators in the Heigen-
berg picture will be similarly represented by a caret,

Â	�t1� 	 S†�t1,t0�A	�t0�S�t1,t0� . �18�

By adiabatic switching of the interaction H�− starting at
t0=−
 we have

��t1� = �0 −
i

�
�

−


t

d�S0�t1,��H�−������� , �19�

where �0=��−
� is the equilibrium density matrix of our
reference system,

�0 =
exp�− 
H0�

Tr�exp�− 
H0��
. �20�

The formal solution of Eq. �19� yields,

��t1� = S0�t1,− 
�SI�t1,− 
��0. �21�

The adiabatic connection formula, Eq. �21�,39 is very
useful for calculating interaction picture expectation values.
The equilibrium density matrix of the interacting system can
potentials ��L and �R� is crucial for this derivation. How-
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be generated at t=0 from the noninteracting one, by starting
at t=−
, switching on the electron-electron interactions �H��
adiabatically, and taking the limit �L=�R=�. The external
potential ��t� is applied starting at t=0, i.e., H�−=0 for
t�0.

III. THE NONEQUILIBRIUM GW EQUATIONS

We shall define the “expectation value” of an operator

Â	�t� in the interaction picture by combining Eqs. �17�, �18�,
and �21�,

�Â	�t1�� 	
Tr�Ã	�t1�SI�t1,− 
��0�

Tr
SI�t1,− 
��0�
=

�Ã	�t1�SI�t1,− 
��0

�SI�t1,− 
��0
.

�22�

�Â	�t1�� is a functional of �L and �R that serves as a gener-
ating functional for various observables as will be shown in
the following. �¯�0 represents the trace over �0 �Eq. �20��.
For �L=�R, the denominator in Eq. �22� is unity and �Â	�t1��
reduces to the usual definition for the trace of an operator in
Liouville space.38

Equation �22� is a convenient starting point for develop-
ing a perturbation theory. To that end we define a generalized
Liouville space nonequilibrium Green function,

G	
�x1,x2� =
− i

�
�T�̂	�x1��̂


†�x2�� . �23�

Using Eqs. �21�–�23� gives

G	
�x1,x2� =
− i

�I��L,�R�
�T�̃	�x1��̃†


�x2�

�SI��t1,− 
�Z��L,�R��0, �24�

with
Z��L,�R� = T exp�−
i

�
� dx�1��L�x�1��̃L

†�x�1��̃L�x�1� − �R�x�1��̃R�x�1��̃R
†�x�1��
 �25�
and

I��L,�R� = �TSI��
,− 
�Z��L,�R��0. �26�

The deviation of the normalization factor I��L ,�R� from
unity arises from the different phase accumulated by the ket
and the bra and allows us to independently control their time
evolution.

In Appendix B, we use Eq. �24� to derive a closed hier-
archy of equations for the generalized Green functions, G
�Eq. �B14��, the self-energy, � �Eq. �B19��, the screened

potential, W �Eq. �B23��, the polarization potential, P̃ �Eq.
�B25��, and the vertex function, L �Eq. �27��. Using different
ever, at the end, we can compute observables by setting the
two fields equal �L=�R=�, I��L ,�R�=1. The Liouville
space nonequilibrium Green’s function G	
 will then be de-
noted G	
 and the equations of Appendix B then assume the
form

G = G0 + G0�G , �27�

� = G�W , �28�
W = vI + vPW , �29�
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P = GG� , �30�

� = I +
��

�G
GG� , �31�

where G, G0, �, W, P, and � represent matrices in 	,
=L,R.
� is the self-energy of the single-particle nonequilibrium
Green function, G, and accounts for the many-body interac-
tions. W, P, and � are the screened Coulomb potential, the
polarization, and the vertex functions, respectively, defined
through the functional derivatives �Appendix B�,
E − �i − i� E − �i + i�
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� = v
�G

��
G−1, W = v

�VT

��
,

�32�

P =
��

�VT , � =
�G−1

�VT

where VT and � are the total effective potential �sum of the
external potential and the induced potential� and the charge
density, respectively.

