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A simulation study demonstrates how the nonlinear optical re-
sponse of the Fenna–Matthews–Olson photosynthetic light-har-
vesting complex may be explored by a sequence of laser pulses
specifically designed to probe the correlated dynamics of double
excitations. Cross peaks in the 2D correlation plots of the spectra
reveal projections of the double-exciton wavefunctions onto a
basis of direct products of single excitons. An alternative physical
interpretation of these signals in terms of quasiparticle scattering
is developed.

exciton transport � femtosecond spectroscopy � photosynthesis �
light harvesting

The photosynthetic apparatus depends on light-harvesting
complexes, which absorb photons and funnel their energy to

reaction centers where it is converted and stored as chemical
energy (1, 2). The Fenna–Matthews–Olson (FMO) complex is
the prototype photosynthetic antenna (3, 4). The complex (Fig.
1) is a trimer of identical units, each containing seven chlorophyll
a chromophores embedded in the protein matrix. The structure
and properties of the complex have been studied extensively over
the past decade (3–7).

Electronically excited FMO complexes prepared by the absorp-
tion of a single photon are well understood, and their properties are
described by the Frenkel exciton model (2, 8, 9). The elaborate
exciton-relaxation pattern can be monitored by using multidimen-
sional coherent optical spectroscopy (10–12): peak redistribution
on the picosecond time scale reflects excited-state population
relaxation (7), whereas femtosecond oscillations indicate electronic
coherences (13). Excited-state lifetimes, intraband exciton-
relaxation pathways (7, 14), and long-lived electronic quantum
coherences (13) have been reported, and the Hamiltonian param-
eters were refined to simulate these measurements.

In the native environment, under the intense flux of sunlight,
photosynthetic complexes have multiple electronic excitations,
the interactions of which cause dissipation of the excess energy
(1, 2, 9, 15, 16). Biological complexes have developed various
protective mechanisms for excess energy discharge to avoid
overheating and damage (17, 18). Understanding the coherent
many-exciton dynamics, which precedes the incoherent relax-
ation, is necessary for revealing the initial steps in excitation
dynamics. Information about the two-exciton manifold is also
important for the applications of the coherent control of excited-
state dynamics of photosynthetic complexes (19). Double-
exciton resonances are much more complicated and less studied
than the single excitations. Exciton annihilation, which depends
on incoherent multiexciton dynamical properties, often compli-
cates the analysis of nonlinear optical measurements.

In this article we present simulations of an impulsive third-
order 2D coherent spectroscopic (2DCS) technique aimed at
directly probing double-exciton features in an FMO complex. In
most commonly used four-wave-mixing techniques, such as
pump-probe, three-pulse peak shift and photon echo, double-
exciton information is convoluted with single-exciton reso-
nances, which complicates the analysis (15, 16, 20–23). The

present technique (20, 24), analogous to double-quantum co-
herence techniques in multidimensional NMR (25), has shown
high sensitivity to coupling patterns and high spectral resolution
in vibrational excitons (11, 26–28).

When the excitons form a set of independent quasiparticles,
the double-exciton wavefunctions are given by simple products of
pairs of single excitons. Because of exciton interactions, the
actual wavefunctions should be represented as superpositions of
such products. We show that the trails of peaks in the 2DCS
spectra reflect the form of the double-exciton wavefunction and
are sensitive to its delocalized projections into the space of
single-exciton products.

In the following sections we initially describe the properties of
single- and double-exciton states in the FMO complex. The
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Fig. 1. FFF. (Left) Monomer of the FMO complex and its absorption. The
eigenstate level scheme is shown in Inset: g is the ground state, whereas e and
f are the single- and the double-exciton manifolds, respectively. Absorption
was simulated as described in ref. 11. Narrow peaks indicate state positions
and oscillator strengths. (Right) The four-wave-mixing experiment: three
pulses (k1, k2, and k3) interact with the system and generate nonlinear polar-
ization, which is probed by using the fourth (signal) pulse (k4). For ultrashort
nonoverlapping pulses, the delay times between pulses t1, t2, and t3 coincide
with the delay times between interactions. The two Feynman diagrams that
contribute to the signal in the phase-matching direction (kIII' k4 � k1 � k2 �
k3) in the RWA are shown at the bottom.
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2DCS pulse sequence designed for probing double-exciton res-
onances and dynamics in chromophore aggregates is introduced
next. We then present the simulated signals for the FMO
complex. Finally, these signals are analyzed by using an alter-
native (quasiparticle-scattering) description of double-exciton
dynamics.

