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Stochastic Liouville Equations for Coherent Multidimensional Spectroscopy of Excitons
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Prague, 121 16 Czech Republic, and Department of Chemistry, UniVersity of California,
IrVine, California 92697-2025

ReceiVed: February 18, 2008; ReVised Manuscript ReceiVed: August 13, 2008

Signatures of chemical exchange and spectral diffusion in 2D photon-echo line shapes of molecular aggregates
are studied using model calculations for a dimer whose Hamiltonian parameters are stochastically modulated.
Cross peaks induced by chemical exchange and by exciton transport have different dynamics and distinguish
two models which have the same absorption spectrum (a two-state jump bath modulation model of a dimer
and a four-state jump bath model of a single chromophore). Slow Gaussian-Markovian spectral diffusion of
a symmetric dimer induces new peaks which are damped as the dipole moment is equilibrated. These effects
require an explicit treatment of the bath and may not be described by lower-level theories such as the Redfield
equations, which eliminate the bath.

1. Introduction

Exciton models are widely used in the description of the
coherent nonlinear optical response of complex systems.1

Vibrational spectra of proteins2-6 and liquid water7 and elec-
tronic spectra of photosynthetic antenae8 are a few examples.
Bath-induced fluctuations of transition frequencies and couplings
affect the electronic and transport properties of aggregates (e.g.,
photosynthetic antenae).

A broad arsenal of techniques has been developed toward
the simulation of two-dimensional coherent spectroscopy (2DCS)
signals.1 Direct simulation of the optical response requires
repeated diagonalizations of the system Hamiltonian at many
time points. The response is then given by a path integral over
the trajectories of the time-dependent eigenvalues and the
overlap factors of the instantaneous eigenstates at different
times.9,10

The fluctuating time-dependent Hamiltonian H(t) defines the
instantaneous (adiabatic) basis |�j(t)〉 and energies εj(t) (we set
p ) 1)

H(t)|�j(t)〉 ) εj(t)|�j(t)〉

Direct evaluation of the time evolution operator, when the
time t is divided into N f ∞ short segments ∆t ≡ t/N gives

U ≡ T exp[-i∫0

t
dτH(τ)]) T∏

n)1

N

exp[-iH(tn)∆t]

tn ) n∆t (1)

where T is time ordering operator. By adopting the matrix
representation Ũjk ≡ 〈�j(t)|U|�k(0)〉 , we get

Ũ) T∏
n)1

N

UnSn (2)

Here

(Un)jj′ ) exp[-iεj(tn)∆t]δjj′

is the adiabatic propagator, and the nonadiabatic coupling matrix

(Sn)jj′ ) 〈�j(tn)|�j′(tn-1)〉
represents the overlap of the adiabatic states at two adjacent
points.

Implementing eq 1 is numerically expensive. Moreover, one
must typically account for various fluctuation scenarios and
average over sufficiently long trajectories (or, equivalently by
ergodic hypothesis, over possible paths) of the fluctuating
Hamiltonian.

More affordable simulations are feasible when the fluctuations
are small and fast. The response can then be calculated by sums
over delocalized eigenstates of the average Hamiltonian, where
dephasing rates are introduced phenomenologically.11 Exciton
transportmaybeaccountedforbyusingtheRedfieldequations1,12,13

for the reduced Liouville space dynamics of the chromophores.
A quasiparticle approach based on the nonlinear exciton
equations allows the interpretation of signals in terms of exciton
scattering.1 Very slow fluctuations can be readily incorporated
by static averaging of the signals over their realizations.14

The stochastic Liouville equations (SLE)15-17 allow the
modeling of strong fluctuations with arbitrary time scales,
provided they can be described by a few classical collective
coordinates which satisfy a Markovian master equation. The
path integrals of eq 2 and the final averaging are avoided by
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Figure 1. Double-sided Feynman diagrams for the Liouville space
pathways contributing to the third-order response in the phase-matching
direction kI ) -k1 + k2 + k3 and kII ) k1 - k2 + k3 (eq 7).
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calculating the density distributions in the joint system + bath
space. The SLE generalize the Redfield equations, which are
limited to fast fluctuations where the bath degrees of freedom
can be eliminated. We have recently applied the SLE to calculate
2D line shapes of a single chromophore whose transition
frequency undergoes a stochastic modulation due to hydrogen
bonding in water18,19 or organic solvents.20,21 Excitonic spectra
of a multichromophoric system (trialanine) were described by
the SLE approach for a limited class of models and delay
times.10

In this paper, we apply the SLE to a model dimer interacting
with a classical bath. We predict the complete delay time
evolution of 2D signals and show new effects of interchro-
mophore coupling, as well as spectral diffusion characteristics
of the finite fluctuation time. Two types of stochastic models
are considered; discrete chemical exchange will be described
by a two-state jump model for the bath, and continuous spectral
diffusion will account for using a Gaussian-Markovian coor-
dinate (high-temperature limit of a Brownian overdamped
oscillator). We show how the 2D signals may distinguish the
model from a nonexcitonic system which has the same linear
response. Some effects which are missed in the simpler Redfield
treatment are pointed out.