Writing Eqs. �27�–�31� explicitly gives �primed indices
are summed over�
G	
�x1,x2� = G	

0 +� � dx�1dx�2G		�

0 �x1,x1���	�
��x1�,x2��G
�
�x2�,x2� , �33�

�	
�x1,x2� = i�� � dx2�dx3�G	
��x1,x2���
�
���x2�,x2,x3��W��	�x3�,x1� , �34�

W	
�x2,x1� = �	
��t1 − t2�v�r1,r2� +� � dx1�dr2�v�r2,r2��P	
��r2�t2,x1��W
�
�x1�,x1� , �35�

P	
�x1,x2� = − i�� � dx1�dx2�G		��x1,x1��G
�	�x2�,x1��	�
�
�x1�,x2�,x2� , �36�

�	
��x1,x2,x3� = �	�	
�	���x1,x2���x1,x3� +� � � � dx1�dx2�dx3�dx4�
��	
�x1,x2�

�G	����x�1,x�2�

� G	����x1�,x3��G��
��x2�,x4�����
���x3�,x4�,x3� . �37�
These equations extend Hedin’s Hilbert space equations5 to
include the superoperator indices 	, 
, �. They have one-to-
one correspondence with the Hilbert space Keldysh nonequi-
librium Green’s functions as shown in Appendix C.

Equations �27�–�31� form an exact closed hierarchy and
can be solved iteratively for G	
. We start with the Green
functions, G0, for a reference system whose properties are
known. Since G0 corresponds to a system of noninteracting
electrons, it can be easily expressed in terms of the orbitals
��i� and energies ��i� obtained from a density-functional
theory calculation. In the Kohn-Sham molecular-orbital basis
set,41 denoted by Latin indices i, j, k, all the zeroth-order
Green functions are diagonal:

GLR
0 �i, j,E� = 2�i�ij f i��E − �i� , �38�

GRL
0 �i, j,E� = 2�i�ij�1 − f i���E − �i� , �39�

GLL
0 �i, j,E� = �ij� f i +

1 − f i � , �40�
GRR
0 �i, j,E� = �ij� 1 − f i

E − �i − i�
+

f i

E − �i + i�
� , �41�

where � is an infinitesimal, positive, real number and f i is
the Fermi distribution function

f i =
1

1 + exp

��i − EF��
, �42�

with 
=1/kBT and EF the Fermi energy. In the +, −
representation we only have three Green’s functions since
G+−=0 �Appendix A�. To zero order they are given by

G−−
0 �i, j,E� =

�ij

E − �i + i�
, �43�

G++
0 �i, j,E� =

�ij

E − �i − i�
, �44�

G−+
0 �i, j,E� = 2�i�ij�2f i − 1���E − �i� . �45�

In zero order, G	
=G	

0 , �0=W0=0, �0 is the unit ma-

trix �first term in the right-hand side of Eq. �31��, and P0 is
simply the product of two zeroth-order Green functions. We

0 0
substitute P and � in Eqs. �28� and �29� to obtain updated
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self-energy ��1� and screened potential W�1�, respectively.
Using ��1� in Eq. �27� gives the updated Green’s function
G	


�1�. We next compute the derivative, �� /�G, numerically,
where �G=G�1�−G0 and ��=��1�−��0�, which is used to
update � from Eq. �31�. The updated vertex function ��1�

when substituted in Eq. �30� gives P�1�. These updated func-
tions P�1� and ��1� are substituted in Eqs. �27� and �28� to
obtain new W�2� and ��2�, respectively. These give updated
Greens functions G�2� from Eq. �27�. These steps are repeated
until a desired convergence is reached between the input and
the output Green’s functions.

IV. DISCUSSION

By working in Liouville space we derived closed Dyson
equations for the nonequilibrium Green functions in real
time. This formulation does not involve artificial time vari-
ables, thus avoiding the Keldysh loop. Note that in Liouville
space both fields �L and �R have a physical meaning; they
control the time evolution of the bra and the ket of the den-
sity matrix, respectively. The independent control of the bra
and the ket allows to construct a real time generating
functional37,39 for different Liouville space pathways
�LSPs�.38 The superoperator Green’s functions are given by
linear combinations of these LSPs. We emphasize that using
a single external potential ��L=�R=��, as done in time-
dependent density-functional theory �TDDFT�,42 one only
obtains the ordinary response functions which are specific
combinations of the individual LSPs. These are not sufficient
to derive a closed Dyson-type equation for NESGF.

