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Abstract
The complete set of fifth-rank tensor components which describe the chirality-
induced response of excitons to three femtosecond laser pulses is calculated
to first order in the optical wavevector, by including the electric dipole and
quadrupole and the magnetic dipole contributions to the induced current. The
photon echo signal for the π −π∗ and n−π∗ electronic transitions of α helical
polypeptides is calculated using the Green’s function solution of the nonlinear
exciton equations (NEE). Two-dimensional correlation plots of selected tensor
components show considerably enhanced crosspeaks with high sensitivity to
structural variations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The term ‘chirality’ was coined more than one hundred years ago by Lord Kelvin. According
to his definition, any geometrical figure, or group of points is chiral if its image in a plane
mirror, ideally realized, cannot be brought to coincide with itself. Chiral systems can therefore
be realized in two equally-probable mirror image configurations [1]. Mirror reflection with
respect to the xy plane, can be described by two successive operations: (i) parity P (space
inversion) and (ii) coordinate system rotation by π around the z axis. Isotropic ensembles
of randomly oriented molecules are invariant to an overall rotation. A racemic mixture
of chiral molecules with opposite sense of chirality is invariant to parity whereas an unequal
mixture forms an isotropic chiral ensemble. The parity operation transforms between isotropic
ensembles with an opposite sense of chirality.

* This article was originally submitted to the special issue on quantum electrodynamics published in August 2006.
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Since the application of two parity operations restores the system back into its original
state, all system properties and physical observables, such as optical signal fields F, can be
classified as either parity-even (PFe = Fe) or parity-odd (PFo = −Fo) [2, 3]. Parity-odd
signals change sign for chiral ensembles with opposite chirality and, therefore, vanish for
non-chiral systems and racemates (equal mixtures of chiral molecules with opposite chirality).
Parity-even signals, in contrast, are not sensitive to the sense of chirality. We shall denote the
two types of signals as chirality-induced (CI) and non-chiral (NC), respectively.

Circularly polarized light is chiral since it has either left (L) or right (R) screw symmetry
with respect to the propagation direction. The simplest chirality-induced linear optical
technique, circular dichroism (CD), measures the difference between absorption of L and
R circularly polarized light [4, 5]. Thanks to its high structural sensitivity, the technique
has been extensively applied to protein secondary structure determination using electronic
transitions in the UV [6–9] and vibrational transitions in the IR [10–12]. Raman optical
activity (ROA) is a closely related technique which measures the difference between resonant
scattering of L and R light [2, 13, 14].

Nonlinear CI techniques have been developed as well. The chirality of interfaces of liquids
and solids where the surface layer of molecules has some degree of order, has been studied using
second-order techniques [15] such as sum-frequency generation (SFG) and second harmonic
generation (SHG) [16–18]. CI tensor elements of the second-order susceptibility χ(2) have
been determined for specific molecular geometries [19–21]. Second-order techniques can also
be used to study chirality in bulk samples; however, these signals are very weak due to phase
mismatching [22, 23]. Macroscopic transmission/reflection tensors of the bulk have been
used to describe the chirality [24].

In this paper we use microscopic response tensors to study chirality effects in
ultrafast third-order techniques, which can monitor dynamical events, including protein
folding and denaturation, molecular twisting, chemical bond breaking and excited state
relaxation pathways. Coherent techniques such as the photon-echo can discriminate between
homogeneous and inhomogeneous contributions to highly congested lineshapes by tracking
correlated fluctuations of Hamiltonian parameters [25–29]. Pump–probe and transient
grating spectra can follow exciton populations, as well as charge transport, separation and
recombination [30, 31]. Vibrational nonlinear optical techniques were recently applied to
study protein structure and folding dynamics [32] and hydrogen bonding fluctuations in
water [33, 34]. Resonance Raman spectra probe vibrational transitions coupled to specific
electronic resonances [35–37]. Two-dimensional third-order optical techniques reveal fine
details unavailable from linear spectroscopy [27, 29, 32, 38–41]: overlapping transitions in the
absorption spectrum can be separated by dispersing them in two dimensions, and additional
information about the dynamics may be extracted from the lineshapes. The ellipticity of peak
patterns in 2D plots, and the elongation directions of these ellipses reflect bath correlations at
different parts of the system and their timescales [42–44].

The odd-order (linear, third-order, etc) CI response functions are first order in the
optical wavevector and may be distinguished by the specific configurations of optical field
polarizations [45]. Our previous studies were limited to the three independent CI tensor
components of the third-order response in a collinear field configuration [46, 47]. Here we
present the complete set of tensor components for collinear and non-collinear configurations.

The electrodynamics of a molecule coupled to the optical field is usually described
by either the p · A (minimal coupling) Hamiltonian which couples the momentum with
the vector potential of the field, or the µ · E or multipolar Hamiltonian which describes the
interaction between the system multipoles and the optical electric and magnetic fields. The two
Hamiltonians are related by the Power–Zienau canonical transformation [48–51]. The
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multipolar Hamiltonian for time-dependent fields can be alternatively obtained by expanding
the p ·A Hamiltonian field variables in the coordinate [52]. We will adopt the p ·A Hamiltonian
in this paper since it allows a more compact description of the combined electric and magnetic
response [46, 53].