2. Stochastic Liouville Equations for the Molecular
Dimer

We consider a dimer with two one-exciton states, |e1〉 ) B1
†|g〉

and |e2〉 ) B2
†|g〉 , and one doubly excited state, |f1〉 ≡ B1

†B2
†|g〉 ,

described by the Frenkel-exciton Hamiltonian1,22-24

H) ε1(t)B1
†B1 + ε2(t)B2

†B2 + J(t)(B2
†B1 +B1

†B2)+

∆B1
†B2

†B1B2 (3)

Both the coupling J and energies εj undergo stochastic
fluctuations. We will assume that the doubly excited state is
strongly shifted, ∆ f ∞, so that it does not contribute to the
optical signals near the single-exciton frequency ω ≈ ε.

A discrete fluctuation model is introduced by an additional
bath degree of freedom with two states u (up) and d (down),
representing, for example, two conformers of the molecule or
solvent configurations. We assume that the Hamiltonian pa-
rameters jump stochastically between two values Ju, ε1u, ε2u and
Jd, ε1d, ε2d corresponding to the two configurations. The
transitions between these states are described by a Markovian
Pauli master equation25 with down (kd) and up (ku) jump rates,
respectively.

(dFu

dt )
M
)-kdFu + kuFd

(dFd

dt )
M
) kdFu - kuFd (4)

The entire density matrix, defined in the joint system + bath
space, is described by the stochastic Liouville equation15,16

dF
dt

)-i[H, F]+ (dF
dt )M

≡ LF

Here, F carries three indices representing bra and ket variables
of the system Liouville space and one index denoting the state
of the bath.

Since the Hamiltonian (eq 3) conserves the number of
excitons, the Liouville operator L is block-diagonal, with
separate blocks corresponding to the gg, ee, ge, and eg
manifolds. We define the basis set for ground-state evolution
(|gg; u〉〉 , |gg; d〉〉 ), with the block

Lgg,gg ) (-kd ku

kd -ku
)

The coherence (eg) evolution is described in the following
basis set |e1g; u〉〉 , |e1g; d〉〉 , |e2g; u〉〉 , and |e2g; d〉〉 by the
Liouvillean

Leg,eg ) (-kd - iε1u ku -iJu 0
kd -ku - iε1d 0 -iJd

-iJu 0 -kd - iε2u ku

0 -iJd kd -ku - iε2d

)
Finally, the excited-state block |e1e1; u〉〉 , |e1e1; d〉〉 , |e1e2; u〉〉 ,
|e1e2; d〉〉 , |e2e1; u〉〉 , |e2e1; d〉〉 , |e2e2; u〉〉 , |e2e2; d〉〉 is represented
by

Lee′,ee′ )

(-kd ku iJu 0 -iJu 0 0 0
kd -ku 0 iJd 0 -iJd 0 0
iJu 0 -kd - i∆εu ku 0 0 -iJu 0
0 iJd kd -ku - i∆εd 0 0 0 -iJd

-iJu 0 0 0 -kd + i∆εu ku iJu 0
0 -iJd 0 0 kd -ku + i∆εd 0 iJd

0 0 -iJu 0 iJu 0 -kd ku

0 0 0 -iJd 0 iJd kd -ku

)
where we have denoted ∆εd ≡ ε1d - ε2d, ∆εu ≡ ε1u - ε2u. With
Lge,ge ) L eg,eg

/ , the description is complete.
The Green’s function solution of the Liouville equation is

G(t) ≡ θ(t)exp L t

In the frequency domain, G(ω) ) ∫0
∞eiωtG(t)dt, we have

G(ω))-[iω+ L ]-1 (5)

Like L, the Green’s function is block-diagonal as well. For
instance, the time domain Green’s function for the gg block
reads

Figure 2. Absorption line shapes (eq 6) of a dimer with two-state
bath fluctuations (eqs 3 and 4) (solid line) and a monomer with four-
state bath fluctuations (eqs 18 and 19) (dotted line) in the static limit.
The dimer peaks correspond to resonance with (from left to right) ε2u,
ε2d, ε1d, ε1u levels. Parameters: Dimer: ε1u ) 30Γ, ε1d ) 10Γ, ε2u )
-30Γ, ε2d ) -10Γ, Ju ) Jd ) 0, ku ) kd ) k ) Γ. Monomer: ε1 )
30Γ, ε2 ) 10Γ, ε3 ) -30Γ, ε4 ) -10Γ, k12k21 ) k13 ) k31 ) k14 ) k41

) k23 ) k32 ) k24 ) k42 ) k34 ) k43 ) Γ/3, µ4sj ) √2 µdim. All the
lineshapes shown at Figures 28 are calculated by solving the full SLE
model, and not by using the various limiting approximations discussed
in the main text.
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Ggg,gg(t))
1

kd + ku
(ku ku

kd kd
)+ e-(kd+ku)t

kd + ku
( kd -ku

-kd ku
)

In the other manifolds, the time domain Green’s functions
will be calculated numerically by spectral decomposition of the
Liouville operator. In the frequency domain, all of the block
matrix inversions (eq 5) can be performed analytically in closed,
though somewhat lengthy, form.

