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Closed expressions are derived for resonant coherent multidimensional spectra carried out with temporally
well-separated pulses. The roles of the pulse carrier frequencies, phases, bandwidths, and envelopes can be
readily analyzed. These results are particularly suitable for the design of new pulse sequences and for imple-
menting coherent-control pulse-shaping algorithms for optimizing these signals to meet specific targets.
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I. INTRODUCTION

Multidimensional optical n+1 wave-mixing spectroscopy
�1–3� uses n laser pulses to generate a signal that is hetero-
dyne detected with the last �local oscillator� pulse. The sig-
nals are usually plotted as 2D Fourier transforms with re-
spect to two of the delay periods �4–10�. In addition to these
delays, there are many other control parameters at one’s dis-
posal: the phase matching direction, pulse carrier frequen-
cies, phases, and polarizations. Pulse-shaping techniques al-
low one to control all of the pulse envelopes �11–17�.
Calculations of such signals are most easily performed in the
impulsive limit where the pulses are taken to be much
shorter than all other relevant time scales �18,19�. Impulsive
signals only depend on the pulse delays and carrier frequen-
cies. Pulse envelopes can then be incorporated by multiple
convolutions of the impulsive signal with these envelopes
�18�.

In this paper we show that these multiple integrations can
be eliminated under some general conditions and derive
closed expressions for multidimsional optical signals that re-
veal their dependence on pulse envelopes. We consider a
time-domain optical wave-mixing measurement carried out
by subjecting the system to a sequence of temporally sepa-
rated pulses

E�t� = �
j=1

n+1

Ej�t� . �1�

The nonlinear polarization induced by interaction with the
first n pulses is heterodyne detected by overlapping the sig-
nal field with the n+1 pulse. The signal is given by

S�n� = �
−�

�

dtP�n��t�En+1�t� . �2�

If the pulses are suffiently weak, the order-by-order contri-
butions to the nonlinear polarization are given by a perturba-
tive expansion in the field

P�n��t� = �
−�

t

d�n��
−�

�n�
d�n−1� ¯ �

−�

�2�
d�1�R

�n��t,�n�,�n−1� , . . . ,�1��

�E��n��E��n−1� � ¯ E��1�� , �3�

where the nonlinear response function R�n� is given by the
combination of multitime correlation functions of the dipole
operator �18�

R�n��t,�n�,�n−1� , . . . ,�1�� = � i

�
�n

	†¯�V̂�t�,V̂��n���, . . . ,V̂��1��‡
 .

�4�

The response function is a pure material quantity which does
not depend on the details of the optical measurement. It thus
provides a convenient target for theoretical simulations. Cal-
culating the nonlinear response according to Eq. �3� gener-
ally requires repeated evaluations the response function for
various values of integration variables � j�. The calculations
are considerably simplified in the impulsive limit by neglect-
ing the finite duration of the pulses and setting Ej�t�
�Ej��t−� j�. All time integrals are then eliminated and the
signal is proportional to the response function itself

S�n� = R�n���n+1,�n,�n−1, . . . ,�1�En+1En ¯ E1. �5�

Equation �5� has been widely used for simulating time-
domain measurements �1,2,16,20,21�. However, this equa-
tion is valid only if the pulses do not overlap

Ej�t�Ej��t� = 0 for each j � j� �6�

and if the system’s time scales are much longer than the
pulse durations �hence, the response function does not vary
significantly during each pulse�

R�n��. . . ,� j�, . . .� � R�n��. . . ,� j, . . .�

for each � j� such that Ej�� j�� � 0. �7�

Only when both conditions �6� and �7� are satisfied can the
finite duration of the pulse be safely neglected. While condi-
tion �6� is generally valid in sequential time-domain mea-
surements, condition �7� may not necessarily be satisfied. In
addition, if the response function is calculated by an expan-
sion over eigenstates, Eq. �5� requires that all eigenstates be
included as inifinely short pulses mathematically imply an
infinite bandwidth. In order to implement the expression in a
computationally tractable way one must truncate the summa-
tions over eigenstates based on physical considerations. For
example, one can simply neglect all transitions lying outside
the given bandwidths �22�. The signal then depends only on
pulse delays and carrier frequencies.

In what follows, we show that the simple relation of Eq.
�5� can be straightforwardly extended to describe sequential
time-domain measurements even when the system’s time
scales are comparable with pulse durations. We show that for
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nonoverlapping pulses, no additional assumption about the
response function is necessary to formally carry out the in-
tegrations and derive closed expressions for the signals that
include the finite pulse envelopes explicitly.