Our results are illustrated by simulations of the photon echo signal of a polypeptide in
the 180–250 nm region originating mostly from the π − π∗ NV1 and NV2 and the n − π∗

[7, 9, 54, 55] electronic transitions along the protein backbone. NV1 and NV2 possess a
large transition dipole moment and dominate the linear absorption. The n − π∗ transition
has a magnetic but no electric transition dipole and is thus only seen in optical activity
measurements. The CD spectra of proteins in this region consist of several overlapping
transitions. They are very sensitive to backbone geometry and can distinguish between α

helix, β sheet and polyProII helix secondary structure motifs [7, 56]. As found earlier for
CI vibrational nonlinear techniques, the crosspeaks which originate from couplings between
different units are amplified in third-order CI signals [47]. We explore the sensitivity of the
third-order CI signals to variations in molecular structure.

2. The exciton model and Green’s functions

We consider an assembly of interacting localized electronic chromophores where the m′th
chromophore has several electronic excited states a, b . . . with excitation frequencies εma . We
assume that the only allowed optical transitions are between the ground state g and the excited
states and that no direct transitions between the excited states of the same chromophore are
allowed. The system is described by the Frenkel exciton Hamiltonian

Ĥ =
∑

mn,ab

hma,nbB̂
†
maB̂nb + Ĥ ′, (1)

where hma,ma ≡ εma, and hma,ng ≡ 0; the ground state energy is 0. The Frenkel exciton
model is extensively used for describing optical properties of coupled chromophores in e.g.
molecular crystals, polymers, molecular aggregates and proteins [57, 58]. B̂

†
ma and B̂ma are

the exciton creation and annihilation operators for an excitation of mode a of chromophore m.
The commutation relations

[
B̂ma, B̂

†
nb

] = δmnδab

(
1 − ∑M

c=1 B̂
†
mcB̂mc

) − δmnB̂
†
nbB̂ma where

M is the number of excited states of each chromophore [59] ensure Pauli exclusion. hma,nb is
the intermode excitonic coupling in the Heitler–London approximation i.e. off resonant B̂†B̂†

and B̂B̂ terms are neglected; the ground state of the system is the vacuum state. Vibrational
excitons can be described by a similar Hamiltonian with Boson operators [59].

We next review the relevant exciton states. The linear response depends solely on the
single-exciton eigenstates ψξ,ma and their energies Eξ , obtained by diagonalizing the one-
exciton block of the Hamiltonian:∑

nb

hma,nbψξ,nb = Eξψξ,ma. (2)

The excited state evolution is described by Green’s functions. We define the retarded
one-exciton Green’s function, G(t), 〈B̂ma〉t = Gma,nb(t)〈B̂nb〉0. Switching to the frequency-
domain [F(r, t) = 1

(2π)4

∫
dk

∫
dω F(k, ω) eikr−iωt ] we have

Gma,nb(ω) =
∑

ξ

ψξ,maIξ (ω)ψ∗
ξ,nb, (3)

with

Iξ (ω) = i

ω − Eξ + iγξ

, (4)
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where γξ is the dephasing rate of the ξ exciton. Third-order techniques probe the two-
exciton states as well. The two-exciton Green’s function, G(2)(t), is defined by 〈B̂maB̂nb〉t =
G(2)

manb,m′a′n′b′(t)〈B̂m′a′B̂n′b′ 〉0.
The nonlinear exciton equations (NEE) [59–61] allow us to calculate the signals while

avoiding the expensive explicit calculation of the two-exciton Green’s functions; their effect
is introduced through a one-exciton quasiparticle scattering. These equations are particularly
suitable for large scale simulations [45, 60]. Using the NEE framework, the two-exciton
Green’s function is obtained using the Bethe Salpeter equation in the frequency domain:

G(2)(ω) = G(ω) + G(ω)�(ω)G(ω), (5)

where Gmanb,m′a′n′b′(ω) = i
∑

ξξ ′ ψξ,maψξ ′,nb[ω − Eξ − Eξ ′ + i(γξ + γξ ′)]−1ψ∗
ξ,m′a′ψ

∗
ξ ′,n′b′ is the

noninteracting two-exciton Green’s function and �(ω) is the two-exciton scattering matrix.
U(z) and 1 are square matrices of size MN × MN , where N is the number of chromophores
and M is the number of excited states of each chromophore. 1ma,nb = δmnδab is the unit matrix.
Uma,nb = zδmn shifts the double-exciton energy by z from εma + εnb (soft-core boson model).
To represent coupled two-level chromophores we set z → ∞. The soft-core then becomes a
hard-core boson model, where two excitations cannot reside on the same chromophore (Pauli
exclusion). The two-exciton scattering matrix for hard-core bosons is

�(ω) = −i lim
z→∞ U(z)(1 + iG(ω)U(z))−1. (6)

Numerically the limit z → ∞ is realized by taking z � 2Eξ .