Averaging over the bath variable is made with respect to the
equilibrium bath density

|F(exp)〉 ) 1
kd + ku

(ku

kd
)

and the summation over final states is represented by the scalar
product with the vector 〈I| ) (1, 1).

3. The Two-Dimensional Signals

We shall calculate the response of the system to three laser
pulses. The interaction is given by Hint ) -E(t)Dint, where

Dint ) [µ1(B1
† +B1)+ µ2(B2

† +B2)]

is the dipole operator. We consider impulsive experiments
performed with short laser pulses. The linear response function
is

S(t1)) i〈〈 µ|G(t1)µ
(-)|F(0) 〉〉

and the third-order response function26

S(t3, t2, t1)) i3〈〈 µ|G(t3)µ
(-)G(t2)µ

(-)G(t1)µ
(-)|F(0)〉〉

where µ(-) ≡ [Dint,...] is the dipole superoperator and 〈〈 µ|... )
〈I|TrDint... provides the mean value of dipole moment. Initially,
the system is in the ground state, and the bath is at equilibrium

|F(0) 〉〉 ) |gg 〉〉 |F(eq)〉
The dipole moment is independent of the bath variables so

that µ(-) is represented by the diagonal matrices in bath space

µ̂1 ) (µ1 0
0 µ1

) µ̂2 ) (µ2 0
0 µ2

)
In our basis set, µ(-) is represented by the following matrices

µeg,gg
(-) ) (µ̂1

µ̂2
)

µee,eg
(-) ) (-µ̂1 0

-µ̂2 0
0 -µ̂1

0 -µ̂2

)
µee,ge

(-) ) (µ̂1 0
0 µ̂1

µ̂2 0
0 µ̂2

)
We further have µge,gg

(-) ) -µeg,gg
(-) , µgg,eg

(-) ) [µeg,gg
(-) ]T, µgg,ge

(-) )
[µge,gg

(-) ]T, µeg,ee
(-) ) [µee,eg

(-) ]T, µee,ge
(-) ) [µge,ee

(-) ]T. We note that µR,� )
[µ�,R]T and µij,kl

(-) ) -µji,lk
(-) for ij(kl) * ee.

The linear response is given by

S(t1)) i〈I|µgg,egGeg,eg(t1)µeg,gg
(-) |F(eq)〉 + c.c.

In frequency space, S(ω1) ≡ ∫0
∞eiω1t1S(t1). These represent a

symmetric peak structure around ε and -ε, respectively, (S(ω)

) S/(-ω)). We focus on the ω1 ≈ ε peaks. The absorption line
shape is given by

I(ω1)) Im S(ω1))Re〈I|µgg,egGeg,eg(ω1)µeg,gg
(-) |F(eq)〉 (6)

We next turn to the third-order resonant signals generated in
the kI )-k1 + k2 + k3 and kII ) k1 - k2 + k3 phase-matching
directions. These will be displayed as ω1, ω3 frequency-frequency
plots S(ω3,t2,ω1) for various time slices t2. As in the linear
response (eq 6), each contribution to the third-order response
has a complex conjugated counterpart giving peaks at oppo-
site frequencies S(ω3,t2,ω1) ) S/(-ω3,t2,-ω1).27 We focus on
the peak structure around ω3 ) ε; the corresponding response
function for the kI signal is given by

SI(ω3, t2, ω1)) (i)3[R1(ω3, t2, ω1)+R2(ω3, t2, ω1)]

and for kII

SII(ω3, t2, ω1)) (i)3[R3(ω3, t2, ω1)+R4(ω3, t2, ω1)] (7)

The various contributions R (Liouville space pathways) are
represented by the four Feynman diagrams shown in Figure 1

R1(ω3, t2, ω1))

〈I|µgg,egGeg,eg(ω3)µeg,gg
(-) Ggg,gg(t2)µgg,ge

(-) Gge,ge(ω1)µge,gg
(-) |F(eq)〉

R2(ω3, t2, ω1))

〈I|µgg,egGeg,eg(ω3)µeg,ee
(-) Gee,ee(t2)µee,ge

(-) Gge,ge(ω1)µge,gg
(-) |F(eq)〉

R3(ω3, t2, ω1))

〈I|µgg,egGeg,eg(ω3)µeg,gg
(-) Ggg,gg(t2)µgg,eg

(-) Geg,eg(ω1)µeg,gg
(-) |F(eq)〉

R4(ω3, t2, ω1))

〈I|µgg,egGeg,eg(ω3)µeg,ee
(-) Gee,ee(t2)µee,eg

(-) Geg,eg(ω1)µeg,gg
(-) |F(eq)〉 (8)

We shall further display the following combination of signals,
which provide a clean absorptive signal28

SA(ω3, t2, ω1) ≡-Im SI(ω3, t2,-ω1)- Im SII(ω3, t2, ω1)

(9)

4. Slow Fluctuations

The absorption spectrum (Figure 2) has four peaks, centered
at two E1(2),u ) (ε1u + ε2u)/2 ( (∆εu

2 + Ju
2)1/2 eigenvalues of Hu

and two E1(2),d ) (ε1d + ε2d)/2 ( (∆εd
2 + Jd

2)1/2 eigenvalues of
Hd, in the static limiting case ku, kd , |E1(2),u - E1(2),d|

I(ω))∑
j)1

2

∑
v)u;d

Mj,v
2 ΓvFggv

(eq)

Γv
2 + (ω-Ej,v)

2
(10)

where

Mj,v ) 〈Ej,v|µ|g〉

is the transition dipole and Γd ) ku and Γu ) kv are the line
broadening parameters.