In Sec. II, we derive the expressions for the sequential
time-domain measurements carried out with temporally
seprated pulses with arbitrary envelopes when each pulse
interacts with the system only once. This result is then ex-
tended in Sec. III to partially time ordered techniques such as
pump probe where multiple interactions with each pulse are
allowed.

II. TIME-ORDERED WAVE MIXING SIGNALS

We first focus on fully time-ordered techniques whereby
each of the n pulses interacts only once with the system

S�n� = �
−�

�

�n+1� �
−�

�n+1�
d�n� ¯ �

−�

�2�
d�1�

�R�n���n+1� , . . . ,�1��En+1��n+1� �En��n�� ¯ E1��1�� . �8�

Since in such measurements, the product Ej+1�t�Ej�t�� van-
ishes unless t� t�, we can extend all upper integration limits
in Eq. �8� to �, which gives

S�n� = � i

�
�n

	†¯�V̂n+1,V̂n�, . . . ,V̂1‡
 , �9�

where we have incorporated the time integrals into the defi-
nition of the interaction

V̂j � d�Ej���V̂��� . �10�

The electric field of each pulse j can be generally represented
in terms of its wave vector k j, carrier frequency � j, and the
complex temporal envelope E j

Ej�t� = E j
+�t − � j�eikjr−i�j�t−�j� + E j

−�t − � j�e−ikjr+i�j�t−�j�,

�11�

where E j
+= �E j

−��=E j. Using Eq. �11�, we define two operators

V̂j
	�� j�  � d�E j

	���V̂�� + � j�e
i�j�. �12�

This gives

V̂j  Vj
+ + Vj

−. �13�

In terms of these operators, we can recast the signal as

S�n� = �
�=1

2n

S�
�n���n+1, . . . ,�1� , �14�

where

S�
�n���n+1, . . . ,�1�

= � i

�
�n

	†¯�V̂n+1
	 ��n+1�,V̂n

	��n��, . . . ,V̂1
	��1�‡
 ,

�15�

and � labels one of the possible 2n+1 combinations of

�V̂n+1
	 , . . . , V̂1

	�.
Equations �14� and �15� extend Eq. �5� to include finite

pulse envelopes. Since Eq. �12� depends the finite pulse du-

ration, the corresponding expansion in eigenstates of Ĥ0
naturally accounts for the finite bandwidth

V̂j
	�� j�  � d�E j

	���e
i�j�ei/�Ĥ0��+�j�V̂e−i/�Ĥ0��+�j�

= �
�,

E j
	��� 
 � j�ei���j−���jV̂�, �16�

where V̂�= ���
V�	��, ��, and �� are, respectively, the
frequency and dephasing rate of the transition between states
�� and �. E j

	����d�E j
	���ei�� is the frequency-domain

envelope of the jth pulse. For example, for a Gaussian tem-
poral envelope we have

E j
	��� = E j

	e−�2/Tj
2
, E j

	��� = E j
	��Tje

−��Tj�
2/4. �17�

Here, we assumed that pulse is shorter than the dephasing
time and neglected the contribution of �� to E j

	���.
Equation �16� provides the basis for the rotating-wave ap-

proximation, since the duration of an optical pulse Tj must be
longer than its optical period �i.e., Tj� j �2�� and E j��
+� j�=0 for any positive �. V̂j

+ thus describes an excitation
since only terms with ���0 contribute, while Vj

− describes

deexcitation as only terms with ���0 contribute to V̂j
−.

Moreover, E j��� rapidly decays for ��1 /Tj and thus only
transitions in the vicinity of � j �within the bandwidth� con-
tribute to resonant signals. Equation �16� is thus the finite-
bandwidth extension of the rotating-wave approximation for
a general sequential resonant optical measurement.

Equation �14� can be recast in a more compact form in
terms of the delays between consecutive pulses tj � j+1−� j

S�n��tn, . . . ,t1� = �
�=1

2n

S�
�n��tn + ¯ + t1, . . . ,t2 + t1,t1,0� ,

�18�

where we have used the invariance of S�
�n� to time translation

of all its arguments �see the Appendix�.
Let us illustrate this result by the sum-over-states simula-

tion of a four-wave mixing signal with the wave vector k4
=�1k1+�2k2+�3k3 and carrier frequency �4=�1�1+�2�2
+�3�3, where � j = 	1 represent the various possible phase-
matching directions. The time-integrated signal �Eq. �18�
with n=3� can be displayed as a multidimensional correla-
tion plot in terms of the Fourier conjugates �3, �2, �1 of the
delay periods t3, t2, t1
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S�
�3���3,�2,�1� =� � �

0

�

dt1dt2dt3S�
�3��t3,t2,t1�ei�3t3+i�2t2+i�1t1. �19�

Using Eqs. �15�–�18� and the fact that ��44
=−��33

−��22
−��11

�see the Appendix� we get

S�
�3���3,�2,�1� = i �

�33

�
�22

�
�11

E4
−��3�3 + �2�2 + �1�1 − ��33

− ��22
− ��11

�E3
�3���33

− �3�3�

��3 − ��33
− ��22

− ��11
+ i��33

+ i��22
+ i��11

�

�
E2

�2���22
− �2�2�E1

�1���11
− �1�1�

��2 − ��22
− ��11

+ i��22
+ i��11

���1 − ��11
+ i��11

�

�	�†�V̂,V̂�33
�,V̂�22

‡,V̂�11
�
 , �20�

Equation �20� provides a convenient basis for designing and
analyzing multidimensional spectra �23�. It explicitly reveals
the dependence of the signal on the pulse parameters such as
their shape �E j� and frequencies �� j�. The four pulse enve-
lopes guarantee that each pulse can only induce transitions
lying within its bandwidth. Since all integrations have been
eliminated the roles of all pulse control parameters can be
readily discussed. Pulse shaping can be incorporated for ap-
plying coherent control algorithms for simplifying the spec-
tra �24–26�.

III. PARTIALLY TIME-ORDERED
WAVE MIXING SIGNALS

We next extend these results to techniques involving mul-
tiple interactions with one of the pulses �labeled k�:

S�n,m� = �
−�

�

d�n+1� �
−�

�n+1�
d�n� ¯ �

−�

�m+1�
d�k

m
¯ �

−�

�k
2

d�k
1
¯

��
−�

�2�
d�1�R

�n,m���n+1� ,�n�, . . . ,�1��

�En+1��n+1� � ¯ Ek��k
m� ¯ Ek��k

1� ¯ E1��1�� . �21�

Here, only the integration limits for �1� , . . . ,�n� and �k
m can be

set to �. Nevertheless, the signal can still be recast in the
form of Eq. �14� with

S�n,m� = �
�=1

2n

S�
�n,m���n+1, . . . ,�1� , �22�

S�
�n,m���n+1, . . . ,�1�

= � i

�
�n+m−1�

−�

�

d�m� ¯ �
−�

�2�
d�1�Ek

	��m� � ¯ Ek
	��1��

�	†¯�†¯�V̂n+1��n+1� �,V̂n
	��n��, . . . ,

V̂��m� + �k�‡, . . . ,V̂��1 + �k��, . . . ,V̂1
	��1�‡
 . �23�

Because the commutator in Eq. �23� includes some terms
that do not correspond to the sequential ordering of operators

V̂��m� +�k�¯ V̂��1+�k�, a compact definition similar Eq. �12�
is not possible for these operators. Nevertheless, when the
expansion over eigenstates is carried out, we get

S�
�n,m���n+1,�n, . . . ,�1� = � i

�
�n+m−1

�
�n,n

¯ �
�1,1

En
	���nn


 �n� ¯ E1
	���11


 �1�

� �
�m� ,m�

¯ �
�1�,1�

Ek
	¯	���k�k�


 �k, . . . ,��1�1�

 �k�

�	†¯�†¯�V̂,V̂�nn
�, . . . ,V̂�m� m�

‡, . . . ,V̂�1�1�
�, . . . ,V̂�11

‡
 . �24�

Here, the multipoint pulse envelope �27�
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Ek
	..	��m, . . . ,�1�

= �
−�

�

d�m��
−�

�m�
d�m−1� ¯ �

−�

�2�
d�1�Ek

	��m� � ¯ Ek
	��1��

�ei�m�m� +¯+i�1�1� �25�

is expected to decay rapidly with increasing value of any of
its arguments.

Let us illustrate this result for a sequential pump-probe
measurement in a system whose states form a ladder of three
manifolds �labeled g, e, and f in Fig. 1�. The system interacts
twice with the pump �1 and twice with the probe �2. The
signal is defined as the difference in the probe absorption
with and without the pump recorded as a function of the
delay � between pulses. Using Eq. �24�, we find that only
two terms contribute to the response function �Fig. 1�

SI
�3���� = � i

�
�3

�
�44

¯ �
�11

E2
−+���44

+ �2,��33
− �1�

�E1
+−���22

− �1,��11
+ �1�

� 	�†�V̂�44
,V̂�33

�,V̂�22
‡,V̂�11

�
 �26�

and

SII
�3���� = � i

�
�3

�
�44

¯ �
�11

E2
−+���44

+ �2,��33
− �1�

�E1
−+���22

+ �1,��11
− �1�

�	�†�V̂�44
,V̂�33

�,V̂�22
‡,V̂�11

�
 . �27�

The signal is finally given by

Spp��1,�2,�� = Im�SI
�3���� + SII

�3�����

= �
g,e,e�

E2
−+��ge + �2,�e�g − �2�E1

+−��eg0
− �1,�g0e� + �1�Vg0e�Ve�gVgeVeg0

e−i�ee��

+ �
g,e,e�

E2
−+��ge + �2,�eg0

− �2�E1
+−��e�g − �1,�g0e� + �1�Vg0e�Ve�gVgeVeg0

e−i�g0g�

− �
e,e�,f

E2
−+��e�f + �2,� fe − �2�E1

+−��eg0
− �1,�g0e� + �1�Vg0e�Ve�fVfeVeg0

e−i�ee��

+ �
g,e,e�

E2
−+��ge + �2,�e�g − �2�E1

−+��g0e� + �1,�eg0
− �1�Vg0e�Ve�gVgeVeg0

e−i�ee��

+ �
g,e,e�

E2
−+��g0e� + �2,�e�g − �2�E1

−+��ge + �1,�eg0
− �1�Vg0e�Ve�gVgeVeg0

e−i�gg0
�

− �
e,e�,f

E2
−+��e�f + �2,� fe − �2�E1

−+��g0e� + �1,�eg0
− �1�Vg0e�Ve�fVfeVeg0

e−i�ee��, �28�

Ia Ib Ic

IIa IIb IIc

FIG. 1. Left panel, level scheme of the three excited-state manifolds. Right panel, double-sided Feynman diagrams representing the six
terms contributing to the pump-probe signal �Eq. �29��.
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where

E j
		��2,�1� = �

−�

�

d�2��
−�

�2�
d�1�E j

	��2��E j
	��1��e

i�2�2�+i�1�1�.

�29�

Similarly to Eq. �20�, the two-point pulse envelope defined
by Eq. �29� ensures that only the transitions within each
pulse bandwidth contribute to the pump-probe signal in Eq.
�28� �see, for example, Ref. �28��.

IV. CONCLUSIONS

We have derived closed expressions for multidimensional
optical wave-mixing signals obtained with temporally well-
separated pulses that accounts for finite pulse bandwidths.
The sum-over-state expressions for resonant signals explic-
itly reveal the dependence on the carrier frequencies and
spectral envolopes of the pulses. They thus provide a conve-
nient basis for analyzing the role of various pulse parameters
and can be used to design coherent control algorithms for
optimizing these signals.
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APPENDIX

Each term contributing to the commutator in Eq. �4� is
invariant to time translation of all its arguments

	V̂�� j1
+ ��V̂�� j2

+ �� ¯ V̂�� jn
+ ��


= 	eiĤ0�V̂�� j1
�e−iĤ0�eiĤ0�V̂�� j2

�e−iĤ0�
¯ eiĤ0�V̂�� jn

�e−iĤ0�


= 	V̂�� j1
�V̂�� j2

� ¯ V̂�� jn
�
 . �A1�

We thus have

R�n���n+1 + �,�n + �, . . . ,�1 + �� = R�n���n+1,�n, . . . ,�1� .

�A2�

Expanding V̂j�� j� in the eigenstates, we can recast Eq. �15� as

S�
�n���n+1 + �, . . . ,�1 + ��

= �
�,

�
�n,n

¯ �
�1,1

ei����n+1+��
¯ ei��11

��1+��

� En
	���nn


 �n� ¯ E1
	���11


 �1�

�	�†¯�V̂�,V̂�nn
�, . . . ,V̂�11

‡�
 , �A3�

where each of the terms contributing to the commutator has
the following form:

	�0���jn+1

	�jn+1

���jn

 ¯ 	�j2

���j1

	�j2

��0


= ��jn+1
,0�jn+1

,�jn
¯ �j2

,�j1
�j2

,0, �A4�

where indices jk label the operators in the order they appear
in the given term. Since the sum over all ��jk

jk
is indepen-

dent on this order, we have

��n+1n+1
+ ��nn

+ ¯ + �1

= ��jn+1
jn+1

+ ��jn
jn

+ ¯ + ��j1
j1

= ��jn+1
j1

= 0.

�A5�

This allows one to eliminate one of the n+1 pair of states
contributing to Eq. �15�. Relation �A5� is used to obtain Eq.
�20�.
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