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Recently developed approaches to simulate environment-induced fluctuation effects in

two-dimensional (2D) spectroscopy of excitons are compared for the Fenna-Matthews-Olson

light-harvesting complex. Fast fluctuations induce population redistribution between exciton

energy-levels and raise homogeneous line widths of various peaks in 2D spectra. These effects are

easily accounted for in sum-over-eigenstates (SOS) approach and the quasi-particle (QP)

scattering approach through relaxation and dephasing rate constants. Slow fluctuations cause

correlations of energies at various delay times in 2D photon-echo spectra. These may be

calculated either by doing cumulant expansion in SOS techniques or by statistical averaging over

static disorder in SOS and QP approaches. We compare the 2D photon-echo signal simulated

using two levels of cumulant expansion approaches and two statistical averaging approaches for

the same system. These levels differ by the treatment of energy-level correlations at different delay

times and give rise to different cross-peak shapes: the cross-peaks retain their original diagonally

elongated shapes when correlations are included, while they are more spherically broadened when

correlations are neglected. Statistical averaging over disorder give very similar results but requires

much higher computational effort. The peak redistribution timescales are very similar for all levels

of theory. The spectral signatures at these different levels of theory are compared and simulation

cost is estimated. Approaches which do require statistical averaging over disorder are orders of

magnitude slower.

I. Introduction

Two-dimensional (2D) spectroscopy projects four-wave

mixing signals onto frequency–frequency correlation plots

that carry information on the structure and the dynamics of

molecules and their interaction with the surrounding.1

Of particular interest is the study of excited state coherent

dynamics and population transport in chromophore

aggregates.2–8 Spectra are usually simulated using the

nonlinear response formalism combined with simplified

models for the excitation and solvent dynamics. Dynamical

information on the environment is obtained from the peak line

shape. Elliptical diagonally elongated peak patterns reflect the

interplay of homogeneous and inhomogeneous broadening.

Arbitrary timescales bath fluctuations can be calculated using

the Cumulant Gaussian Fluctuations (CGF)9,10 or the

Redfield theory.11,12 Static fluctuations can be included by

repeated calculations to generate an ensemble.

Closed form approximate expressions for the femtosecond

four-wave mixing of excitons were derived recently.13 These

expressions include slow diagonal fluctuations through a

second order cumulant expansion; ensemble averaging is

avoided. Two levels of approximation were proposed and

applied to simulate the response function of a model dimer

including exciton transport. They assume different correlations

between the slow bath coordinates. The first (here denoted

sum over states SOS(A)) assumes an arbitrary degree of

correlations between the slow diagonal bath coordinates but

neglects the effects of the slow bath fluctuations on exciton

transport. The second (SOS(B)) uses a single bath coordinate

so that the slow diagonal fluctuations are fully correlated, but

it is capable to include the Stokes shift. We shall compare them

with two other levels of theory. The third level of theory is the

standard CGF theory with static diagonal energy fluctuations

incorporated by ensemble averaging (SOS(C)). The last level

of theory is based on the quasiparticle representation

(QP).12,14,15 Ensemble averaging is still necessary, but the

calculations of doubly-excited states is avoided. The difference

between the four theories mainly resides in the way they deal

with the slow fluctuations giving rise to inhomogeneous

broadening.

In this paper, we report a benchmark comparison of these

four levels of theory by applying them to the FMO light-

harvesting antenna.16,17 In section II, we briefly survey the

advantages and cost of the four level of theories. In section III,

we apply them to the photon echo kI = �k1 + k2 + k3 signal.

We study the effect of the correlation between the slow bath

coordinate and their effect on transport during the delay t2
and we compare the numerical cost. Section IV contains a

discussion along with some concluding remarks.
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II. Theory

The aggregate is described by the Frenkel exciton

Hamiltonian,18,19

Ĥ ¼
X

m

em B̂
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m B̂mþ

X

mn
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where B̂w
m (B̂m) Pauli operators create (annihilate) an excitation

on site (or chromophore) m. They obey the boson commutation

relation,

[B̂m, B̂
w
m] = dnm, (2.2)

where dmn is the Dirac delta function. em is the excited state

energy of site m and Jmn is the coupling between sites. The

Hamiltonian parameters (e and J) for the FMO complex are

given in ref. 4,20. The energy-shift is chosen such that the

aggregate is modelled as coupled two-level systems, D - N.