3. The chirality-induced signals

Using the minimal-coupling Hamiltonian, the interaction of a system of point charges with
the electromagnetic field is given by

Ĥ ′(t) =
∑

α

−qα

cmα

p̂α(t) · Â(rα, t) +
q2

α

2mαc2
Â

2
(rα, t), (7)

where
∑

α runs over all charged particles (electrons when describing electronic excitations
and nuclei for vibrational excitations), qα is the charge of particle α, with mass mα , and Â

is the electromagnetic vector potential operator. This interaction Hamiltonian can be recast
using the electric current Ĵ(r, t) and charge density Q̂(r, t) operators [49, 51, 53]. In the
semiclassical approximation where the vector potential operator is replaced by its expectation
value we have

Ĥ ′(t) = −1

c

∫
dr[Ĵ(r, t) · A(r, t) + Q̂(r, t)A2(r, t)]. (8)

We shall use the Coulomb gauge where the vector potential A(r, t) is transverse.
The Frenkel exciton model is defined in terms of localized (non-overlapping) many-

electron eigenfunctions of isolated chromophores. We introduce the wavefunction of
molecular state a of chromophore m as φma . The wavefunction of the excitonic ground
state is then |0〉 ≡ mφmg where g indicates the ground state, while the wavefunction of the
excited state B̂

†
ma|0〉 ≡ φman	=mφng . The excitonic current–density operator will be given by

Ĵ(r) =
∑
ma

(j̄∗
ma(r)B̂

†
ma + j̄ma(r)B̂ma), (9)

where j̄ma(r) is the transition current density (c number) of transition g → a of chromophore
m. Transition current densities of different chromophores do not overlap and are localized in
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the vicinity of the chromophores. The sum runs over all chromophores and transitions, all
assumed to originate from the ground state, thus the index g is omitted. When transitions
between the excited states are included the induced current operator would include terms like
B̂

†2
ma , B̂

†
maB̂mb and their conjugates. They are neglected here. The transition currents will be

calculated using an electric and magnetic multipolar expansion of the chromophores.
In k space the interaction Hamiltonian is

Ĥ ′(t) = −1

c

∫
dk

(2π)3

[
Ĵ(−k, t) · A(k, t) +

∫
dk′

(2π)3
Q̂(−k − k′, t)A(k, t)A(k′, t)

]
. (10)

In the Heisenberg representation we have the following relation between the current density
Ĵ, total electric polarization P̂, and magnetization M̂ [50]:

Ĵ(kω) = −iωP̂(kω) − ick × M̂(kω). (11)

The total polarization operator is responsible for charge displacements, whereas the
magnetization is related to the angular momentum. When chromophore size is much smaller
than optical wavelength, to first order in the optical wavevector k we only need to retain the
electric dipole, µ, the electric quadrupole, Q, and the magnetic dipole m of each chromophore.
We introduce these parameters in the excitonic basis set. µ̄ma(r) ≡ µmaδ(r − rm) is the
transition dipole density of chromophore m, where µma = 〈φma|

∑
α qα(rα − rm)|φmg〉 is

the transition dipole localized at the chromophore position rm. Q̄ma(r) ≡ Qmaδ(r − rm)

is the transition quadrupole density. Qma = 〈φma|
∑

α
qα

2 (rα − rm) ⊗ (rα − rm)|φmg〉 is
the corresponding transition quadrupole. m̄ma(r)≡ mmaδ(r − rm) is the magnetic transition
density, where mma = 〈φma|

∑
α

qα

2mc
(rα − rm) × pα|φmg〉 is the magnetic transition dipole.

rα is the coordinate operator, and pα = −ih̄∇α is the momentum of electron α. µma,Qma and
mma are associated with isolated chromophores in a chromophore-based coordinate frames.
Using equation (11) the transition current can be related to the electric and magnetic transition
dipoles, and quadrupoles:

j̄ma(−k) = −iωµ̄ma(−k) − ωQ̄ma(−k) · k − ick × m̄ma(−k), (12)

where j̄ma(k) = ∫
dr j̄ma(r) exp(−ik · r), µ̄ma(k) = µma exp(ik · rm), Q̄ma(k) = Qma

exp(ik · rm) and m̄ma(k) = mma exp(ik · rm).
Expanding j̄ma(k) to first order in k we get

j̄ma(−k) ≈ −iωµma − ω(k · rm)µma − ωQma · k + ick × mma. (13)

The first term represents the dipole approximation for the entire system, the second gives rise
to inter-chromophore quadrupole moments whereas the third and the fourth terms represent
intra-chromophore quadrupole and magnetic moments. The first term is zeroth order in the
wavevector whereas the other terms are first order. For aggregates made out of non-chiral
chromophores, only the excitonic chirality (the second term) contributes to first order in k.
This contribution increases as the excitons become more delocalized. The other contributions
increase linearly with size, but due to excitonic cooperativity we expect the second term to
increase more rapidly. Therefore even when the chromophores are chiral, the second term
may be dominant for large excitonic couplings.

In a four-wave-mixing experiment (figure 1), three laser fields interact with the sample.
The induced polarization and magnetization then result in a molecular current, J, which serves
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Figure 1. Top and middle: a three-pulse time-domain four-wave-mixing experiment. The time
ordered pulses have wavevectors k1, k2, k3. k1 comes first followed by k2 and then k3; the signal
is generated along k4. tj are the time delays. Bottom: the three helices used in the simulations.
hel is an unperturbed 17 residue helix, tw8 is twisted helix in the red region, sa8 is twisted helix
after simulated annealing.

as a source in Maxwell’s equations for the signal electric field E:

∇ × ∇ × E +
1

c2

∂2

∂t2
E = −4π

c2

∂J

∂t
. (14)

We shall consider impulsive time-domain experiments performed with three temporally
well-separated pulses where time ordering of the various interactions is strictly enforced.
These signals are generated by a single interaction with each pulse. Only the linear couplings
in the vector potential (equation (8)) contribute in this case. The quadratic A

2 term gives an
additional contributions to the complete response function [53].