Single- and Double-Exciton Manifolds of the FMO Complex
We shall describe the electronic excitations of the FMO complex
by using the Frenkel exciton Hamiltonian representing N two-
level chromophores:

ĤS � �
m

hmB̂m
† B̂m � �

mn

m�n

Jmn B̂m
† B̂n. [1]

Here, hm is the excitation energy of the mth chromophore, Jmn

is the excitonic coupling between chromophores m and n, and
B̂m

† (B̂m) is the creation (annihilation) operator for an exciton
on the mth chromophore. These operators satisfy the Pauli
commutation relations [B̂m, B̂n

†] � �mn(1 � 2B̂n
†B̂n). The dipole

interaction between the complex and the optical electric field
E is given by

ĤSF�t� � � P̂�E(t), [2]

where P̂ � �m�m(B̂m
† � B̂m), �m is the transition dipole of

chromophore m.
This Hamiltonian is commonly used for describing the optical

responses of coupled chromophores in aggregates (1, 2, 9, 22,
29). The eigenstates of this Hamiltonian form independent
manifolds that can be classified by the number of excitations.
Each manifold is obtained by diagonalizing a given block of the
Hamiltonian. Third-order 2DCS signals only depend on the
single- and double-exciton states. These states will be the focus
of our study.

We denote the state where chromophore m is excited by
 m�' B̂m

†  0�. The N single-exciton eigenstates  e� are related to
 m� by the transformation matrix �me:

 e� � �
m

�me m� [3]

The eigenstate creation operator is similarly given by ê† � �m�meB̂m
†

and its energy is �e � �mnJnm�ne�me (we use Jmm ' hm).
The double-exciton states  f� will be described by using a

basis set of direct product of real-space excitations (PRSE)
 mn� with m � n. This set has M � N(N � 1)/2 elements. We
then have

 f� � �
v

	v, f mn�, [4]

where 	' mn with m � n. Thus, 	 is a (M 
 M) transformation
matrix. The eigen energies are �f � �		�J		�

�2� 		,f		�,f, where J		�
�2� '

Jmn,m�n�
�2� � �mm�Jnn���nn�Jmm� � �mn�Jnm� � �m�nJmn�. Note that for our

model of hard core bosons two excitations cannot reside on the
same chromophore, so the states  mm� � 2�1/2B̂m

†2 0� should be
excluded. To simplify the notation we include it in the basis set but
require that 	mm,f' 0. The 	 matrix is obtained by diagonalizing
the double-exciton block of the Hamiltonian.

Double-exciton states may be alternatively expressed in the
basis of products of single-exciton eigenstate space excitations
(PESE). To that end, we introduce the boson operators [ê,ê�†] �
�ee�. The double-exciton basis is  ee�� � 
ee�ê†ê�† 0�, where 
ee� �
1 � �ee�(2�1/2 � 1) (we note that for bosons ê† e� � �2 ee�). We
further define bosonic single-exciton operators in real-space

b̂m
† � �e�meê†: [b̂n,b̂m

† ] � �mn. For the double-exciton space using
 mn� � 
mnb̂m

† b̂n
† 0�, we get

 mn� � �
e,e�

e�e�

Umn,ee� ee��, [5]

where

Umn,ee� �

ee�


mn
��me�ne� � �me��ne� [6]

is the unitary M 
 M transformation matrix (m � n and e � e�).
The double-exciton states may then be expanded in the PESE
basis as

 f � � �
e,e�

�ee�, f ee��, [7]

and the wavefunctions are


ee�, f � �
m,n

m�n

	mn, fUmn,ee�. [8]

A useful measure for exciton delocalization is provided by the
participation ratio �. For a singly excited state e, it is defined as
�(e) � [�n�n,e

4 ]�1. � then varies between 1 (localized state) and
N (state delocalized over the entire aggregate). Similarly, we
define a measure of double-exciton delocalization among the
pairs of product states in PRSE space, 
R( f ) � [�mn

m�n	mn,f
4 ]�1,

and in PESE space, 
E( f ) � [�ee�
e�e�
�ee��,f

4 ]�1. These show how
many pairs of molecules (in PRSE) or single excitons (in PESE)
participate in a double-exciton state f. 
 varies between 1 and
N 
 (N � 1)/2 (‘‘�’’ for PESE and ‘‘�’’ for PRSE).