All experimental observables can be expressed in terms
of LSP.43,44 Response and correlation functions are inti-
mately connected. In linear order, they are related through
the fluctuation-dissipation theorem.45,46 This is, however, no
longer the case for nonlinear fluctuations and responses
which do not have a unique simple relation.47 In Liouville
space both response and the correlations are naturally treated
on the same footing48,49 through the LSP. This property of
Liouville space turned out to be very useful for many
physical observables, e.g., resolving the causality paradox of
TDDFT �Ref. 48� and calculating intermolecular
interactions,43,49 which require both the correlations of spon-
taneous fluctuations of the charge density and their responses
to an external field.

The equilibrium Green functions can be generated from
the nonequilibrium Green functions ��	�0� by simply set-
ting �L=�R=0. Equations �33�–�37� constitute closed matrix
equations that can be transformed using the matrix Q �Eq.
�A5�� to obtain the celebrated Hedin’s equations5 for the or-
dinary �causal� equilibrium Green’s function. At equilibrium,
unlike Hilbert space, we still have a matrix Dyson equation
in Liouville space. However, the fluctuation-dissipation

30
relation,
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G��r,�� = − feq����Gr�r,�� − Ga�r,��� ,

�46�
G��r,�� = �1 − feq�����Gr�r,�� − Ga�r,��� ,

connects “lesser” �GLR� and “greater” �GRL� functions with
the retarded and advanced Green functions through the
Fermi equilibrium distribution function,30

feq��� =
1

1 + e
��−EF� , �47�

where 
 is the inverse temperature. This is why at equilib-
rium, the Dyson equation can be recast solely for the re-
tarded �or advanced� Green’s functions.

This formulation can be used to compute the effect of
electron-electron interactions on molecular currents and fluo-
rescence induced by currents.50 We briefly outline the pos-
sible application of the present formalism to currents in mo-
lecular junctions �scanning tunneling microscopy and
molecular wires�, electronic tunneling through single
molecules,51 chains of atoms,52 and self-assembled monolay-
ers of molecules53 under an externally applied bias. A mol-
ecule attached to two metal electrodes is described by the
Hamiltonian, HT=Hm+Ht+Hts, with molecular Hamiltonian
�Hm�, electrode Hamiltonian �Ht�, and their coupling24,30

Hts = �
i�

Ji��i
†�� + H.c., �48�

where we use Greek �� ,� ,�� and Latin �i , j ,k� indices to
denote electrode and molecule orbitals, respectively. Ji� are
the tunneling matrix elements. �i

†��i� are the Fermi creation
�annihilation� operators and satisfy usual anticommutation
relations.

An external bias �V� maintains a chemical potential dif-
ference of eV, creating a nonequilibrium steady state where
the electrons flow from a higher to a lower chemical poten-
tial through the molecule. The total current I is given by the
rate of change of occupation number operator of electrons in
the molecule,

I =
dN

dt
=

ie

�
�
i�

�J�i��i
†���T − H.c.� , �49�

where N=�i�i
†�i is the number operator and �¯�T is the

trace with respect to the density matrix of the interacting
electrodes+molecule system. In Eq. �49�, the current I rep-
resents the rate of flow of electrons from the left electrode to
the molecule. The sum � runs over only one of the elec-
trodes. At steady state, current through the other electrode is
the same but negative.

Using the Liouville space interaction picture,24,37,38 we
can compute the average in Eq. �49� perturbatively in the
electrode-molecule coupling. By switching the coupling
adiabatically starting at t→−
, each term in the perturbation
series can be expressed in terms of products of Green’s func-
tions of the electrode and the molecule. To lowest �second�
order in electrode-molecule coupling, the current depends on
the one-body NESGFs for the electrode and the molecule

�see Eq. �52�� which includes all many-body interactions.

 AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



044106-6 U. Harbola and S. Mukamel J. Chem. Phys. 124, 044106 �2006�
Using the definitions, Eqs. �3� and �4�, the current, Eq.
�49�, can be expressed in terms of the superoperators,

I =
ie

�
�
i�

�Ji���iL
† ��L�T − H.c.� , �50�

where �¯�T is trace over the density matrix of the entire
electrode+molecule system. Current can be computed per-
turbatively in electrode-molecule coupling �Ji�� by express-
ing Eq. �50� in the interaction picture,

I =
ie

h
�
i�

Ji��T�iL
† �t���L�t�exp�− i

�
�

−


t

d�H−
ts���
�

+ c.c., �51�

where H−
ts is the superoperator corresponding to Hts, Eq. �48�,

and the trace in Eq. �51� is with respect to the initial
�t→−
� density matrix of the electrode+molecule system.