Linear optical signals are described by the linear susceptibility, which for our model is
given by [46]

χ(1)
νSν1

(−kS,−ωS; k1, ω1) = 2π
i

ω2
1

δ(ωS − ω1)
∑

ξ

〈
j̄νS

ξ (−kS)j̄
∗ν1
ξ (−k1)

〉
Iξ (ω1) + c.c.′ (15)

Here j̄ξ (k) ≡ ∑
ma ψξ(ma)j̄ma(k) and c.c.′ implies changing the signs of all frequencies

and wavevectors and then taking complex conjugate. This susceptibility is given in terms
of the one-exciton states ξ , obtained by diagonalizing the one-exciton block of the system
Hamiltonian (equation (2)). χ(1) relates the induced current with wavevector kS , frequency ωS

and polarization νS , to the incoming field with k1, ω1 and ν1. All linear signals are described by
this susceptibility: the linear absorption is σA ∝ ω Im

(
χ(1)

xx (−k,−ω, k, ω)
)
, and the circular

dichroism is σCD ∝ ω Im
(
iχ(1)

xy (−k,−ω, k, ω)
)
.
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The orientationally-averaged
〈
j̄νS

ξ (−kS)j̄
∗ν1
ξ (−k1)

〉
factors to first order in the wavevector

depend on the field polarizations as well as their wavevectors:〈
j̄νS

ξ (−kS)j̄
ν1∗
ξ (−k1)

〉 = ω2 1
3 [(νS · ν1)|µξ |2 − ik1 · (νS × ν1)(µξ � qξ − 2m′′

ξ · µξ )], (16)

where

m′′
ξ = λ

2π

∑
ma

ψξ(ma) Im mma,

µξ =
∑
ma

ψξ(ma)µma,

qν2ν1
ξ =

∑
ma

ψξ(ma)

(
rν2
mµν1

ma + Qν2ν1
ma

);
ν is the lab frame unit vector, and we define µ � q ≡ ∑

α3α2α1=x,y,z εα3α2α1µ
α3qα2α1 (εα3α2α1 is

the antisymmetric Levi-Civita tensor). Here kS = k1, and orientational averaging is performed
using the expressions of appendix A. We also note that the CD spectrum does not depend on the
quadrupole moment if qν1ν2 = qν2ν1 since in this case it vanishes upon orientational averaging
due to the Levi-Civita tensor εν3ν2ν1 .

We consider an impulsive coherent resonant time-domain experiment carried out with
short non-overlapping pulses [46, 47]. This three-dimensional signal, which depends on the
three delay times t3, t2, t1, will be displayed by performing a one-sided Fourier transform
[f (�) = ∫ ∞

0 dt ei�tf (t)] with respect to the delay times t1 and t3 with the conjugate
frequencies �1 and �3, and t2 is held fixed. The response function, R

(3)
νSν3ν2ν1

(kS,�3, t2,�1)

relates the induced current with wavevector kS and polarization νS to the incoming pulses with
wavevectors kj and polarizations νj . Both real and imaginary parts of R can be measured
separately by heterodyne detection [50]. Phase-matching gives several independent signals
with wavevectors kS = uk1 + vk2 + wk3; here u, v and w are integers. We focus on the
kI = −k1 + k2 + k3 (photon echo) technique and set t2 = +0. The corresponding response
function is [46]

R
kI

ν4ν3ν2ν1
(�3, t2 = 0,�1) = −2

i3

c3ω4

∑
ξ4...ξ1

〈
j̄ν4

ξ4
(−kI )j̄

∗ν3
ξ3

(−k3)j̄
∗ν2
ξ2

(−k2)j̄
ν1
ξ1

(−k1)
〉

× I ∗
ξ1
(−�1)Iξ4(�3)�ξ4ξ1ξ3ξ2(�3 + Eξ1 + iγξ1)Iξ3ξ2(�3 + Eξ1 + iγξ1), (17)

where �ξ4ξ3ξ2ξ1 = ∑
n4n3n2n1

ψ∗
ξ4n4

ψ∗
ξ3n3

�n4n3n2n1ψξ2n2ψξ1n1 is the scattering matrix in the one-
exciton basis.

Assuming ω2 ≈ ω1 ≈ ω where ω is the mean optical frequency, the orientational factor
for the third-order response becomes〈
j̄ν4