The coupling with the bath has the form,

ĤSB ¼ �
X

m

Q̂m B̂
y
m B̂m ð2:3Þ

where Q̂m’s are collective harmonic bath coordinate operators

which cause population transport and line broadening. Each

bath coordinate is characterized by its spectral density,12

C00aðoÞ ¼
1

2

R
dt eioth½Q̂mðtÞ; Q̂mð0Þ�i; ð2:4Þ

which has the overdamped Brownian oscillator form,12

C00a ðoÞ ¼ 2la
oLa

o2 þ L2
a

: ð2:5Þ

l controls the strength of the coupling with the bath and L�1 is
the relaxation time-scale of the bath correlations. Derivations

of the four approximations for the response function expres-

sions can be found in ref. 9,11,13. In all cases, the homo-

geneous broadening and population transport are included by

coupling each chromophore to its own, fast bath coordinate

and Redfield theory (within the secular approximation) is used

to describe population transport.12,21

The induced polarization is expressed as a convolution of

the three incoming, time-resolved, pulses with the third order

response function as follows,

P(3)(r,t) =
R
0
Ndt3

R
0
Ndt2

R
0
Ndt1 R

(3)(t3, t2,t1)

E(r,t � t3) E(r,t � t3 � t2 � t1) (2.6)

where t1, t2 and t3 are the time intervals between successive

interactions with the electric field, E. The detected third-order

signal is proportional to the third-order induced polarization,

P(3), and is generated in the directions �k1 � k2 � k3. All the

system (molecule and the solvent) information is contained in

the response function, R(3).

The kI = �k1 + k2 + k3 signal is given as a sum of three

terms represented by the Feynman diagrams shown in Fig. 1.

These are denoted, ‘‘ground state bleaching’’ (GSB), ‘‘excited

state emission’’ (ESE) and ‘‘excited state absorption’’ (ESA).

The rules for these diagrams are given in ref. 12.

A. Sum-over-states with uncorrelated slow fluctuations

[SOS(A)]13

Here, we assume that each site is coupled to its own slow

(but not necessarily static) bath coordinate. These coordinates

are uncorrelated. Population transport during t2 is described

by a Pauli master equation. The population rates are not

affected by the slow coordinate. The effects of the slow

fluctuations on the propagation during t2 which causes

dynamic Stokes shift is thus neglected. The effect of the slow

fluctuations on the response function is incorporated by a

second order cumulant expansion. The response function is

given by eqn (19) and (20) in ref. 13. It can be used for

arbitrary bath time-scales, it includes fluctuation correlations

between the time intervals t1 and t3 and ensemble averaging is

avoided.

B. Sum-over-states with correlated slow fluctuations

[SOS(B)]
13

This is similar to SOS(A) except that a single slow bath

coordinate is coupled to all chromophores. Slow bath

fluctuations are thus fully correlated and the dynamic

Stokes shift is incorporated. The Pauli master equation

describing population transport holds, since the population

rate matrix is not modulated by the slow fluctuations. The

resulting response function is given by eqn (29) and (30) in

ref. 13 (or by eqn (164) and (179) in ref. 12). As in SOS(A),

inhomogeneous broadening is incorporated without explicit

ensemble averaging.

C. Sum-over-states with static fluctuations [SOS(C)]9

Here, correlations of fluctuations between t1 and t3 are

neglected. The response function is given by eqn (176) and

(177) in ref. 12. Only fast bath fluctuations are included. By

adding diagonal disorder to the Hamiltonian and ensemble

averaging, the population transport rates are modulated by

static disorder. The explicit ensemble averaging makes this

procedure time-consuming compared to the previous two

methods. This model has the same long t2 limit as SOS(B)

when bath correlations completely decay.