The 2D SA line shape at short t2, displayed in Figure 3, top
left panel, shows primarily four diagonal peaks and four selected
cross-peaks. Three consecutive interactions with laser pulses
(applications of µ(-)) for times t2 , kd,u

-1 induce cross-peaks
between peaks belonging to the same bath state but different
excitons.
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SA(ω3, t2 , kd,u
-1, ω1))

Re ∑
k)1

2

∑
j)1

2

∑
v)u;d

Mkv
2 Mjv

2 Fggv
(eq) 1

Γv - i(ω3 -Ej,v)
×

[ 2Γv

Γv
2 + (ω1 -Ek;v)

2
+ e-Γv,kj

e t2-i(Ej,v-Ek;v)t2( 1
Γv - i(ω1 -Ej,v)

+

1
Γv + i(ω1 -Ek,v))] (11)

where exciton dephasing Γv,kj
e is negligible in the slow limit

(compare fast fluctuation limit, section 5).
Additional cross-peaks induced by jumps among the u and d

peaks (top left panel) appear for t2 . kd,u
-1. The dynamics is quite

rich on these time scales since the phase relation between u
and d eigenstates 〈Ej,u|Ei,d〉 is important for ee evolution and
may also induce fluctuations of the peaks magnitudes at the
2π(Ej,v - Ei;v)-1 period. We distinguish between two cases. If
the u and d eigenstates are degenerate |Ej,u〉 ) |Ej,d〉 , no exciton
transport is allowed. This is shown in the top panels of Figure
3, where the delay time t2 increases from the left to the right
panel. The peaks gradually develop at all possible combinations
of frequencies. However, peaks belonging to the same exciton
are stronger even for very long times. When |Ej,u〉 * |Ej,d〉 ,
exciton transfer is allowed, and asymptotically, we have

GEj jE
j

kv,Ej lE
j

mw(t2f∞)) 1
2

δjkδlm

kv

ku + kd

The absorptive line shape can then be factorized as follows

SA(ω3, t2f∞, ω1)) 3I(ω1)I(ω3) (12)

This is similar to the asymptotic line shape of the monomer
(eq 21).29,30 Equation 12 holds for an arbitrary time scale and
for any type of stochastic modulation (once transport is allowed).
Equation 12 can be generalized beyond the stochastic model31

to include finite temperature effects, where the emission line
shape is red shifted with respect to the absorption (the Stokes
shift).

Line shapes of these simple spectra are qualitatively remi-
niscent of 2D NMR spectra33 measured on systems obeying
similar dynamical rules. The general relation between 2D NMR
methods and their optical counterpart has been discussed in ref

32. 2D NMR works on different time scales (with differences
in models and approximations used) have no phase matching
but have better control of the pulses. These differences and the
rather weak fields applied in most optical experiments make
the nonlinear response functions,26 such as those used here,
particularly adequate for interpreting 2D optical and infrared
experiments.

For a more detailed analysis of these line shapes, we display
the four contributions Ri to SA in Figure 4. At t2 ) 0, R1 ) R2

(Figure 4, top panels) since these diagrams only differ by the
second interval evolution in the ee or gg manifolds. The ket
and the bra action of the dipole moment connects different
exciton states in t1 and t3 intervals, resulting in their cross-peaks.
A similar peak pattern is seen in R3, but this nonrephasing
contribution is elongated in the antidiagonal direction compared
to the diagonal elongation of the rephasing contribution. R4 only
shows diagonal peaks because the eg state in the third interval
is caused by interaction with the first pulse and represents the
same exciton state.

Figure 5 repeats these calculations in the long delay time
regime kut2, kdt2 . 1. The ground-state t2 evolution for R1 and
R3 mixes the u and d bath states, and their combination shows
a complete peak structure. When the rephasing R1 and non-
rephasing R3 contributions, characterized by the ground-state
(gg) evolution during t2, are summed over, the line shape may
be recast as the product of the two line shapes, ∼2I(ω1)I(ω3).

The ee evolution in the R2 and R4 diagrams is more complex.
During t2, coherences decay, creating a statistical mixture of
diagonal Ejv states. Since our parametrization does not allow
exciton transport, we see decoherence. All contributions have
different acting dipole moments at the first and second pulse
decay. The only resulting cross-peaks are connected with the u
and d jumps. This explains why the peaks are stronger in the
SA line shape. The features shown in Figure 5 are not universal.
When exciton transport is allowed, the other cross-peaks appear,
approaching eq 12.