ξ4
(−k4)j̄

ν3
ξ3

(s3,−k3)j̄
ν2
ξ2

(s2,−k2)j̄
ν1
ξ1

(s1 − k1)
〉 = −s3s2s1ω

4
{〈

µν4
ξ4

µν3
ξ3

µν2
ξ2

µν1
ξ1

〉
+ i

∑
ν5

[−kν5
4

〈
qν5,ν4

ξ4
µν3

ξ3
µν2

ξ2
µν1

ξ1

〉
+ s3kν5

3

〈
µν4

ξ4
qν5,ν3

ξ3
µν2

ξ2
µν1

ξ1

〉

+ s2kν5
2

〈
µν4

ξ4
µν3

ξ3
qν5,ν2

ξ2
µν1

ξ1

〉
+ s1kν5

1

〈
µν4

ξ4
µν3

ξ3
µν2

ξ2
qν5,ν1

ξ1

〉]
+ i

∑
ν5α

[−εν4ν5αkν5
4

〈
m′′α

ξ4
µν3

ξ3
µν2

ξ2
µν1

ξ1

〉
+ s3εν3ν5αkν5

3

〈
µν4

ξ4
m′′α

ξ3
µν2

ξ2
µν1

ξ1

〉

+ s2εν2ν5αkν5
2

〈
µν4

ξ4
µν3

ξ3
m′′α

ξ2
µν1

ξ1

〉
+ s1εν1ν5αkν5

1

〈
µν4

ξ4
µν3

ξ3
µν2

ξ2
m′′α

ξ1

〉]}
, (18)

where sj = ±1 and we used the notation j̄ν
ξ (+1, k) ≡ j̄ν∗

ξ (k) and j̄ν
ξ (−1, k) ≡ j̄ν

ξ (k).
Equation (18) can be calculated by orientational averaging of tensor products of arbitrary
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sets of fixed vectors and second-rank tensors defined in the molecular frame, as shown in the
appendix.

The orientational factors given by equations (A.5)–(A.18) relate the signals to molecular
geometry. The CI terms can be identified by examining the products of transition dipoles. The
electric transition dipole µξ and coordinate rm are parity-odd, while the magnetic transition
dipole, mξ and tensors qξ are even. By performing the parity operation on the susceptibilities
and inspecting the parity symmetry we can connect the susceptibility with the chirality. All zero
order in wavevector contributions to odd (linear and cubic) response are NC since they involve
either two or four electric transition dipoles. The corresponding first-order contributions
in wavevectors are CI. The signals will depend on the specific laser pulse geometry. By
decomposing all wavevectors and polarization vectors into elementary components we get the
tensor contributions to the signal. We next consider these contributions.

As shown by Andrews and Thirunamachandran [62], the column-vectors F
(n)
{ν} (see

equations (A.10) and (A.11)) give the linearly-independent contributions to the averaged
response tensors. By inspecting the orientationally-averaged expressions we get the
independent nonvanishing elements of the orientational tensors. We define the lab frame
by assuming that the signal propagates along z and is x polarized. We also note that all fields
j = 1, 2, 3, s are transverse so that Ej · kj = 0. The polarization unit vector is ej and the
unit wavevector is κj . We will use polarizations and wavevectors which coincide with the
lab frame unit vectors ej = νj ≡ x,y,z. We shall denote the polarization and wavevector
configurations of the various possible techniques by ν4ν3ν2ν1(α4α3α2α1); here νj = x, y, z is
the polarization direction of field j and αj is its wavevector direction. The fields are ordered
chronologically from right to left (field 1 comes first, field 4 (signal) is the last).

We first consider the wavevector-independent (dipole approximation) contribution. The
column-vector F

(4)
{ν} identifies three independent components: F

(4)
{ν} = (1, 0, 0)T , F

(4)
{ν} =

(0, 1, 0)T and F
(4)
{ν} = (0, 0, 1)T . We next need to find field configurations that give only

one contribution out of the three. F
(4)
{ν} = (1, 0, 0)T requires e4 = e3 and e2 = e1

and (e4 · e2)(e3 · e1) = (e4 ·e1)(e3 ·e2) = 0. This can be realized for instance when
e4 = e3 = x and e2 = e1 = y. We choose ν4ν3ν2ν1 ≡ xxyy to represent F

(4)
{ν} = (1, 0, 0)T

(this choice is not unique). The other two independent contributions are obtained in the
configurations xyxy giving F

(4)
{ν} = (0, 1, 0)T and xyyx giving F

(4)
{ν} = (0, 0, 1)T . All other

possible configurations are obtained as linear combinations of xxyy, xyxy and xyyx. For
instance, xxxx gives F

(4)
{ν} = (1, 1, 1)T ≡ (1, 0, 0)T + (0, 1, 0)T + (0, 0, 1)T and therefore

Rxxxx = Rxxyy + Rxyxy + Rxyyx .
We next turn to F

(5)
{ν} (equation (A.11)). This six-row column-vector implies that there

are six linearly independent contributions. We need to find field configurations that select
one contribution out of the six. Using our signal configuration (e4 = x and κ4 = z) a
vector F

(5)
{ν} = (1, ∗, ∗, ∗, ∗, 0)T (here ‘*’ is either 0 or 1) is obtained by setting e3 = y and

e2 = z and e1 = κj . The choice of e1 = x, κj = ±x, leads to the polarization tensor
xyzx, and results in F

(5)
{ν} = (±1, 0, 0, 0, 0, 0)T , which is one of the six linearly independent

contributions. Since these contributions involve wavevectors, the next step is to determine
possible wavevector directions which enter F

(5)
{ν} = (±1, 0, 0, 0, 0, 0)T . Since κj = ±x, only

wavevectors parallel to x direction contribute. There is only one wavevector configuration
consistent with the phase matching direction (k4 = k3 +k2 −k1) in this case: κ4 = z, κ3 = x,
κ2 = −x and κ1 = −z. The signal then depends solely on k3 and k2, since k4 and k1 have
only z components which makes equation (A.11) vanish. Thus, the complete configuration is
then xyzx(zxx̄z̄) with ᾱ standing for −α.
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Table 1. Linearly independent third-order experiments; ᾱ ≡ −α.

