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The correlated behavior of electrons determines the structure and optical properties of molecules,
semiconductors, and other systems. Valuable information on these correlations is provided by
measuring the response to femtosecond laser pulses, which probe the very short time period during
which the excited particles remain correlated. The interpretation of four-wave-mixing techniques,
commonly used to study the energy levels and dynamics of many-electron systems, is complicated
by many competing effects and overlapping resonances. Here we propose a coherent optical
technique, specifically designed to provide a background-free probe for electronic correlations in
many-electron systems. The proposed signal pulse is generated only when the electrons are
correlated, which gives rise to an extraordinary sensitivity. The peak pattern in two-dimensional
plots, obtained by displaying the signal versus two frequencies conjugated to two pulse delays,
provides a direct visualization and specific signatures of the many-electron wave functions. © 2007
American Institute of Physics. �DOI: 10.1063/1.2820379�

Predicting the energies and wave functions of interacting
electrons lies at the heart of our understanding of all struc-
tural, optical, and transport properties of molecules and
materials.1–10 The Hartree–Fock �HF� approximation pro-
vides the simplest description of interacting fermions.1,5 At
this level of theory each electron moves in the average field
created by the others. This provides a numerically tractable,
uncorrelated-particle picture for the electrons, which ap-
proximates many systems well and provides a convenient
basis for higher-level descriptions. Electronic dynamics is
described in terms of orbitals, one electron at a time. Corre-
lated n-electron wave functions, in contrast, live in a high
�3n� dimensional space and may not be readily visualized.
Deviations from the uncorrelated picture �correlations� are
responsible for many important effects. Correlation energies
are comparable in magnitude to chemical bonding energies
and are thus crucial for predicting molecular geometries and
reaction barriers and rates with chemical accuracy. These en-
ergies can be computed for molecules by employing a broad
arsenal of computational techniques such as perturbative
corrections,10 configuration interaction,9 multideterminant
techniques,3 coupled cluster theory,2 and time dependent
density functional theory �TDDFT�.1,4,11 Correlation effects
are essential in superconductors7,8,12 and can be manipulated
in artificial semiconductor nanostructures.13–15 The fields of
quantum computing and information are based on manipu-
lating correlations between spatially separated systems, this
is known as entanglement.16

In this article we propose a nonlinear optical signal that
provides a unique probe for electron correlations. The tech-
nique uses a sequence of three optical pulses with wave vec-
tors k1, k2, and k3, and detects the four wave mixing signal
generated in the direction kS=k1+k2−k3 by mixing it with a
fourth pulse �heterodyne detection�.17 We show that this
correlation-induced signal, which depends parametrically on
the consequent delays t1, t2, t3 between pulses, vanishes for
uncorrelated systems, providing a unique indicator of elec-
tron correlations. This technique opens up new avenues for
probing correlation effects by coherent ultrafast spectros-
copy.

Starting with the HF ground-state �g� of the system, each
interaction with the laser fields can only move a single elec-
tron from an occupied to an unoccupied orbital. The first
interaction generates a manifold �e� of single electron-hole
�e-h� pair states. A second interaction can either bring the
system back to the ground state or create a second e-h pair.
We shall denote the manifold of doubly excited states as f
�Fig. 1�. We can go on to generate manifolds of higher levels.
However, this will not be necessary for the present tech-
nique. The quantum pathways �i� and �ii� contributing to this
signal can be represented by the Feynman diagrams17 shown
in Fig. 1. Each diagram shows the sequence of interactions
of the system with the various fields and the state of the
electron density matrix during each delay period. We shall
display the signal as SCI��3 ,�2 , t1�, where �3 and �2 are
frequency variables conjugate to the delays t3 and t2 �Fig. 1�
by a Fourier transforma�Electronic mail: smukamel@uci.edu.
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SCI��3,�2,t1� = �
0

� �
0

�

dt2dt3SCI�t3,t2,t1�

�exp�i�2t2 + i�3t3� ,

with t1 fixed. This yields an expression for the exact response
function

SCI��3,�2,t1 = 0� = �
e,e�,f

1

�2 − � fg
��ge�ef� fe��e�g

�3 − �e�g

−
�ge��e�f� fe�eg

�3 − � fe
� , �1�

where for simplicity we set t1=0. Two-dimensional correla-
tion plots of �2 versus �3 then reveal a characteristic peak
pattern, which spans the spectral region permitted by the
pulse bandwidths. The two terms in the brackets correspond
respectively to diagrams �i� and �ii� of Fig. 1. Here ���� are
the transition dipoles and ���� are the transition energies be-
tween electronic states, shifted by the pulse carrier frequency
�0, i.e., �e�g=�e�−�g−�0, � fe=� f −�e−�0, and � fg=� f −�g

−2�0. This shift eliminates the high optical frequencies. The
carrier frequency of the three beams, �0, is held fixed and
used to select the desired spectral region. In Eq. �1� we have
invoked the rotating wave approximation and only retained
the dominant terms where all fields are resonant with an
electronic transition.