The complete peak structure described above is simplified
when the dipole moment does not couple to all of the |Ej,v〉
eigenstates or when some levels are accidently degenerate. The
2D line shapes can distinguish between various dynamical
models with a similar absorption (1D) spectrum. To illustrate
this, we compare the dimer with a two-state bath with the four-
state jump bath model (FSJ) modulating a single chromophore,

Figure 3. The SA signal (eq 9) for a dimer with a two-state bath (top panels) and a monomer with a four-state bath (bottom panels) corresponding
to Figure 2. For delay times Γt2 ) 0, 0.1, 0.2, 1.0, 100 increasing from left to right. Other parameters are the same as those in Figure 2.
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given in Appendix A. Comparison of eq 10 with eq 20 or the
line shapes displayed in Figure 2 shows that the two models
may have identical absorption line shapes in the static limit with
the proper choice of the resonance frequencies and line width
(as defined by eqs 10 and 20).

2D line shapes of the two models are markedly different at
short times, as shown in Figure 3. The slow fluctuation FSJ
limit (bottom left) SA line shape at short t2 jumps only reveals
the diagonal peaks because no change of bath state can occur,
in contrast to the dimer. With increasing delay time, the
complete peak structure is developed; in contrast to the dimer,
peak oscillations due to coherence dynamics (eq 11)34 cannot
be observed. Asymptotically, these two line shape agree
(compare eqs 12, 21, and 22), except when exciton transfer is
not allowed.

5. Fast and Intermediate Fluctuations Time Scale

In the motional narrowing ku, kd . |Eju - Ekd| limit,
fluctuations are averaged on the time scale of optical experi-
ments. The averaged Hamiltonian

Hj ) ε1B1
†B1 + ε2B2

†B2 + Jj(B2
†B1 +B1

†B2) (13)

where

Jj)
kuJu + kdJd

ku + kd
εj )

kuεju + kdεjd

ku + kd

may be used.
The dynamics is however different from the isolated dimer,

which follows the Hamiltonian eq 13 since the fluctuations lead
to an additional population relaxation rate (the exciton transfer)
ΓT ∼ 〈 |〈Ej1|(H - Hj )〉 |Ej2〉 |2〉/k and dephasing rates Γe ∼ ΓT +
∑i)1

2 〈Ej i|〈(H - Hj )2〉 |Ej i〉/k and dephasing between ground and
excited states Γi ∼ ΓT/2 + 〈Ej i|〈(H - Hj )2〉 |Ej i〉/k + 〈g|〈(H -

Figure 4. The R1(ω3,t2,-ω1), R2(ω3,t2,-ω1), R3(ω3,t2,ω1), and
R4(ω3,t2,ω1) (eq 8, real parts) contributions to the SA signal (from left
to right, then top to bottom) for the dimer with a two-state bath for
short delay times, t2 ) 0, corresponding to the most left top panel of
Figure 2. Other parameters are the same as those in Figure 2.

Figure 5. The same as in Figure 4 but for long delay times Γt2 )
100, corresponding to the most right top panel of Figure 3.

Figure 6. (A) Top: The SA (eq 9) signal for the dimer with a two-
state bath (eqs 3 and 4) for intermediate (top) and fast (bottom)
fluctuations at short t2 ) 0 (left panels) and long t2 ) 2000E∆

-1 (right
panels) delay times. Measured in the peak splitting E∆ ≡ [(ε1u + ε1d)/
4] - [(ε2u + ε2d)/4]. Parameters: Top: ε1u ) 1.5E∆, ε1d ) 0.5E∆, ε2u )
-1.5E∆, ε2d ) 0.5E∆, Ju ) -Jd ) 0.68E∆, ku ) kd ) k ) 0.5E∆, µ1 )
µ2 ) 1.189 µ. Bottom: ε1u ) 6.5E∆, ε1d ) -0.45E∆, ε2u ) -6.5E∆, ε2d

) 4.5E∆, Ju ) -Jd ) 0.75E∆, ku ) kd ) k ) 100E∆, µ1 ) µ2 ) µ. (B)
Absorption line shapes of the model of (A). The dashed line corresponds
to fast limit (bottom of A), and the solid line corresponds to the
intermediate limit (top of A).
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Hj )2〉 |g〉/k. The averaged density matrix is approximately de-
scribed by the Redfield master equations in the secular ap-
proximation in the high-temperature limit

dFEj1Ej1

dt
)-ΓTFEj1Ej1

+ΓTFEj2Ej2

dFEj2Ej2

dt
)-ΓTFEj2Ej2

+ΓTFEj1Ej1

dFEj1Ej2

dt
) [-i(Ej1 -Ej2)-Γe]FEj1Ej2

dFEj jg

dt
) [-iEj j -Γj]FEj jg

The dynamics may be described in the reduced system
Liouville space. Signatures of the fluctuations are present in
the relaxation and dephasing rates, which may not be described
in the Hilbert space. The corresponding Green’s functions in
system Liouville space are

GEj1Ej1,Ej1Ej1
(t))GEj2Ej2,Ej2Ej2

(t)) 1+ e-2ΓTt

2

GEj1Ej1,Ej2Ej2
(t))GEj2Ej2,Ej1Ej1

(t)) 1- e-2ΓTt

2

GEj1Ej2,Ej1Ej2
(t))GEj2Ej1,Ej2Ej1

*(t)) e[-i(Ej1-Ej2)-Γe]t

GEj jg,Ej jg
(t))GgEj j,gEj j

*(t)) e[-iEj j-Γj]t

Note that the SLE provides an exact representation of stochastic
Markovian fluctuations of Hamiltonian dynamics. Both the
Liouville equation and the averaging over bath paths preserve
the positive semidefiniteness of the density matrix; so does the
SLE. The positivity issue of master equations,35 which is a major
problem for the Redfield equations when the secular approxima-
tion is not invoked, is avoided.