NC configuration F
(4)
{ν} Dependent wavevectors Experiment type

xxyy (1, 0, 0)T Non Any
xyxy (0, 1, 0)T Non Any
xyyx (0, 0, 1)T Non Any

CI configuration F
(5)
{ν} Dependent wavevectors Type

xxxy(zzzz) (0, 0, 0, 0, 0, 1)T k4, k3, k2, k1 Collinear
xxyx(zzzz) (0, 0, 0, 0, 1, 0)T k4, k3, k2, k1 Collinear
xyxx(zzzz) (0, 0, 1, 0, 0, 0)T k4, k3, k2, k1 Collinear
xxxy(zyȳz̄) (0, 0, 0, 0, 0, 1)T k4, k1 Non-collinear
xxyx(zyzy) (0, 0, 0, 0, 1, 0)T k4, k2 Non-collinear
xyxx(zzyy) (0, 0, 1, 0, 0, 0)T k4, k3 Non-collinear
xxyz(zzxx) (0, 0, 0, 1, 0, 0)T k2, k1 Non-collinear
xyzx(zxx̄z̄) (1, 0, 0, 0, 0, 0)T k3, k2 Non-collinear
xyxz(zxzx) (0, 1, 0, 0, 0, 0)T k3, k1 Non-collinear

The configuration xyxz(zxzx) has z polarization of field 1 with +k1 directed along x, x

polarization of field 2 with +k2 directed along z, y polarization of field 3 with +k3 directed
along x. This gives a signal k4 polarized along x and propagating along z. Field configurations
responsible for other independent contributions [(0, 1, 0, 0, 0, 0)T , (0, 0, 1, 0, 0, 0)T . . .] can
be obtained in the same way. The independent CI techniques are listed in table 1. xxxy(zzzz)

and xxxy(zyȳz̄) differ by the wavevector configuration.
Fourth-rank orientational averaging involving magnetic transition dipoles generates three

linearly independent CI field configurations. Six independent configurations are then
possible when electric quadrupoles and excitonic contributions are neglected: xxxy(zzzz),

xxyx(zzzz), xyxx(zzzz), xxxy(zyȳz̄), xxyx(zyzy) and xyxx(zzyy).

4. Application to photon echo signals in alpha helical polypeptides

We have used the present theory to simulate the 2D signals of alpha helical polypeptides in
the amide region covering n − π∗ and π − π∗ electronic transitions. The structure of the
17-residue alpha helix was created using the Macromodel package, and MD simulations were
used to generated 100 snapshots along a 10 ns NVE simulation. Detailed description of the
structure is given in [63].

We included the backbone amide transitions. Three optical transitions per each amide
were considered: π − π∗ (NV1 and NV2) and n − π∗. Electric dipoles for NV1 and NV2 and
magnetic dipoles for n − π∗ transition were included as in [6]. To ensure Pauli exclusion we
used Uma,mb = 106 cm−1 (Uma,nb = 0 for m 	= n). Electric quadrupoles of the chromophores,
Q, are neglected. Couplings between different amides and amide transition dipoles were
obtained using Woody’s semiempirical parameters [6].

To estimate the sensitivity of chiral 2D techniques to structural variations we used one
snapshot of a typical helical structure (hel). We also created two perturbed structures (figure 1).
The first was obtained by restraining the φ torsional angle of the ninth residue, which is in
the middle of the peptide, to be 120◦ (the typical value for this angle in an ‘ideal’ helix is
53◦). A 10 ns NVE ensemble equilibration followed by a 5 ns dynamics run was then carried
out to generate one snapshot of the ‘twisted’ (tw8) helix structure: For the second perturbed
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Figure 2. Simulated spectra of the 17 residue helices shown in figure 1: absorption (left) and
CD (right).

structure an NPT ensemble simulated-annealing was carried out by first gradually raising the
temperature from 273 K to 550 K during 5 ns, keeping the temperature for 5 ns and finally
cooling down the system from 550 K to 273 K in 5 ns. A 5 ns dynamics run was then
performed to generate a single snaphot of the annealed peptide structure (sa8).

The same homogeneous linewidth γ = 500 cm−1 was assumed for all single-exciton
transitions. Inhomogeneous broadening was simulated by ensemble averaging over 100
configurations using a Gaussian distribution of the local peptide excitation energies with
variance 1060 cm−1, which reproduces the 10 nm Gaussian CD linewidth at 180–240 nm
(55 000–42 000 cm−1, respectively).

The absorption spectrum shown in figure 2 has one peak at 53 500 cm−1 corresponding to
the NV1 transition. The n − π∗ transition has no electric transition dipole. However, due to
couplings between chromophores it borrows some electric transition dipole from the π−π∗

transitions; it is very weak and not visible in the absorption due to broad NV1. The CD
spectrum has the typical shape for an α helix: the chiral structure of amides results in strong
NV1 transition at 50 000–55 000 cm−1, which does not carry a magnetic transition dipole,
while the negative peak at 45 500 cm−1 is mainly n−π∗ transition. The absorption signals of
hel, sa8 and tw8 are similar. The negative CD peak at 45 000 cm−1 is stronger in hel compared
to sa8 and tw8. The CD of all three structures are very similar.