By expanding the exponential, we can express the cur-
rent as a power series in coupling element Ji�. Since the
initial density matrix is a direct product of the density matri-
ces of the electrode and the molecule, each term of the series
can be expressed as a product of averages for the electrode
and the molecule separately. To lowest �second� order, the
contribution from the term containing the Green functions
GLL and GRR vanishes54 and we obtain

I = e �
ii����

Ji�Ji���� d��GLR
ii� �t��GRL

�����,t�

− GRL
i�i ��,t�GLR

����t,��� , �52�

where Gii� and G��� are the NESGFs for the molecule and
the electrode, respectively. The next �fourth-order� contribu-
tion involves higher-order Green’s functions of the molecule
and the electrode.

Most theoretical studies of molecular wires include
electron-phonon but neglect electron-electron interactions
within the molecule. The electrodes are modeled as a free-
electron gas. The average in Eq. �49� can then be factorized
into a product of Green functions of the noninteracting elec-
trode and the molecule.20,30 Once many-body interactions in
the electrodes and the molecule are included, such factoriza-
tion is no longer possible and the present hierarchy of
Green’s functions needs to be solved.
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APPENDIX A: THE RETARDED AND THE ADVANCED
GREEN FUNCTIONS

The retarded and the advanced Green functions represent
the forward and the backward propagation of a quasiparticle
�i.e., a dynamically screened particle� in a many-body sys-

tem, respectively. In this section we obtain these functions in

Downloaded 07 Feb 2006 to 128.200.11.116. Redistribution subject to
Liouville space. The Liouville space retarded �Gr� and ad-
vanced �Ga� Green functions are defined in terms of the “+”
and “−” superoperators,

Gr�t1,t2� = G−−�t1,t2� 	 −
i

2�
�T�−�t1��−

†�t2�� ,

�A1�

Ga�t1,t2� = G++�t1,t2� 	 −
2i

�
�T�+�t1��+

†�t2�� .

Similarly, the correlation function �noncausal�, Gc, can be
defined as

Gc�t1,t2� = G−+��t1,t2�� 	 −
i

�
�T�−�t1��+

†�t2�� , �A2�

and the Green function, G+−=0. Using Eqs. �7�, the retarded
and advanced Green functions can be expressed in terms of
the Green functions, G	
, 	, 
=L, R,

Gr�t1,t2� = GLL�t1,t2� − GLR�t1,t2� ,

Ga�t1,t2� = GLL�t1,t2� + GRL�t1,t2� , �A3�

Gc�t1,t2� = GLR�t1,t2� − GRL�t1,t2� ,

where we have used the identity, GLL+GRL=GRR+GLR

�which reflects the fact that G+−=0�. Thus a Dyson equation
for the retarded and advanced Green functions can be ob-
tained using the transformation,

G = QḠQ−1 �A4�

where

Ḡ = �GLL GLR

GRL GRR
�, G = � Ga 0

− Gc Gr
�,

�A5�

Q =
1
�2

�− 1 − 1

1 − 1
� .

Applying this transformation to Eq. �33�, we obtain the
Dyson equations for retarded and advanced Green functions
which can be expressed in the matrix form as

G = G0 + G0�G , �A6�

with

� = � �a 0

− �c �r
� . �A7�
The elements of the self-energy matrix are given by
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�r�t1,t2� = �LL�t1,t2� − �LR�t1,t2� ,

�a�t1,t2� = �LL�t1,t2� + �RL�t1,t2� , �A8�

�c�t1,t2� = �LR�t1,t2� − �RL�t1,t2� .

The closed set, Eqs. �33�–�37� together with Eqs. �A6� and
�A8�, may be solved to yield the retarded �advanced� Green
functions. Using these transformations to Eq. �33� and set-
ting the external field to zero ��=0�, we obtain set of equa-
tions for the equilibrium retarded Green’s function,

Gr�x1,x2� = Gr
0 +� � dx1�dx2�Gr

0�x1,x1���r�x1�,x2��Gr�x2�,x2� .

�A9�

An equation corresponding to the advanced Green functions
can be obtained from Eq. �A9� by replacing all retarded func-
tions with advanced functions.