The absorption spectrum has two peaks centered at the
eigenvalues Ej1 and Ej2 of the averaged dimer Hamiltonian

I(ω))∑
i)1

2 Mi
2Γi

(Γi)
2 + (ω-Ej i)

2

If Γ1 + Γ2 > Ej1 - Ej2, these can eventually overlap and merge
into a single peak. The 2D line shape (Figure 6, bottom line)
has two cross-peaks induced by the annihilation of one excitation
by the second pulse and the creation of different excitation by
the third pulse also for short t2.

SA(ω3, t2, ω1))

∑
i)1

2

∑
j)1

2

2Mi
2Mj

2
Γi

(Γi)
2 + (ω1 -Ej i)

2

Γj

(Γj)
2 + (ω3 -Ej j)

2
+

Re ∑
i,j,k,l)1

2 MiMjMkMlGEj lE
j

k,E
j

jE
j

i
(t2)

Γl - i(ω3 -Ej l)
×

[ 1

Γj - i(ω1 -Ej j)
+ 1

Γi + i(ω1 -Ej i
]

This is different from two-state jump model line shapes in
the slow modulation limit.20 The cross-peaks have intensities
comparable with the diagonal peaks at long times.

The limiting cases of slow or fast fluctuations can be treated
by a simpler methods; the stochastic approach is however
essential for the intermediate regime.

Figure 6 compares the intermediate (top) and fast (bottom)
fluctuation limit. The separated peaks of the static case overlap
and merge into a single peak. In the intermediate regime,
however, the memory of the two-bath states can still be tracked
by the diagonal elongation of peaks at short times. In the fast
limit, the peaks become narrower, and all signatures of memory
are erased. Panel B shows the corresponding absorption line
shapes.

At longer delay times (right panels), the decoherence and
exciton transport erase all memory, and line shapes approach
eq 12. The t2 dependence follows from the ee t2 evolution of
R2 and R4, while the R1 and R3 contributions give half of the
product (eq 21) (not shown).

The intermediate time scale shows additional delicate effects
caused by altering the eigenvectors (rather then merely eigen-
values) of the Hamiltonian. These will be discussed in the next
section using a Gaussian model for spectral diffusion.

We next examine more closely the R3 and R4 contributions
(Figure 7). At short times GEj lEjk,Ej jEj i ) δljδik, and R3 follows the
four peak structure identical to R1, while R4 is diagonal, for the

Figure 7. The R3 (top panel) and R4 (bottom panel) signal (eq 8, real
parts) for the dimer in the fast modulation limit for short t2 ) 0 (left
panels) and long t2 ) 2000E∆

-1 (right panels) delay times. Other
parameters are as those in Figure 6A, bottom.

Figure 8. The SA line shape of a dimer with spectral diffusion for
short Λt2 ) 0 (left panel) and long Λt2 ) 2 (right panel) times. Other
parameters: µ1 ) µ2 ) 1, Ju ) Jd ) J, f(Q) ) Q, σ1 ) σ2 ) 0.3J, Λ1

) Λ2 ) Λ ) 0.1J, ε1d ) ε1u ) ε1d ) ε1u ) 0.0.
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same reason as that mentioned in Figure 4. At long times, t2

coherences are dumped. Asymptotically, GEj lEjk,Ej jEj i ) 1/2δlkδij,
and the line shape (eq 12) is restored. This argument holds as
long as exciton transfer is allowed, δJ * 0; otherwise, the picture
of Figure 5 is repeated. and the cross-peaks never show up in
R4.

6. Spectral Diffusion

We now turn to a different model representing the coupling
to uncorrelated continuous diagonal frequency fluctuations. This
situation, very common in molecular aggregates, is described
by adding the following coupling term

HSQ ) f1(Q1(t))B1
†B1 + f2(Q2(t))B2

†B2

to the Hamiltonian, together with a Fokker-Planck master
equation for the density evolution of the two collective
coordinates Q1 and Q2

(∂F(Q1, Q2)

∂t )
Q
) ∑

w)1

2

Λw
∂

∂Qw
(Qw + σw

2 ∂

∂Qw
)F(Q1, Q2)) L QF

(14)

This model assumes that bath motions primarily alter (and in
simple way) the local site frequencies. The resulting delocalized
eigenenergy changes are secondary and more complicated.
Standard simulations of aggregates rely on diagonalization of
the averaged Hamiltonian, allowing an arbitrary time scale for
Gaussian diagonal fluctuations (diagonal in the eigenbasis) but
only fast (if any) fluctuations for the off-diagonal. This make
the problem numerically tractable, however, it may not always
hold. Our aim here is to treat arbitrary time scales for
off-diagonal (in eigenbasis) fluctuations by using the SLE and
to show significant differences from the more approximate
treatments. This may lead to the development of better ap-
proximations that retain the reduced bath treatment (necessary
for large aggregates) but properly includes effects of the bath
time scale. For smaller aggregates, the SLE can be directly used
to calculate 2D spectra.