Fig. 1 The Feynman diagram representation of the three Liouville-

space pathways contributing to the kI response function. The three

distinct pathways are denoted as Ground State Bleaching (GSB),

Excited State Emission (ESE) and Excited State Absorption (ESA).
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D. The Quasi-particle representation [QP]11

The fourth level of theory is fundamentally different from the

sum over states methods. Excitation dynamics is described in

terms of quasiparticles. This allows us to avoid the memory

expensive computation of the doubly-excited eigenstates,

which grows fast with the system size. The response function

is expressed in terms of one-exciton Green’s function and

a scattering matrix. The advantages of the quasiparticle

representation are explained in ref. 12, 22. Briefly, the response

function is obtained by solving a hierarchy of differential

equations starting with the Heisenberg equation for the

time-evolution of the expectation value of the polarization

operator. These Nonlinear Exciton Equations (NEE) are

closed by retaining terms contributing up to third order

in an expansion of the response function in the external

fields. The kI response function is given by eqn (124) of

ref. 12. Population transport is calculated using the

Redfield theory with the secular approximation12 which

decouples populations and coherences. Both the population

transport and homogeneous dephasing are calculated in the

Markovian approximation. This level of theory neglects

all correlations between fluctuations in the t1, t2 and t3
time intervals. It uses an even more restrictive approxi-

mation compared to the SOS methods; it assumes infinitely

fast bath (Markovian) dynamics. Slow bath diagonal

fluctuations are added to the Hamiltonian and the response

function by averaging over many realizations of the diagonal

disorder.

III. Numerical results

We have performed a benchmark comparison of the 4

computation methods applied to the FMO light-harvesting

complex (Fig. 2).16 The system consists of seven two-level

chromophores embedded in a protein matrix. FMO is an

excellent candidate for our benchmarking because the

available model system parameters reproduce the experiment

quantitatively.4,5,20,23,24

The following parameters were used:

(1) SOS(A): Each Chlorophyll is coupled to uncorrelated

bath coordinates with L�1fast = 75 fs and lfast = 35 cm�1.

Inhomogeneous broadening is included by an additional set of

uncorrelated bath coordinates with Lslow E 0 and with a

system bath coupling of lslow = 33.75 cm�1.

(2) SOS(B): Same as method SOS(A), but inhomogeneous

broadening is included by adding another set of Lslow E 0

slow correlated bath coordinates with a system bath coupling

of lslow = 10.0 cm�1.

(3) SOS(C) and QP: Each Chlorophyll is coupled to one

type of uncorrelated bath coordinates all having L�1fast = 75 fs

and a system bath coupling lfast = 35 cm�1. Inhomogeneous

broadening is included by uncorrelated Gaussian diagonal

disorder (s = 60 cm�1) to the Hamiltonian and ensemble

averaging over 500 realizations.

L�1fast = 100 fs and lfast = 55 cm�1 with static diagonal

disorder of s= 20 cm�1 were used in ref. 20 using the SOS(C).

For these parameters, inhomogeneous broadening is smaller

Fig. 2 The FMO light-harvesting system. Left panel: a trimer where

each member has 7 chromophores is shown with the embedding

proteins. Right-panel: the 7 chromophores and their excitation

energies.

Fig. 4 Linear absorption spectra for the FMO light-harvesting

complex calculated using the SOS(A) level of theory with different

bath coupling parameters. In set 1, lfast = 55 cm�1 and L�1fast = 106 fs

while lslow = 5 cm�1. In set 2, lfast = 45 cm�1 and L�1fast = 90 fs while

lslow = 16 cm�1 and in set 3, lfast =35 cm�1 and L�1fast = 75 fs

while lslow = 32.65 cm�1. From set 1 to set 3, the importance of

inhomogeneous broadening increases while the linear spectrum

displays only small changes.

Fig. 3 Linear absorption spectra for the FMO light-harvesting

complex calculated using the four levels of theory described in the

text. All curves are normalized using the peak around 12 400 cm�1.

The line shapes predicted with the first three methods are similar. The

SOS(A) and SOS(B) methods agree very well with each other and with

SOS(C) in the regions of the two dominant peaks (between 12 200 and

12 500 cm�1). SOS(A) agrees very well with SOS(C) in the low energy

shoulder region (E12 100 cm�1) and SOS(B) agrees very well with

SOS(C) in the high energy shoulder region (E12 600 cm�1). The

broadening that results from the QP is slightly too large. This results

from the Markov approximation which is used to calculate the line

shapes in the QP.
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than homogeneous broadening. We used a different set of