The response function (equation (17)) is a product of two complex Lorentzian functions
in �1 and �3. In the dipole approximation the imaginary parts of the response function
show localized absorptive-like peaks where peak position correspond to resonances; the
real parts of the corresponding contributions are dispersive. This is reversed in the first-
order terms in wavevector. Below we display the absorptive lineshapes: imaginary parts of
xxxx(zzzz) and real parts of xxxy(zzzz), xxxy(zyȳz̄) and xxyz(zzxx) of the 2D photon
echo signal (equation (17)). The signal of hel is displayed in figure 3 for three polarization
configurations. xxxx(zzzz) is NC and shows one pair of strong peaks around −�1 = �3 =
53 000 cm−1. As expected from the absorption, the n − π∗ transition at −�1 = �3 =
45 000 cm−1 is not visible, but we see a weak off diagonal crosspeaks between these
transitions. The CI collinear tensor components, xxxy(zzzz), xxxy(zyȳz̄) and xxyz(zzxx),
show extensive redistribution of peak amplitudes: the cross peaks are much stronger than in the
NC xxxx(zzzz). The differences between various structures are highlighted in the crosspeak
regions.
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Figure 3. Simulated 2D photon echo signals, R
kI
ν4ν3ν2ν1

(�3, T2 = 0, �1), (equation (17)),
shown are the absorptive signals (imaginary part for xxxx(zzzz) and real part for xxxy(zzzzz),

xxxy(zyȳz̄) and xxyz(zzxx)) for different optical polarization configurations and polypeptide
structures.

5. Discussion

The 2D photon echo signals depend on the electric and magnetic transition dipole vectors, the
electric quadrupoles, the transition energies and the spatial configuration of chromophores.

Extracting the molecular structure (bond lengths, dihedral angles, etc) is an important
goal of multidimensional spectroscopy. The 2D spectrum contains numerous overlapping
contributions. The spectrum may not be directly inverted to yield the structure since the
number of (linearly independent) unknowns is larger than the number of independent measured
quantities. Let us consider the peak intensities and their positions as the measured quantities.
In our xxxx simulation of hel we found three pairs of peaks: one close to diagonal and two at
crosspeak positions. Their positions along the two frequency axes and their relative intensities
could provide 6 × 2 + 6 × 5/2 = 42 measured parameters. The peak linewidths and their
elongation directions provide additional 6 × 2 = 12 parameters. It should thus be possible to
extract 54 system parameters out of the data acquired. For comparison, three (two negative
and one positive) peaks are typically observed in CD, which is a one-dimensional technique,
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of alpha helix. Thus, CD provides 3 + 3 × 2/2 + 3 = 9 parameters. Third-order CI signals
provide more structure-sensitive information compared to CD and nonlinear NC techniques.

The peptide with 243 atoms considered here has 2433 coordinates. Our exciton model has
17 chromophores, whose orientations and coordinates are unknown (thus 173 + 17 × 3 � 50).
Thus, only a limited number of structural characteristics, e.g. the helicity, the helix length and
width, average angles of transition dipoles with the longitudinal helix axis, can be obtained
from the spectra.

The expansion of transition currents in electric and magnetic transition multipoles in
equation (13) allows us to trace the major contributions to spectroscopic signals. The first
two terms are the leading contributions for excitonic systems. The second term is three to
four orders of magnitudes smaller than the first and is the main source of the excitonic CD
spectrum when the excitons are delocalized among many chromophores. The third and the
fourth terms become important in CD spectra of localized excitons. CD of small molecules
is usually dominated by the magnetic transition moments expressed through the rotational
strength.

The number of linearly independent CI tensor components depends on the specific
experimental techniques. For the two pulse photon echo where the second time delay
t2 = 0 the second and third interactions can be interchanged. We then have xxyx(zzzz) ≡
xyxx(zzzz), xxyx(zyzy) ≡ xyxx(zzyy), xxyz(zzxx) ≡ xyxz(zxzx) leaving six linearly
independent tensor components. All nine tensor components should become independent for
t2 > 0. Specific systems may have fewer components: for example, all tensor components for
a two-level chromophore are the same.

Our previous studies were limited to the collinear pulse configurations [45–47]. In this
paper we present all independent CI polarization configurations for the third-order nonlinear
response. The non-collinear configurations depend on two wavevectors. The NC and
CI techniques are identified by their distinct polarization configurations. The simulations
presented in figure 3 demonstrate how CI signals may suppress the diagonal peaks, enhancing
the resolution of crosspeaks. Chiral techniques are thus very sensitive to the structure and to
fine details of the geometry.
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Appendix. Orientational averagings of molecular properties

Orientational averaging of molecular response tensors is required for randomly oriented bulk
systems (e.g. solutions, liquids, polymers, glasses). The tensors associated with one molecule
should be averaged over an arbitrary orientation of the molecule with respect to the optical
external field. Averaging of the optical response tensors reduces to averaging of products of
vectors and tensors as in equation (18). The vector-related averaging is

〈
dνN

N . . . d
νj

j . . . dν1
1

〉 =
Average [(dN · νN) . . . (dj · νj ) . . . (d1 · ν1)], where vectors dj are the molecular properties
given in the molecular frame; the field-related unit vectors νj = x,y,z are defined in
the lab frame. This formula should be slightly modified when one molecular second-

rank tensor, t
νj ν

′
j

j , defined in the molecular frame, is involved:
〈
dνN

N . . . t
νj ν

′
j

j . . . dν1
1

〉 =
Average [(dN · νN) . . . (νj · tj · ν ′

j ) . . . (d1 · ν1)]. This is equivalent to the averaging of N + 1
vectors.