In both diagrams, during t2 the system is in a coherent
superposition �coherence� between the doubly excited state f
and the ground state g. This gives the common prefactor
��2−� fg�−1. As �2 is scanned, the signal will thus show
resonances corresponding to the different doubly excited
states f . However, the projection along the other axis ��3� is
different for the two diagrams. In diagram �i�, the system is
in a coherence between e� and g during t3. As �3 is scanned,
the first term in brackets reveals single excitation resonances
when �3=�e�g. For the second diagram �ii�, the system is in
a coherence between f and e during t3. This gives resonances
at �3=� fe in the second term in the brackets. Many new
peaks corresponding to all possible transitions between dou-
bly and singly excited states � fe should then show up.

The remarkable point that makes this technique so pow-
erful is that the two terms in Eq. �1� interfere in a very
special way. For independent electrons, where correlations
are totally absent, the two e-h pair state f is simply given by
a direct product of the single pair states e and e�, and the

double-excitation energy is the sum of the single-excitation
energies � f =�e+�e�, so that �e�g=� fe and the two terms in
the brackets exactly cancel. The density functional
theory,1,4,11 when implemented using the Kohn–Sham ap-
proach, gives a set of orbitals that carry some information
about correlations in the ground state. The signal calculated
using transitions between Kohn–Sham orbitals will vanish as
well. This will be the case for any uncorrelated-particle cal-
culation that uses transitions between fixed orbitals, no mat-
ter how sophisticated the procedure was used to compute
these orbitals. We expect the resonance pattern of the two-
dimensional SCI signal to provide a characteristic fingerprint
for electron correlations.

The following simulations carried out for simple model
systems, which contain a few orbitals and electrons, illustrate
the power of the proposed technique. Doubly excited states
can be expressed as superpositions of products of two e-h
pair states. Along �2 we should see the various doubly ex-
cited states at � fg, whereas along �3 we observe the various
projections of the f state onto single pair states �e�g and the
differences � fe=� fg−�eg. The two-dimensional �2D� spectra
thus provide direct information about the nature of the many
body wave functions that is very difficult to measure by
other means. The patterns predicted by different levels of
electronic structure simulations provide a direct means for
comparing their accuracy. We used a tight-binding Hamil-
tonian H=H0+HC+HL. The single-particle contribution H0

contains orbital energies and hoppings

H0 = �
m1,n1

tm1,n1
cm1

† cn1
+ �

m2,n2

tm2,n2
dm2

† dn2
,

where cn1
and dn2

are electron and hole annihilation opera-
tors, respectively, and the summations run over spin orbitals.
We assume equal hopping t for electrons and holes. The
many-body term responsible for correlations

HC =
1

2 �
m1,n1

Vm1n1

ee cm1

† cn1

† cn1
cm1

+
1

2 �
m2,n2

Vm2n2

hh dm2

† dn2

† dn2
dm2

− �
m1,m2

Vm1m2

eh cm1

† dm2

† dm2
cm1

contains only direct Coulomb couplings. The electron-
electron, hole-hole, and electron-hole interactions are de-
noted Vee, Vhh, and Veh, respectively. Values of t and the
Coulomb integrals V00

eh, V01
eh �subscripts 0 and 1 denote the

sites� were derived by fitting emission spectra of coupled
quantum dots.18 Owing to the nature of quantum dots states,
we can assume that Veh	Vee	Vhh.19 We choose Vee=Vhh

=1.2Veh and use these values for all orbitals. HL describes
the dipole interaction with the laser pulses, HL

=−E�t��m1m2
dm2

cm1
+h ·c, where E�t� is the light field and

�m1m2
are local dipole moments of various orbitals m1, m2.