The FMO complex has n � 7 single-exciton states and M � 21
double-exciton states. The Hamiltonian parameters were ac-
quired from previous simulations (7, 8, 30). In a recent study we
examined single-exciton properties and their coherent versus
incoherent dynamics (30). Here we focus on double-exciton
coherent dynamics and show how nonlinear signals can be
designed to resolve double-exciton wavefunction, localization,
and scattering. The single-exciton state energies are shown in
Fig. 2. The participation ratios vary between 1 and 3, indicating
that the single excitons are essentially localized. The entire set of
double-exciton states is given in Fig. 2 as well. Their participation
ratios indicate that fewer double-exciton states are delocalized in
the PESE than in the PRSE basis, which implies that the PESE
basis is better suited for describing double excitons.

Coherent Double-Quantum Spectroscopy of Excitons
The proposed 2DCS technique is performed with four tempo-
rally well-separated laser pulses (Fig. 1). The optical electric field
is given by

E�t� � �
j�1

4

Ej�t � �j�exp[ikjr�i�j(t��j)]�c.c. [9]

The first three pulses generate a nonlinear polarization in the
complex, which is heterodyne-detected with the fourth pulse. We
shall focus on the signal generated along the phase-matching
direction kIII' �k1 � k2 � k3 (see ref. 31 for this notation). The
signal recorded versus the three delay times between pulses t1, t2,
and t3 will be denoted S(t3, t2, t1). As is common in resonant
spectroscopies, we shall invoke the rotating wave approximation
(RWA) and only retain the dominant contributions to S, where all
interactions are resonant. For our exciton model, there are only two
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contributions to the kIII signal. These are represented by the
Feynman diagrams shown in Fig. 1. The two diagrams represent
the same evolution during the first two time intervals: during t1 the
density matrix oscillates with frequency �eg � �e � �g, and during
t2 the density matrix oscillates with frequency �fg � �f � �g. During
t3 the diagrams are different: the oscillation frequency is either �fe�

(Fig. 1 Right, diagram B) or �e�g (Fig. 1 Right, diagram A). S(t3, t2,
t1) constitutes a 3D signal. It can be represented conveniently in the
frequency domain by a triple Fourier transform with respect to the
delay times:

S��3, �2, �1� � ���
0

�

dt3dt2dt1ei�3t3�i�2t2�i�1t1
 S�t3, t2, t1�.

[10]

This signal is given by (32):

S��3, �2, �1� � �
ee�f

E2��fe � �2�E1��eg� � �1�

� ��e�f�ge��fg�eg�Gfe���3�Gfg��2�Geg��1��

� E4
*��fe� � �4�E3

*��e�g � �3�

� �ge��e�f�fg�eg �Ge�g��3�Gfg��2�Geg��1��

� E4
*��e�g � �4�E3

*��fe� � �3��. [11]

The two terms correspond to Fig. 1 Right, diagrams B and A,
respectively. Here Gab(�) � (� � �ab � i�ab)�1 is the frequency
domain Green’s function for density matrix coherence  a��b ,
and �ab is the dephasing rate. In the time domain we have
Gab(t) � �(t)exp(�i�abt � �abt); angular brackets denote aver-
aging over fluctuations caused by other degrees of freedom (e.g.,
phonons, solvent). �j are the carrier frequencies and Ej(�) are the
pulse envelopes centered at � � 0. Note that �4 � �1 � �2 � �3
is required by phase matching. We shall display some 2D sections
of the complete 3D signal. This can be done either in the time

or frequency domain or in a mixed representation where we
replace any of the Green’s function G(�j) by its Fourier trans-
form G(tj). We shall focus on two signals. The first is S21' S(t3;
�2,�1) displayed in (�2,�1) space for various values of t3. This
signal vanishes for t3 � 0. The second choice will be S32 '
S(�3,�2; t1). This signal will be displayed in (�3,�2) space. The
delay time t1 in S32 induces phase rotation and does not change
the peak amplitudes. Thus, we set t1 � 0.