Probing molecular chirality via excitonic nonlinear response 5063

Orientational averaging can be accomplished by introducing the Euler transformation
formula for three-dimensional coordinate-system rotations; this leads to integrals of products
of trigonometric functions. Alternatively, these averages can be calculated using the matrix
formalism developed by Andrews and Thirunamachandran [62], which for two-, three-, four-
and five-vector averages gives the following compact expressions:

〈
dν2

2 dν1
1

〉 = 1
3 (ν2 · ν1)(d2 · d1) (A.1)

〈
dν3

3 dν2
2 dν1

1

〉 = 1
6 (ν3 · (ν2 × ν1))(d3 · (d2 × d1)) (A.2)

〈
tν ′ν2

2 dν1
1

〉 = 1
6 (ν ′ · (ν2 × ν1))d1 � t2 (A.3)

〈
dν2

2 tν ′ν1
1

〉 = 1
6 (ν2 · (ν ′ × ν1))d2 � t1 (A.4)

〈
dν4

4 dν3
3 dν2

2 dν1
1

〉 = F
(4)T
{ν} M(4)V (4) (A.5)

〈
tν ′ν4

4 dν3
3 dν2

2 dν1
1

〉 = F
(5)T
{ν} M(5)V

(5)
4 (A.6)

〈
dν4

4 tν ′ν3
3 dν2

2 dν1
1

〉 = F
(5)T
{ν} M(5)V

(5)
3 (A.7)

〈
dν4

4 dν3
3 tν ′ν2

2 dν1
1

〉 = F
(5)T
{ν} M(5)V

(5)
2 (A.8)

〈
dν4

4 dν3
3 dν2

2 tν ′ν1
1

〉 = F
(5)T
{ν} M(5)V

(5)
1 . (A.9)

F
(N)
{ν} are the column vectors depending on the lab frame unit vectors ν:

F
(4)
{ν} = 1

30


(ν4 · ν3)(ν2 · ν1)

(ν4 · ν2)(ν3 · ν1)

(ν4 · ν1)(ν3 · ν2)


 , (A.10)

F
(5)
{ν} = 1

30




ν4 · (ν3 × ν2)(ν1 · ν ′)
ν4 · (ν3 × ν1)(ν2 · ν ′)
ν4 · (ν3 × ν ′)(ν2 · ν1)

ν4 · (ν2 × ν1)(ν3 · ν ′)
ν4 · (ν2 × ν ′)(ν3 · ν1)

ν4 · (ν1 × ν ′)(ν3 · ν2)




. (A.11)

Matrices M are system independent:

M(4) = 1

30


 4 −1 −1

−1 4 −1
−1 −1 4


 , (A.12)

M(5) = 1

30




3 −1 −1 1 1 0
−1 3 −1 −1 0 1
−1 −1 3 0 −1 −1
1 −1 0 3 −1 1
1 0 −1 −1 3 −1
0 1 −1 1 −1 3




, (A.13)
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and V are column vectors depending on the system properties:

V (4) =

(d4 ·d3)(d2 ·d1)

(d4 ·d2)(d3 ·d1)

(d4 ·d1)(d3 ·d2)


 , (A.14)

V
(5)

4 =




d1 · t4 · (d3 × d2)

d2 · t4 · (d3 × d1)

(d3 � t4)(d2 · d1)

d3 · t4 · (d2 × d1)

(d2 � t4)(d3 · d1)

(d1 � t4)(d3 · d2)




, (A.15)

V
(5)

3 =




d1 · t3 · (d2 × d4)

d2 · t3 · (d1 × d4)

−(d4 � t3)(d2 · d1)

t̄3(d4 · (d2 × d1))

(d4 × d2) · t3 ·d1

(d4 × d1) · t3 ·d2




, (A.16)

V
(5)

2 =




d1 · t2 · (d4 × d3)

t̄2(d4 · (d3 × d1))

(d4 × d3) · t2 ·d1

d3 · t2 · (d1 × d4)

−(d4 � t2)(d3 · d1)

(d4 × d1) · t2 ·d3




, (A.17)

V
(5)

1 =




t̄1(d4 · (d3 × d2))

d2 · t1 · (d4 × d3)

(d4 × d3) · t1 ·d2

d3 · t1 · (d4 × d2)

(d4 × d2) · t1 ·d3

−(d4 � t1)(d3 · d2)




. (A.18)

where d � t ≡ ∑
α3α2α1

εα3α2α1d
α3tα2α1 , (t · d)α ≡ ∑

α′ tαα′
dα′

, (d · t)α ≡ ∑
α′ d

α′
tα′α and

t̄ ≡ ∑
α tαα , consequently d1 · t · d2 ≡ ∑

α1α2
dα1

1 tα1α2dα2
2 .

By comparing with equation (18), we can calculate the orientational averaging of currents
by replacing vectors d with µ and m and tensors t with quadrupoles q.
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