APPENDIX B: CLOSED MATRIX EQUATIONS FOR G��

Closed matrix-Dyson equation for generalized Green’s
functions, Eq. �23�, will be derived using the Schwinger’s
functional derivative technique. We start with the time de-
rivative of Eq. �23�, we get

i�
�

�t1
G	
�x1,x2� = �	
��x1 − x2� +�T��̂	�x1�

�t1

�̂

†�x2�� .

�B1�

We next consider the Heisenberg equation of motion for su-

peroperator �̄	 �Refs. 37 and 38�

��̂	�x1�
�t1

=
i

�
�H−,�̂	�x1�� . �B2�

Using the �anti�commutation relations �5�, this gives

i�
��̂L�x1�

�t1
= hL�x1��̂L�x1�

+� dx1�v�r1,r1���̂L
†�x1���̂L�x1���̂L�x1� , �B3�

− i�
��̂R�x1�

�t1
= hR�x1��̂R�x1�

+� dx1�v�r1,r1���̂R�x1��̂R�x1���̂R
†�x1�� ,
�B4�
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where h	�x1�=−�1
2 / �2m�+U�r1�+�	�x1�. Substituting Eqs.

�B3� and �B4� in �B1� and using Eq. �24� we obtain the
Dyson equation for G	
,

�i�
�

�t1
+ �	h	�x1��G	
�x1,x2�

= �	
��x1 − x2� +� dx2�M	
��x1,x2��G
�
�x2�,x2� ,

�B5�

where �L=1 and �R=−1. The elements M	
 of the self-
energy are defined by

� dx2�ML
��x1,x2��G
�
�x2�,x2�

	
i

�
� dx1�v�r1,r1���T�̂L

†�x1���̂L�x1���̂L�x1��̂

†�x2�� ,

�B6�

� dx2�MR
��x1,x2��G
�
�x2�,x2�

	
− i

�
� dx1�v�r1,r1���T�̂R�x1��̂R�x1���̂R

†�x1���̂

†�x2�� .

Using Eq. �22�, Eqs. �B6� assume the form

� dx2�ML
��x1,x2��G
�
�x2�,x2�

=
i

�I��L,�R� � dx1�v�r1,r1��

� �T�̃L
†�x1���̃L�x1���̃L�x1��̃


†�x2�SI��t1,− 
�

�Z��L,�R��0,

�B7�

� dx2�MR
��x1,x2��G
�
�x2�,x2�

=
− i

�I��L,�R� � dx1�v�r1,r1��

� �T�̃R�x1��̃R�x1���̃R
†�x1���̃


†�x2�SI��t1,− 
�

�Z��L,�R��0.

Taking the functional derivative of G	
 �Eq. �24�� with re-

spect to �L and �R gives
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�

��L�x3�
G	
�x1,x2� = − GLL�x3,x3

+�G	
�x1,x2�

+ � i

�
�2 1

I��L,�R�

� �T�̃L
†�x3��̃L�x3��̃	�x1��̃


†�x2�

�SI��t1,− 
�Z��L,�R��0,

�B8�
�

��R�x3�
G	
�x1,x2� = − GRR�x3,x3

+�G	
�x1,x2�

+ � i

�
�2 1

I��L,�R�

� �T�̃	�x1��̃R�x3��̃R
†�x3��̃


†�x2�

�SI��t1,− 
�Z��L,�R��0.

Using Eqs. �B7� and �B8�, the Dyson equation �B5� can
be recast as

�i�
�

�t1
+ �	h	�x1� + V	

H�x1��G	


= �	
��x1 − x2� +� dx2��	
��x1,x2��G
�
�x2�,x2� ,

�B9�

where

V	
H�x1� = − i�� dr1�v�r1�,r1�G		�r1�t1,r1�t1

+� . �B10�

Note that when �L=�R, V	
H reduces to Hartree �time-

dependent� potential.55 The self-energy �	
 is given by

�	
�x1,x2� = − i�� � dx1�dx2�v�r1,r1��

��

�

�G	
��x1,x2��

��	�x1��
G
�


−1 �x2�,x2� . �B11�

We next define the zeroth-order Green function, G0	
,

�i�
�

�t1
+ �	h	�x1� + V	

H�r1��G0	
�x1,x2� = �	
��r1 − r2� ,

�B12�

corresponding to the reference system of noninteracting par-
ticles subjected to the �total� potential