Double-Exciton Resonances of the FMO Complex: 2D Signals
The signals (Eq. 11) were calculated by using the cumulant expan-
sion for Gaussian fluctuations as implemented in the SPECTRON
package, which incorporates correlated bath fluctuations (33–36).
Each chromophore is coupled to its own, statistically independent
bath; the fluctuation statistics of all chromophore frequencies is
identical and described by the overdamped Brownian oscillator
spectral density. By transforming the bath fluctuation parameters
to the eigenstate basis we obtain the correlated statistical properties
of fluctuations of eigenstates. All parameters are the same as those
described in ref. 30 except one: numerical averaging over static
disorder with 20 cm�1 variance (inhomogeneous linewidth) made
no noticeable difference on the signal and was eliminated. The
calculated homogeneous linewidth is approximately 70 cm�1.

S21 is displayed in Fig. 3 for several values of t3. Only
single-exciton resonances appear along �1, and double-exciton
states show up along �2. The signal vanishes for t3 � 0 and
quickly grows until t3 � 50 fs. The subsequent variation of the
signal with t3 reflects the evolution in the double-exciton man-
ifold. We present the absolute value of the signal (A) as well as
its real (R) and imaginary (I) parts. The I (absorptive) part
clearly shows oscillations of peaks with t3, whereas A helps to
identify the peaks and relate them with the exciton states. R is
shown for completeness. To reveal how each double-exciton
resonance is connected to a specific set of single-exciton states,
we present on the bottom row in Fig. 3 the same signal at which
all linewidths were reduced by a factor of 20. Each �2 selects a
given double-exciton state, and the corresponding peaks along
�1 show its projection onto the various single-exciton states, the
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Fig. 2. Analysis of exciton states. (Left) Single-exciton energies and their
participation ratios � in the FMO complex; the wavefunction,  �me 2, is shown
on the bottom by color bars (the bar color corresponds to the eigenstate
color). (Right) Double-exciton state energies and participation ratios in real-
space 
R and in the space of single-exciton eigenstate products 
E.
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resonant frequencies of which are marked by red arrows. The
peak positions along �1 agree with the single-exciton resonances.
By using the states listed in Fig. 2, we find that the spectrum is
dominated by three double-exciton states: 1, 7, and 18. Three
other states (9, 16, and 17) make a weaker contribution. The
participation ratios of these states (see Fig. 2) indicate that these
are the most delocalized states in the PESE basis.

The contributions of various single-exciton states to each
double-exciton state can be rationalized by examining the trans-
formation matrix �. 
ee�,f

2 is the probability that the system in the
double-exciton state f be found in the pair of states ee�. These
probabilities for states 1, 7, and 18 are displayed in Fig. 4 [the
probability distributions for all 21 states are shown in Supporting
Information (SI) Figs. S1 and S2]. As suggested by the partici-
pation ratios of states 1, 7, and 18 given in Fig. 2, these states are
delocalized in the PESE representation, indicating that 2D
signals are sensitive to exciton delocalization. We further note
that the single-exciton states contributing to the specific double-
exciton state directly correspond to the series of peaks along �1
for a fixed �2. Thus, the S21 signal directly reflects the double-
exciton wavefunction in the PESE space, and the peaks for each
�2 resonance reflect its projections onto the single-exciton basis.

The S32 signals are depicted in Fig. 5A. The amplitude spectrum
clearly shows a contribution from three double-exciton states. On
the �3 axis there are now two types of resonances: �fe� and �e�g. This
spectrum, therefore, carries more details than S21 (Fig. 3), which

only has �eg resonances along �1; however, interference between
the �fe� and �e�g peaks complicates the peak assignment. We also
present the same signal at which the linewidth was reduced by a
factor of 20. Each peak can now be assigned to a specific set of
eigenstates. We find that the double-exciton states 1, 9, and 18 with
the largest PESE participation ratios (Fig. 2) are dominant.

Quasiparticle-Scattering Picture of Double Excitations and the
Mean-Field Approximation
So far, our analysis was based on the properties of single- and
double-exciton wavefunctions. Single excitons carry information
on the couplings between chromophores and their interaction
with the environment. The double-exciton states reflect the
many-body properties: exciton–exciton interactions.