�0 was tuned to the optical gap energy.
Even though our parameters are fitted to quantum dots,

the overall picture emerging from the calculations can be
applied to a wider class of systems, whose optical response is
determined by correlated e-h pairs. We have employed an
equation of motion approach for computing the signal.

FIG. 1. Left: many-body states connected by transitions dipoles, including
the ground state g, the manifold of single e-h pairs e, and the manifold of
two-pair states f . Right: the two Feynman diagrams contributing to the
correlation-induced signal SCI �Eq. �1��. ti are the time delays between laser
pulses. For independent electrons � fe=�e�g and diagrams of types �i� and
�ii� cancel in pairs.
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Many-body states are never calculated explicitly in this al-
gorithm. Instead, we obtain the signal directly by solving the
nonlinear exciton equations �NEE�.20,21 These equations de-
scribe the coupled dynamics of two types of variables repre-
senting single e-h pairs: Bm= 
dm2

cm1
� �here m= �m1 ,m2�

stands for both the electron index m1 and the hole index m2�
and two pairs Ymn= 
dm2

cm1
dn2

cn1
�. For our model the NEE is

equivalent to full CI and yield the exact signal with all cor-
relation effects fully included. This signal provides a direct
experimental test for many-body theories, which use various
degrees of approximations to treat electron correlations. We
compare the exact calculation �NEE� with the time depen-
dent Hartree–Fock �TDHF� theory, which is an approximate,
widely used technique for treating correlations by factorizing
the Y variables into 
dm2

cm1
�
dn2

cn1
�− 
dn2

cm1
�
dm2

cn1
�. This

assumes that two e-h pairs are independent and we only need
to solve the equations for 
dn2

cn1
�. Correlation within e-h

pairs is nevertheless retained by this level of theory, as evi-
denced by the finite SCI signal. The equations of motion de-
rived using both levels of factorization are solved analyti-
cally, yielding the exact and the TDHF SCI signals. The
TDHF solutions have the following structure: A set of single-
particle excitations with energies �� and the corresponding
transition dipole moments are obtained by solving the linear-
ized TDHF equations. Many-particle state energies are given
by sums of these elementary energies. Two-particle energies
are of the form ��+�	. This approximation is the price we
pay for the enormous simplicity and convenience of TDHF.
Correlated many-electron energies computed by higher level
techniques do not possess this additivity property.

In general the TDHF signal contains a different number
of resonances along �2 than the exact one. Their positions,
� fg=� f −�g, also differ since the former uses the additive

approximation for the energies � f. The �3 value of each reso-
nance in the exact simulation is given by either �e�g �first
term in brackets in Eq. �1�� or � fe �second term in brackets�.
The simulations of the TDHF response function presented
later show fewer peaks than in the exact calculation. This
dramatic effect reflects direct signatures of the correlated two
e-h pair wave functions, which are only revealed by the SCI

technique.
We first consider a simple model, consisting of a single

site with one valence orbital and one conduction orbital �Fig.
2�A��. The energy of the �spin-degenerate� single-pair state is
�e=−Veh. The only two-pair state has energy � f =−4Veh+Vee

+Vhh, compared with �̄ f =2�e in the TDHF approximation
�the TDHF double-excited energies and frequencies will be
marked with a bar: �̄ f, �̄ fe�. Thus, the exact signal has two
peaks at ��3 ,�2�= ��eg ,� fg� and �� fe ,� fg�, while TDHF
predicts only one peak at ��3 ,�2�= ��eg , �̄ fg�= ��̄ fe , �̄ fg�.

This high sensitivity to correlation effects is general and
is maintained in more complex systems. In Fig. 2�B� we
consider a system with two valence orbitals with a splitting

 and one conduction orbital. It has two single e-h pair tran-
sitions e1, e2 with energies �1=−Veh and �2=−Veh+
. The
exact spectrum contains eight peaks, with � f energies being
sums of all quasiparticle interactions and hole level energies:
� f1

=−4Veh+Vee+Vhh, � f2
=� f1

+
, � f3
=� f1

+2
. Within
TDHF we find �̄ f1=2�1, �̄ f2

=�1+�2, and �̄ f3
=2�2 and the 2D

spectrum only shows four peaks.
The simple energy-level structure of the two systems

�Figs. 2�A� and 2�B��, whereby �̄ fe=�eg, allows an insight
into the differences in predictions of the two response func-
tions. We recast Eq. �1� for the exact signal in a slightly
different form: ��2−� fg�−1��3−�e�g�−1��3−� fe�−1 �all
dipoles for this system are equal �ge�=�ge=�e�f, etc.�.