V	
T�x1� = U�r1� + �	�x1� + V	

H�x1� . �B13�

Multiplying Eq. �B9� from the right by G	

−1 gives

G	

−1 �x1,x2� = G0	


−1 �x1,x2� − �	
�x1,x2� �B14�
or equivalently,
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G	
�x1,x2� = G0	
�x1,x2�

+� � dx1�dx2� �
	�
�

G0		��x1,x1���	�
��x1�,x2��

�G
�
�x2�,x2� . �B15�

Taking the functional derivative of the identity,

�

�
� dx2�G	
��x1,x2��G
�


−1 �x2�,x2� = �	
��x1 − x2� �B16�

with respect to V	
T, we obtain

�

�
� dx2��G	
��x1,x2��

�G
�	
−1 �x2�,x2�

�V	
T�x1��

+
�G	
��x1,x2��

�V	
T�x1��

G
�

−1 �x2�,x2�� = 0. �B17�

Changing variables from �	 to V	
T using the chain rule,

�

��	�x1�
=� dx2�




�V

T�x2�

��	�x1�
�

�V

T�x2�

�B18�

and using Eq. �B17�, the self-energy �Eq. �B11�� assumes the
form

�	
�x1,x2� = i� �

���

� � dx�2dx�3G	
��x1,x�2�

�L
�
���x�2,x2,x�3�W��	�x�3,x1� , �B19�

where W	
 is the screened Coulomb potential

W	
�x1,x2� =� dr�1v�r1,r�1�
�V	

T�x1�
��
�r�1,t2�

�B20�

and L	
� is the vertex function,

L	
��x1,x2,x3� =
�G	


−1 �x1,x2�

�V�
T�x3�

. �B21�

To derive a closed equation for the Green functions, we
need to express W	
 and L	
� in terms of G	
. To that end
we take the functional derivative of Eq. �B13� with respect to
the external potential ��	�, and make use of Eq. �B10� to
obtain

�V	
T�x1�

��
�r�1,t2�
= �	
��t2 − t1���r1 − r�1�

− i�� dr�2v�r�2,r1�
�G		�r�2t1,r�2t1

+�
��	�r�1,t2�

.

�B22�

Substituting Eq. �B22� in �B20� and changing variables from
�	 to V	

T, the screened Coulomb potential, W	
 satisfies the

self-consistent equation
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W	
�x1,x2� = �	
��t1 − t2�v�r1,r2�

+� � dx�1dr�2�

�

v�r2,r�2�P̃	
��r�2t2,x�1�

�W
�
�x�1,x1� , �B23�

where

P̃	
�x1,x2� = − i�
�G		�x1,x1

+�

�V

T�x2�

. �B24�

P̃	
 reduces to the polarizability in the limit �L=�R. To ex-

press P̃	
 in terms of Green function, G	
, we again make
use of Eqs. �B17� and �B21�. Equation �B24� then gives

P̃	
�x1,x2� = i�� � dx�1dx�2G		��x1,x�1�G
�	�x�2,x1�

�L	�
�
�x�1,x�2,x2� . �B25�

Finally, the vertex function L	
� defined in Eq. �B21�
can be expressed in terms of the Green functions and the
self-energy in a closed form. For this purpose, we start with
the Dyson equation �B14�. Differentiating with respect to
V�

T�x3� gives

�G	

−1 �x1,x2�

�V�
T�x3�

= �	�	
�	���x1,x2���x1,x2� −
��	
�x1,x2�

�V�
T�x3�

.

�B26�

Substituting Eq. �B26� in �B21�, the vertex function can be
expressed in a closed form as

L	
��x1,x2,x3� = �	�	
�	���x1,x2���x1,x3�

+� � � � dx�1dx�2dx�3dx�4

�
��	
�x1,x2�

�G	����x�1,x�2�

�G	����x�1,x�3�G��
��x�4,x�2�

�L������x�3,x�4,x3� . �B27�

The Dyson equation �B14� together with Eqs. �B19�,
�B23�, �B25�, and �B27� provide a closed, self-consistent
prescription for calculating the Liouville space generalized
Green functions, G	
.