An alternative physical picture for excitons in aggregates is
provided by the quasiparticle approach. Rather than computing
double-exciton wavefunctions, we view the excitons as interact-
ing quasiparticles. All relevant properties can then be viewed in
terms of their scattering. The exciton-scattering matrix, rather
than two-exciton wavefunction, then plays a central role in the
analysis. The quasiparticle approach provides a highly intuitive
physical picture of exciton dynamics. Powerful approximation
schemes, stemming from the short-range nature of exciton–
exciton interactions, make the calculations much easier com-
pared with the eigenstate calculations and provide deep insights
into the nature of multiexciton dynamics.
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In the quasiparticle approach, the optical signals
are calculated by solving equations of motion for relevant
exciton variables �B̂� and �B̂B̂�. These are known as the
nonlinear exciton equations (10, 12, 33, 37–39). In the single-
exciton eigenstate representation of quasiparticle scattering,
the response function for kIII technique is (12, 39, 40):

SNEE��3, �2, �1� � � 2 �
e4e3e2e1

�e4
�e3

�e2
�e1

� Ie1
��1�Ie3

��2 � �3�

� ��e4e3e2e1
��3 � �e3

� i���e2e1
��3 � �e3

� i��

� �e4e3e2e1
��2��e2e1

��2��, [12]

where Ie(�) � i(� � �e � i�)�1 and �ee�(�) � i(� � �e � �e� �
2i�)�1 are the single-exciton and noninteracting double-exciton
Green’s functions, and � is the dephasing rate.

�(�) is the exciton-scattering matrix:

���� � �1 � V ������1V �����1 � �������1 � ���������1,

[13]

where V and � are the tetradic matrices. In real space for two-level
chromophores Vmn,kl � 2 Jml(�nk�kl � �mn�nk) and �mn,kl �
�mn�nk�kl; 1mnkl ' �mk�nl (39). This is equivalent to sum-over-
eigenstates (SOS) expression (11). The two approaches only differ
by the dephasing model.

A mean-field approximation (MFA) is often used to simplify
the exciton-scattering picture (41, 42). It assumes �B̂mB̂n� �
�B̂m��B̂n�. The MFA response is also given by Eq. 12, but the
scattering matrix is much simpler:

��MFA���� � V�1 � �� � ������1. [14]

This approximation ignores the effects of exciton statistics in
doubly excited resonances. Therefore, doubly excited-state en-

ergies are simply given by sums of single-exciton excitation
energies. Fewer peaks will survive the interference of the two
Feynman diagrams in this case (38). Exciton scattering takes
place during the intervals t2 and t3 where the particles interact.
The MFA neglects pairwise interactions of excitons but includes
the perturbation of an exciton pair by a third exciton.

The MFA S21 and S32 signals are displayed in Fig. 5B. As
expected, they contain fewer peaks compared with complete
SOS calculations (for S21, see Fig. 3). The peak positions are
different in the MFA and SOS; however, the double-exciton
resonances still appear between 24,500 and 25,000 cm�1. Thus,
the fine structure of double-exciton states of the FMO complex
in MFA is distorted, whereas the average resonance energy is
the same. The peak positions along �1 can be associated with
the single-exciton states, because the MFA does not affect the
single-exciton dynamics. The peaks along �2 are related to
combinations �e � �e�. Compared with the full calculation (Eq.
13), the MFA (Eq. 14), thus, does not miss frequency shifts
caused by exciton–exciton interactions.

By expanding Eq. 13 to first order in V we get �(�) � V[1 �
�(�)��(�)�1] � �G(�)�1. This result is similar but not identical
to the MFA. Only when the particle statistics is a weak pertur-
bation, such that ����1 �, do we recover the MFA. The two are
identical for bosons, where � � 0 and the scattering matrix is
��b�

�MFA� � V. The MFA, therefore, is an approximation in terms
of coupling strength and nonbosonic nature of excitons, whereas
the weak coupling limit still retains nonbosonic nature.

Finally, we note that a different strategy for treating exciton
scattering based on bosonization may be used, as well. With
bosonization, particle statistics is greatly simplified, and its
effects are incorporated in a modified exciton Hamiltonian.
Paulion operators can be exactly mapped into a boson repre-
sentation (43). An approximate empirical bosonization has also
been used (20, 37, 44) for calculation of multidimensional signals
in the UV region of polypeptides (44, 45).