The SLE assumes the form

dF
dt

)-i[H+HSQ, F]+ (dF
dt )M

+ (dF
dt )Q

The eigenvectors of the Fokker-Planck operator eq 14 are
direct products of two single Fokker-Planck variables Q1, Q2

φR� ) φR
1
φ�

2 (15)

The eigenvectors are given by

φR
w )

exp[-(Qw/σw)2]

2R√2πR ! σw

HR( Qw

σw√2)
where HR are Hermite polynomials

HR(x)) (-1)Rex2 dR

dxR
e-x2

where {φR�}, R ) 0, 1, 2,... and � ) 0, 1, 2,..., correspond to
eigenvalues -RΛ1 - �Λ2 and form the suitable basis for a
matrix representation of bath densities.36 The matrix elements
of L Q are

[L Q]R�,γη ) (-RΛ1 - �Λ2)δR,γδ�,η (16)

The Q variable is represented by the following matrix

[Q1]R�,γη ) (Rσ1√2δR-1,γ +
σ1

√2
δR,γ-1)δ�η

[Q2]R�,γη ) (�σ2√2δ�-1,η +
σ2

√2
δ�,η-1)δRγ

(17)

If HSQ is a polynomial in Q1 and Q2, it can be represented
by the block-tridiagonal matrix, and the algorithm of refs 10,
20, and 36 may be employed to obtain the Green’s function by
inverting the block-tridiagonal matrices (eq 5). For instance,
the linear coupling c1Q1 + c2Q2 + c12Q1Q2 becomes tridiagonal
in blocks {φ00}, {φ10, φ11, φ01}, {φ20, φ21, φ22, φ12, φ02},... How-
ever, the SLE approach is not limited to any particular form of
the coupling; f can be an arbitrary function.

The zero eigenvector FQ;(eq) ) φ00 (or in the matrix notation
[Feq]R� ) δR0δ�0) gives the equilibrium distribution. Summation
over the bath ∫dQ1dQ2 corresponds to zero left eigenvector in
the eigenbasis {φR}; thus, 〈IQ|R� ) δR0δ�0. The initial state is a
direct product of equilibrium densities of all of the bath variables
|F(eq)〉 |FQ;(eq)〉 and, similarly, the final summation.

The various Liouville space exciton manifold blocks of the
Liouville superoperator L SQ ) -i[HSQ,...] are

Lgg,gg
SQ ) 0

Leg,eg
SQ ) (-if1(Q1) 0 0 0

0 -if1(Q1) 0 0
0 0 -if2(Q2) 0
0 0 0 -if2(Q2)

)
Lee′,ee′

SQ )

(0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 -i(f1 - f2) 0 0 0 0 0
0 0 0 -i(f1 - f2) 0 0 0 0
0 0 0 0 i(f1 - f2) 0 0 0
0 0 0 0 0 i(f1 - f2) 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

)
Here f1 ≡ f1(Q1) and f2 ≡ f2(Q2). The response can still be
calculated using (eq 8) but now in the higher space, which
combines Q with the u, d space.

Several methods have been employed to describe the signa-
tures of spectral diffusion in the nonlinear response of ag-
gregates. Standard simulations use the Redfield equations for
the evolution of the exciton density matrix during t2, and a
Gaussian peak of an arbitrary relaxation time scale for peaks
can be added.1 Static disorder in site frequencies can be easily
incorporated. Slow fluctuations only account for peak shape,
interlevel coupling fluctuation are fast, and dynamical effects
on dipole moments are neglected.

The SLE framework is more general. Consider a symmetric
dimer Ju ) Jd, ε1 ) ε2, µ1 ) µ2, where only the symmetric
eigenvector |E1〉 ) |1〉 + |2〉 is radiatively coupled to the ground
state. For fast spectral diffusion, the other peak |E2〉 ) |1〉 - |2〉
is dark. However, when the slow coordinate nonequilibrium
eigenstates |E2(Q1, Q2)〉 couple to the dipole moment
〈E2(Q1, Q2)|µ|g〉 * 0, the other peak may be observed (Figure
8, left panel). The SLE can consistently describe the fluctuation
time scales where the additional diagonal peak vanishes (Figure
8, right panel). This is not properly described by simulations at
the Redfield level, which do not account for the necessary
correlations between Liouville space and bath coordinates during
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the transport. Additional static disorder can induce some
oscillator strength to the dark state but cannot describe its
evolution.

At zero delay time, the magnitude of the (-1,-1) peak is
proportional to the probability p̃ that bath coordinates shift the
site energies ε so that the dipole moment 〈E2(Q1, Q2)|µ|g〉 is
substantial. Such configurations are rather rare and far from
equilibrium; therefore, they disappear at relaxation time scale
Λ-1. For t2 . Λ-1, the (-1,-1) peak can only be induced by
two independent hits of the “p̃” area; therefore, its magnitude
is quadratically proportional to p̃, in agreement with asymptotic
formula eq 12.