parameters which reproduce the experimental linear absorption

and 2D spectra equally well, but whose inhomogeneous

and homogeneous contributions to the line broadening are

comparable. Simple approximate relations that connect lslow
with variance s can be derived for Lslow - 0 by analyzing the

various line broadening expressions of SOS(A), SOS(B) and

SOS(C) given in ref. 13,12:

lslowðuÞ ¼
s2

2kBT

lslowðcÞ ¼
s2

6kBT

ð3:1Þ

where lslow(u) (lslow(c)) refers to the uncorrelated (correlated)

slow bath coupling. These expressions were used to estimate

the couplings used in SOS(A) and SOS(B) and correspond to

the static (ensemble averaging) fluctuations given by s =

60 cm�1 in SOS(C) and QP.

The absorption spectra are shown in Fig. 3. The agreement

with experiment (see ref. 4) is very good, except for the QP,

which shows larger line broadening. This is a consequence

of the Markovian approximation. It overestimates the

broadening for the L�1fast = 75 fs bath coordinate.

In Fig. 4, SOS(A) is used for three sets of bath coupling

parameters that give very similar absorption spectra. Set 1

reproduces the set of parameters used in ref. 20. Here, lfast =
55 cm�1 and L�1fast = 106 fs while lslow = 5 cm�1. For this set

of parameters, homogeneous broadening dominates. In set 2,

lfast = 45 cm�1 and L�1fast = 90 fs while lslow = 16 cm�1. This

choice increases the inhomogeneous broadening. Set 3 is the

one that was used in Fig. 3 (SOS(A)): lfast = 35 cm�1 and

Fig. 5 The kI spectra (absolute value) of FMO for t2 = 0 fs, 200 fs and 20 ps is reported for the 4 different transport theories. At t2 = 0 fs, the QP

and SOS(B) differ from SOS(A) and SOS(C) which are very similar. The QP peaks are more broad whereas the dominant crosspeak in SOS(B) has

a larger amplitude and is elongated along the diagonal. At t2 = 200 fs, only the QP gives qualitatively different results (broader peaks). At

t2 = 20 ps, all theories capture the main features, but some finer details are different. The SOS(C) and SOS(A) techniques are quite similar in peak

shapes although the intensity of the strongest cross peak is slightly larger in SOS(A). In SOS(B), the cross-peaks are elongated along the diagonal

(the cross-peaks in SOS(A) and SOS(C) have a more circular shape) due to the correlated slow bath coordinate. In the QP, the diagonal peak is still

too broad and the cross-peaks are similar to SOS(A) and SOS(C) but are slightly more elongated along O1.
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L�1fast = 75 fs while lslow = 32.65 cm�1. The differences

between the absorption spectra calculated with the three sets

of parameters is rather small, highlighting that such fits are

not unique. Hereafter, we focus solely on set 3, where

inhomogeneous broadening is the largest.

The photon echo kI = �k1 + k2 + k3 spectra for short

and large t2 are displayed in Fig. 5. SOS(A) and SOS(B)

simulations are at least 500 times faster than SOS(C) and

B100 times faster than the QP. All theories essentially show

the same features at t2 = 0 and t2 = 200 fs. The QP has

slightly larger homogeneous broadening (elongation of the

peaks across the diagonal). The weak cross-peak that appears

above the diagonal for SOS(A) and SOS(C) is stronger for

correlated slow bath coordinate (SOS(B)). The t2 = 20 ps

spectra show that, in all cases, the peak redistribution due to

population transport occurs on very similar timescales, but the

shapes of the peaks are different. The cross-peaks have an

elongated shape in SOS(B), but are roughly circular in all

other cases. This is not surprising because no matter where the

excitations are transported after t2, the correlations between

t3 and t1 are the same because of the fully correlated nature of

the fluctuations. Hence, the line broadening of the redistributed

off-diagonal peaks is expected to have the same elongated

shape as the t2 = 0 diagonal peaks. For uncorrelated fluctua-

tions, the correlation between t1 and t3 vanish for long t2 and

the cross-peaks become circular.

In Fig. 6, we use the pulse polarization configurations

described in ref. 20 to separate the coherence dynamics from

the population. Using the symmetry of the population

pathways, the combination of RkI,xyyx
–RkI,xyxy

eliminates

population contributions to the signal; only coherence

contributions remain.20 From the top, the first and third row

of Fig. 6 show RkI,xyyx
–RkI,xyxy

for SOS(B) and SOS(A),

respectively. Coherences decay at similar timescales in both

cases, but the difference in peak shapes is more evident in this

representation.