FIG. 2. �Color� Absolute value of the exact and the TDHF SCI signals for three model systems. Energies on the axes are referenced to the carrier frequency,
which excites interband transitions. Each system has N�N+1� /2 doubly excited levels, where N is the number of single-excited levels. �A� Two orbital system
with N=1�Veh=194.4 cm−1�, �B� three orbital system with N=2�Veh=194.4 cm−1�, �C� two coupled systems of type �a�, but with different gaps, Veh

=193.9 cm−1 for one dot and 78.1 cm−1 for the other and t=59.2 cm−1, N=4. The corresponding orbitals and splittings are given schematically below each
panel. For systems �A� and �B�, the TDHF misses half of the resonances along �3, while for �C� it misses four out of ten resonances along �2.
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The corresponding TDHF expression is: ��2− �̄ fg�−1

��3−�e�g�−2. The different �3 dependencies reflect different
numbers of resonances with different full width at half maxi-
mum along the �3 axis. The double resonance in TDHF is
split into two resonances in the exact expression.

Figure 2�C� shows the signal from two coupled quantum
dots, each hosting one valence and one conduction orbital.
The SCI signal contains a rich peak structure, reflecting the
four �ten� many body levels in the single- �double-� excited
manifold. Again, the TDHF method misses many peaks. In
this case, unlike the two previous systems, TDHF does not
show all possible resonances along the �2 axis. This is be-
cause one of the single-excited states �e1� is not optically
allowed. In TDHF any f state, constructed as a direct product
of e1 with another state ei �i=1, . . . ,4�, is forbidden. Thus we
have only six resonances. In the exact calculation, the f
states are not direct products, so we see all possible reso-
nances along �2. The differences between the TDHF and
exact spectra in all these examples illustrate the sensitivity of
the proposed signal to the correlated wave function.

Computing electron correlation effects, which are ne-
glected by HF theory, constitutes a formidable challenge of
many-body theory. Each higher-level theory for electron
correlations1,4 is expected to predict a distinct two-
dimensional signal, which will reflect the accuracy of its en-
ergies and many-body wave functions. The proposed tech-
nique thus offers a direct experimental test for the accuracy
of the energies as well as the many-body wave functions
calculated by different approaches. TDDFT within the adia-
batic approximation extends TDHF to better include ex-
change and correlation effects.4,11 However, the two are for-
mally equivalent and yield a similar excited-state structure.22

The two-dimensional peak pattern of TDDFT will suffer
from the same limitations of TDHF.

We can summarize our findings as follows: At the HF
level which assumes independent electrons, the SCI signal
vanishes due to interference. TDHF �or TDDFT� goes one
step further and provides a picture of independent transitions
�quasiparticles�. Here the signal no longer vanishes but
shows a limited number of peaks. When correlation effects
are fully incorporated, the many-electron wave functions be-
come superpositions of states with different numbers and
types of e-h pairs. The �2 and �3 axes will then contain
many more peaks corresponding to all many body states �in
the frequency range spanned by the pulse bandwidths�,
which project into the doubly excited states. Thus, along �2

the peaks will be shifted, reflecting the level of theory used
to describe electron correlations. Along �3, the effect is even
more dramatic and new peaks will show up corresponding to
splittings between various levels. This highly resolved two-
dimensional spectrum provides an invaluable direct dynami-
cal probe of electron correlations �both energies and wave
functions�.

Signals obtained from a similar pulse sequence, calcu-
lated for electronic transitions in molecular aggregates23 and

molecular vibrations,24 show the role of coupling between
Frenkel excitons. A conceptually related nuclear magnetic
resonance technique known as double quantum coherence
reveals correlation effects among spins. The technique
showed unusual sensitivity for weak couplings between spa-
tially remote spins and has been used to develop new mag-
netic resonance imaging techniques.25,26 Here we have ex-
tended this idea to all many-electron systems. The proposed
technique should apply to molecules, atoms, quantum dots,
and highly correlated systems such as superconductors. It has
been recently demonstrated that two-exciton couplings can
be controlled in onionlike semiconductor nanoparticles with
a core and an outer shell made of different materials.13 Non-
linear spectroscopy of the kind proposed here could provide
invaluable insights into the nature of such two-exciton states.
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