APPENDIX C: CONNECTION WITH HILBERT SPACE
GREEN FUNCTIONS

We demonstrate the equivalence of the Liouville space
and the Hilbert space Green functions. G	
 are identical to

40
the Hilbert space Keldysh Green functions. Standard
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NEGF theory is formulated in terms of four Hilbert space

Green functions: time ordered �GT�, antitime ordered �GT̃�,
greater �G��, and lesser �G��.30,36 These are defined in the
Heisenberg picture as

GT�t1,t2� 	 −
i

�
�T�̂�t1��̂†�t2��

= −
i

�
��t1 − t2���̂�t1��̂†�t2�� + ��t2 − t1�

���̂†�t2��̂�t1�� ,

GT̃�t1,t2� 	 −
i

�
�T̃�̂�t1��̂†�t2��

= −
i

�
��t2 − t1����t1��̂†�t2�� + ��t1 − t2�

���̂†�t2��̂�t1�� ,

�C1�

G��t1,t2� 	 −
i

�
��̂�t1��̂†�t2�� ,

G��t1,t2� 	
i

�
��̂†�t2��̂�t1�� .

T�T̃� is the Hilbert space time �antitime� ordering operator:
When applied to a product of operators, it reorders them in
ascending �descending� times from right to left.

The four Liouville space Green functions are

GLL�x,x�� = −
i

�
�T�̂L�x��̂L

†�x��� ,

GRR�x,x�� = −
i

�
�T�̂R�x��̂R

†�x��� ,

�C2�

GLR�x,x�� = −
i

�
�T�̂L�x��̂R

†�x��� ,

GRL�x,x�� = −
i

�
�T�̂R�x��̂L

†�x��� .

To establish the connection between the Liouville space
and Hilbert space Green functions we shall convert the su-
peroperators back to ordinary operators by using definitions
for the superoperators and their anticommutation relations.

For GLR and GRL, we obtain
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GLR�t1,t2� 	 −
i

�
Tr
T�̂L�t1��̂R

†�t2���

= −
i

�
���t1 − t2�Tr
�̂L�t1��̂R

†�t2���

− ��t2 − t1�Tr
�̂R
†�t2��̂L�t1����

=
i

�
Tr
�̂�t1���̂†�t2��

=
i

�
��̂†�t2��̂�t1��

= G��x,x�� ,

�C3�

GRL�t1,t2� 	 −
i

�
Tr
T�̂R�t1��̂L

†�t2���

= −
i

�
���t1 − t2�Tr
�̂R�t1��̂L

†�t2���

− ��t2 − t1�Tr
�̂L
†�t2��̂R�t1����

=
i

�
Tr
�̂†�t2���̂�t1��

=
i

�
��̂�t1��̂†�t2��

= − G��t1,t2� ,

where �= �n��n� is the fully interacting density matrix in
terms of the many-body states �n�.

For GLL and GRR we need to distinguish between the
following two cases:

�i� For t1� t2, we get

GLL�t1,t2� 	 −
i

�
Tr
T�̂L�t1��̂L

†�t2���

= −
i

�
Tr
�̂�t1��̂†�t2���

= −
i

�
��̂�t1��̂†�t2�� ,

�C4�

GRR�t1,t2� 	 −
i

�
Tr
T�̂R�t1��̂R

†�t2���

= −
i

�
Tr
��̂†�t2��̂�t1��

= −
i

�
��̂†�t2��̂�t1�� .
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�ii� For the reverse case, t1� t2, we get

GLL�t1,t2� 	 −
i

�
Tr
T�̂L�t1��̂L

†�t2���

=
i

�
Tr
�̂†�t2��̂�t1��� =

i

�
��̂†�t2��̂�t1�� ,

�C5�

GRR�t1,t2� 	 −
i

�
Tr
T�̂R�t1��̂R

†�t2���

=
i

�
Tr
��̂�t1��̂†�t2�� =

i

�
��̂�t1��̂†�t2�� .

Combining Eqs. �C4� and �C5� we can write

GLL�t1,t2� 	 −
i

�
Tr
T�̂L�t1��̂L

†�t2���

= −
i

�
���t1 − t2���̂�t1��̂†�t2�� − ��t2 − t1�

���̂†�t2��̂�t1���
= GT�t1,t2� ,

�C6�

GRR�t1,t2� 	 −
i

�
Tr
T�̂R�t1��̂R

†�t2���

= −
i

�
���t1 − t2���̂†�t2��̂�t1�� − ��t2 − t1�

���̂�t1��̂†�t2���
= − GT̃�t1,t2� .

Equations �C3� and �C6� establish the equivalence of the
Hilbert and Liouville space Green functions.
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