Conclusions
The various levels of description of 2DCS signals employed here
provide insights into the excited state dynamics of photosynthetic
complexes. Weak coupling/weak scattering limits can then be
described by comparing the signals obtained by using eigenstate
expressions (11), the exciton-scattering picture (Eq. 12), the
MFA, and the weak coupling limits. Comparison of Figs. 3 and
5A shows that double-exciton dynamics in the FMO complex can
be approximately described by the MFA: the couplings and
nonbosonic nature of excitons are strong, and a full calculation
of the scattering matrix is preferred.

The localized double-exciton states in PESE affect the 2D
signal only weakly, which can be rationalized by the quasipar-
ticle-scattering picture. The localized double-exciton states  f� �
 ee�� can be isolated; by energy conservation their energy must
be �f � �e � �e�, which implies that scattering of excitons does not
occur and such states do not contribute to the nonlinear signal.
This argument does not hold in the real-space representation,
because real-space single excitons are coupled by excitonic
interactions at the single-excitation level. Accordingly, the PESE
basis better connects with the experiment rather than the
real-space basis. The double-exciton state delocalization, 
E, is
a good indicator for the strength of the double-exciton features
in the 2D spectrum: double-exciton states with 
E � 1 do not
contribute to the signal. These contributions increase with 
E.
The requirement 	mm,f ' 0 reflects Pauli statistics and, there-
fore, is responsible for exciton scattering; two excitations cannot
reside on the same molecule: the molecules are hard-core
exciton scatterers. Because single-exciton eigenstates are delo-
calized over a range of chromophores, 
ee,f � 0; thus, double
excitations of single-exciton eigenstates are possible. Their en-
ergy, however, is different than 2�e. Therefore, they are soft-core
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exciton scatterers. We note that the system–bath interaction
induces damping of density matrix coherences and have no
significance for our conclusions.

The (�2,�1) signal presented in Fig. 3 shows interesting
spectral dynamics with the delay t3. Technically, this time
dependence results from the interference of two Feynman
diagrams (see Fig. 1 and Eq. 11). After the summation over
exciton states e� and f and in the absence of dephasing, the
dynamics along t3 will show modulations of the signal peaks.
When �e�g � �fe� the modulation will be very slow; thus, the
characteristic modulation time scale �m �  �e�g � �fe� �1 deter-
mines the modulation period. Note that �e�g � �fe�, with � � �
corresponding to a harmonic system (when the entire signal
vanishes). In the paragraph above we related double-exciton

delocalization in the PESE basis with the signal amplitude. It
follows that shorter �m implies more delocalized double-exciton
states. Both �m and the delocalization length 
E depend on the
nonlinear (anharmonic) part of the Hamiltonian and are signa-
tures of exciton scattering.

The power of the signals proposed here and the quasiparticle
analysis will become even more pronounced for large complexes
such as PS1 (46), because the density of eigenstates in the energy
interval grows rapidly with aggregate size. The localized nature
of exciton scattering then becomes crucial for simulating their
nonlinear optical response.
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9. Renger T, May V, Kühn O (2001) Ultrafast excitation energy transfer dynamics in

photosynthetic pigment-protein complexes. Phys Rep 343:137–254.
10. Chernyak V, Zhang WM, Mukamel S (1998) Multidimensional femtosecond spectros-

copies of molecular aggregates and semiconductor nanostructures: The nonlinear
exciton equations. J Chem Phys 109:9587–9601.

11. Abramavicius D, Mukamel S (2005) Coherent third-order spectroscopic probes of
molecular chirality. J Chem Phys 122:134305 (1–21).

12. Abramavicius D, Mukamel S (2006) Chirality-induced signals in coherent multidimen-
sional spectroscopy of excitons. J Chem Phys 124:034113 (1–17).

13. Engel GS, et al. (2007) Evidence for wavelike energy transfer through quantum
coherence in photosynthetic systems. Nature 446:782–786.

14. Vaswani HM, Brixner T, Stenger J, Fleming GR (2005) Exciton analysis in 2D electronic
spectroscopy. J Phys Chem B 109:10542–10556.

15. Campillo AJ, et al. (1976) Picosecond exciton annihilation in photosynthetic systems.
Biophys J 16:93–97.
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