These effects are illustrated in Figure 9, which depicts the
magnitudes (normalized with respect to t2 ) 0) of all peaks in
Figure 8 as they vary with the delay time t2. We see significant
decay of the (-1,-1) peak at the Λ-1 time scale, as discussed.
The (1,1) diagonal and the cross-peak (1,-1) (the other cross-
peak (-1,1) has the same magnitude) change less significantly
because the cross-peak requires an instantaneous dipole moment
for the dark state only in the t1 (peak (1,-1)) or t3 intervals
(peak (-1,1)). Its magnitude thus remains linear in p (for small
p) for any delay times. In addition, we see oscillation of the
peaks caused by the coherent dynamics, as predicted by the
Redfield level of theory34,37 and observed experimentally.38 Such
oscillations require the interplay of both exciton states. The
effect is thus most pronounced for (-1,-1) and the cross-peak
and not for the (1,1) peak.

7. Conclusions

It is straightforward to extend the present model to other types
of excitonic systems as long as the fluctuations are Markovian.
In fact, the code developed for the present calculations can treat
any number of ground, excited, and doubly excited states and
multistate or Gaussian-Markovian fluctuations (coordinate
linearly or quadratically coupled to the Q coordinate). Since
the computational time grows exponentially with the number
of stochastic coordinates, applications to extended excitonic
systems will require the identification of a few relevant
coordinates.

We showed that the SLE approach is an essential tool for
describing the intermediate time scale of fluctations and may

thus be used to test various approximate methods39,40 developed
in order to avoid the numerically expensive explicit representa-
tion of the stochastic coordinate.

The SLE assume that the stochastic process is independent
of the state of the system. This is justified at high temperatures.
Finite-temperature effects such as the Stokes shift or nonuniform
exciton distributions are missed. The Redfield equations, in
contrast, contain finite-temperature effects. The high-temperature
p∆ε < kT limit usually holds for the infrared19,21 but not in the
optical domain at room temperature. Finite-temperature correc-
tions for linear coupling include system-dependent bath
dynamics.16,41-44 Provided that the temperature is not too low,
the equations of motion have the same complexity as the SLE
and may be readily implemented, if necessary. This level was
widely used to describe electron-transfer processes (adiabatic
and nonadiabatic). At very low temperatures, when the quan-
tization of bath degrees of freedom is necessary, some additional
oscillator modes with Matsubara frequencies have to be added,
increasing computation costs.16
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Appendix A. The Four-State Jump (FSJ) Model

We consider a single two-level chromophore described by the
Hamiltonian

H) ε(t)B†B (18)
where εs assumes four possible values, s ) 1, 2, 3, 4. The model
has a four-peak linear spectrum indistinguishable from the TSJ
dimer (Figure 2). This model has 12 rates ksr for the transitions
between r and s states. The time evolution is described by the
master equation

dFs

dt
)-∑

r*s

krsFs +∑
r*s

ksrFr (19)

Equation 19 further describes the evolution in the gg and ee
manifolds because no coherence is connected with the ground
(excited)-state evolution.

The SLE for the coherence evolution is

dFegs

dt
)-iεsFegs -∑

r*s

krsFegs +∑
r*s

ksrFegr

The rates were chosen to yield the same linear spectrum as
the TSJ dimer in the slow limit

I(ω)) µ2∑
V)1

4 ΓVFggV
(eq)

[ΓV
2 + (ω1 - εV)

2]
(20)

with ΓV ) ∑r*VkrV.
Consider the 2D line shape in the slow jumps limit krs/(εr -

εs) , 1. At short times, krst2 , 1 line shapes show only diagonal
peaks at fundamental frequencies. Cross-peaks are absent
(Figure 3 bottom left panel)

SA(ω3, t2 ) 0, ω1)) µ4∑
V)1

4 ΓV
2FggV

(eq)

[ΓV
2 + (ω1 - εV)

2][ΓV
2 + (ω3 - εV)

2]

Since there is no coherence during t2, the SA line shape will
only change at the k-1 time scale, where the cross-peaks appear.
Asymptotically, the line shape approaches the factorized form

Figure 9. The relative intensities of peaks (against t2 value) at the
I0(t2) ) SA(ω3, t2, ω1)/SA(ω3, 0, ω1) line shape of a dimer with spectral
diffusion for varying delay times t2 at the diagonal peak ω1 ) ω3 ) J
(solid line), the cross-peak at ω1 ) -ω3 ) J (dashed line), and the
transitory diagonal ω1 ) ω3 ) -J (dotted line). Other parameters are
as those in Figure 8.
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SA(ω3, t2f∞, ω1)) 4I(ω1)I(ω3) (21)

This limit holds for all one-exciton stochastic line shapes with
finite memory; see ref 30 for some exceptions when the memory
persists for arbitrary time scales. A similar relation can be
generalized for the first manifold contribution of any excitonic
system, which allows the excitonic transfer toward the thermo-
dynamic high-temperature uniform excitonic distribution

SA(ω3, t2f∞, ω1)) 2
n+ 1

n
I(ω1)I(ω3) (22)

where n is the number of excitons.31
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