The other two rows show the results of the technique

RkI,xyyx
–RkI,xxyy

which, by symmetry, cancels the ESE

coherent contributions to the signal.20 The remaining

population peaks redistribute in a very similar manner and

Fig. 6 We compare the signal RkI,xyyx
–RkI,xyxy

that eliminates population contributions and the signal RkI,xyyx
–RkI,xxyy

that eliminates the

coherent contributions to the ESE Liouville space pathway for the two transport theories SOS(A) (uncorrelated bath, bottom two rows) and

SOS(B) (correlated bath, top two rows). We consider the following t2: 0 fs, 10 fs, 50 fs, 200 fs, 1000 fs. Obviously, the coherent dynamics decays on

a much faster timescale. The shape of the peaks differs when the slow bath coordinate is correlated or uncorrelated. Again, for correlated bath, the

peaks are elongated along the diagonal. Furthermore, the coherent dynamics decay on a faster timescale for the uncorrelated case. For the signal

that probes the population (RkI,xyyx
–RkI,xxyy

), we observe the same features as in Fig. 5, the peaks redistribute with the same timescale for both

transport theories and they appear elongated along the diagonal for the correlated case.
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with the same time-scale for SOS(B) and SOS(A). Again, the

peak shapes are strongly affected by the correlation of the bath.

In summary, the simulations shown in Fig. 6 highlight the

difference in peak shapes predicted by the different theories at

a finer level (by selecting specific Liouville-space pathways)

and shows that the short-time scale under which the

cross-peaks evolve is again very similar for SOS theories.

IV. Discussion

The present benchmark simulations show that SOS(A) and

SOS(B) give very similar results for the kI signal for all t2’s

considered (0–20 ps). Only the shape of the cross-peaks differ

when the slow bath coordinate is correlated (SOS(B)). The

predicted peak redistribution due to population transport is

quantitatively similar for all levels of theory even when

the effect of inhomogeneous broadening on transport is

completely neglected (SOS(A)); an approximation that

appears to be justified in the light of these results. The QP

peak line shapes are too broad, indicating that the Markovian

regime does not apply for the fast bath coordinate with

L�1fast = 75 fs. SOS(A) allows any level of correlations for the

bath coordinates. SOS(B) requires fully correlated slow

fluctuations. To compare the two, we chose the fluctuations

to be completely uncorrelated in SOS(A). To include partially

correlated fluctuations, SOS(A) must be used.

A technique with improved resolution that combines

various signals to compare specific Liouville-space pathways

(Fig. 6) shows that the shorter coherent lifetimes are almost

identically predicted by different theories. Again, at these

shorter time-scales, only the peak shapes differ because of

the differences in the slow bath correlations. Fig. 6 shows that

smaller amplitude peaks that are not observable in Fig. 5 also

evolve in a very similar manner for both levels of theory.

SOS(A) and SOS(B) are superior since they cut down the

computation time by two-orders of magnitude compared with

SOS(C). These protocols require a large memory due to the

explicit calculation of doubly-excited states in sum-over-states

methods. Truncation procedures in the scattering matrix

calculation make the QP to scale-more favorably with system

size, but it requires explicit ensemble averaging for static

fluctuations.

Our benchmark study is summarized in Table 1. For small

aggregates, where computer memory is of no concern, SOS(A)

and SOS(B) represent a very appealing and efficient procedure

to simulate response functions. They reproduce the results of

more expensive calculations, allow the inclusion of correlation

for the bath coordinates and require significantly shorter

running times. Note that the actual running time for

simulating the SOS(C) response function in Fig. 5 on an

average speed computer is about 2 days.

We have chosen a system where inhomogeneous and homo-

geneous broadening contributions to the response function are

similar (set 3 in Fig. 4) and observed only small differences

in the predicted spectra for all t2. When the homogenous

broadening dominates (set 1 in Fig. 4), we expect an even

stronger agreement with SOS(C). Moreover, SOS(A),

which neglects the effects of inhomogeneous broadening on

transport, will then be more adequate.
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