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The frequency-domain pump-probe signal of a material system interacting with two quantum modes of the
radiation field is recast in terms of products of scattering amplitudes (7 matrix elements) rather than the
third-order susceptibility Im X(S)- The resulting expression offers a more intuitive physical picture for the
optical process compared with the semiclassical approach which treats the radiation field as classical. It can be
derived and interpreted using closed-time-path-loop diagrams which represent the joint state of the matter and
the field for each contribution to the signal. The signal has two components representing stimulated Raman
scattering w;—w, and two-photon absorption w;+ w, two-photon resonances. Both are expressed as nonequi-
librium steady-state photon and matter fluxes, as is common in the description of dissipative processes in open

quantum systems.
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I. INTRODUCTION

Pump probe spectroscopy is the simplest nonlinear optical
technique. The system is subjected to two laser beams: the
pump beam with wave vector k; and frequency w; and the
probe beam (k,, w,). The signal is defined as the change in
the transmitted probe beam intensity caused by the pump
beam. Apart from single-photon resonances obtained by tun-
ing w; and w, (which can also be observed in linear spec-
troscopy), the technique also shows new two-photon reso-
nances. Stimulated Raman scattering (SRS) spectroscopy
[1-4] focuses on the w,-w, resonances, whereas the two-
photon absorption (TPA) focuses on w;+w, [5]. Both tech-
niques have been extensively employed since the early days
of nonlinear optics. Recent applications include imaging and
microscopy [6,7] and femtosecond techniques [8-11].

Nonlinear optical spectroscopy is commonly formulated
within the semiclassical (SC) approach whereby a quantum
material interacts with classical fields. This convenient theo-
retical framework has been very successful in the theories of
the laser [12] and in describing processes where quantum
effects of the fields are negligible [1,13,14]. Most of the
current understanding and design of such experiments is
based on this language. In an (n+1)-wave mixing process a
material sample is exposed to (n+1) optical fields. Energy
exchange between the modes, mediated by the matter-field
interaction is observed by monitoring one of these modes,
labeled as the signal mode. In spectroscopic applications we
extract information about the sample by tuning the fields on-
or near-resonance with the material optical transitions. Two
detection schemes are commonly used. In heterodyne detec-
tion one measures the electric field itself (both amplitude and
phase); in homodyne detection the field intensity is measured
[14].

Semiclassically, an (n+ 1) wave mixing experiment is de-
scribed as a two-step process. First, the n incoming waves
induce an nth order polarization in the material, which is
calculated microscopically by solving the quantum Liouville
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equation. In a second step, this nonlinear polarization acts as
a source in the macroscopic Maxwell equations to generate
the signal field. In macroscopic samples the signal field wave
vector is given by a linear combination of the incoming pulse
wave vectors [1,13-15] and is detected interferrometrically
using an external reference field in the same direction, called
the “local oscillator” (LO). This somewhat awkward nomen-
clature originated in radio wave technology where the re-
ceiver is indeed local. The difference in intensity of the LO
with and without the signal field defines the heterodyne de-
tected signal:

400

Suer(k, k) ~ N Imf di€ (K, 1) Py(K,,1). (1)

—0

Here, £,(k,,1) is the complex amplitude of the local oscilla-
tor which is assumed to be classical mode propagating in k;
direction; P (k.,?) is the polarization induced by a linear
combination of incoming modes k. and projected on the lo-
cal oscillator; N is the number of molecules in the sample.

A crucial point in the semiclassical derivation of Eq. (1) is
that the local oscillator does not interact with the material
sample; it only interferes with the signal field after it has
been generated. The pump probe signal can be viewed as
self-heterodyne detected where one of the incoming fields
(the probe beam) also acts as LO, which, obviously, does
interact with the matter in this case and is not spatially sepa-
rated. Nevertheless the semiclassical theory correctly pre-
dicts the SRS and TPA signals, which in the frequency do-
main are related to the nonlinear susceptibilities.

In this paper we develop an alternative approach for com-
puting frequency domain nonlinear signals by treating both
field and matter quantum mechanically. The molecule is
viewed as an open system in a nonequilibrium steady state.
The signals can be calculated as differences of in and out
photon fluxes. In scattering theory fluxes are calculated with
the scattering (7) matrix and are given by
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This Kramers-Heisenberg (KH) (generalized Fermi golden
rule) form represents a dissipative process where molecules
move between initial |i) and final |f) states at a steady rate.
The nature of the process becomes clear and intuitive. The
nonlinear susceptibility form (1) while giving the correct sig-
nal does not reveal clearly what is really happening to the
matter in the course of the process. The T matrix approach is
commonly used in statistical mechanisms of open systems
such as tunneling junctions or molecular electronics [16,17].
Glauber’s formalism of photon counting is based on transi-
tion amplitudes [18]. A rigorous microscopic picture based
on scattering amplitudes can have several advantages over
the nonlinear susceptibility x®. First, it is highly intuitive
and can be used phenomenologically if desired. Second,
transition amplitudes are simpler to calculate than suscepti-
bilities. The connection between a scattering and susceptibil-
ity picture of linear spectroscopy (Rayleigh scattering) has
been the subject of recent interesting debate related to the
“sign problem” [19,20]. The present work establishes this
connection for nonlinear signals. We show how heterodyne-
detected signals can be recast in the generalized KH form
and demonstrate its equivalence to the standard nonlinear
susceptibility x® approach.

In the following two sections we present two essential
ingredients of the formalism that will be used to accomplish
our goal. In Sec. II we formulate the nonlinear wave mixing
using a quantum description of the fields and matter [21].
This establishes unified description of heterodyne and self-
heterodyne detected signals. The local oscillator needs not to
be spatially separated from the material. All modes, includ-
ing the detected mode, interact with the sample. The signal
mode is singled out only by the fact that it is detected but not
by the way it interacts with the system. We assume that all
modes, including the detected mode, are initially in a coher-
ent state. The change in the mode intensity is driven by the
nonlinear polarization of individual molecules induced by
the incoming modes. The molecules are uncorrelated and
give rise to the incoherent response from the sample that
scales linearly with the number of molecules N. Unlike the
SC approach, the Maxwell equations and macroscopic
propagation effects are not needed for defining the signal. We
can simply consider the response of a single molecule and
multiply it by N. This will be helpful for microscopy appli-
cations which involve a single or a few molecules.

In Sec. III we present a closed-time-path-loop (CTPL)
representation of heterodyne-detected signals. Time domain
(TD) nonlinear signals are usually described by the density
matrix and represented by double-sided Feynman diagrams
[14]. These keep track of the relative time ordering of the
various interactions by working in the Liouville space (fol-
lowing the bra and the ket simultaneously). The loop dia-
grams are only partially time ordered and provide a picture
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in the Hilbert space where the ket by moves forward and
backward in time [22,23]. The CTPL formalism is most natu-
ral for frequency-domain techniques where time ordering is
not maintained anyhow [21,24]. The rules for constructing
and reading loop diagrams are explained.

In Sec. IV, using the nonequilibrium steady-state approach
solely based on photon fluxes, we derive the closed KH ex-
pressions for the stimulated Raman scattering and the two-
photon absorption signals in terms of absolute squares of
scattering amplitudes [transition amplitude (TA)]. The loop
lends itself directly for the derivation of KH expressions. By
dissecting the loop into its forward and backward branches
we obtain the 7 matrix elements. Using the transformation
rules for the loop diagrams, in Sec. V we obtain the KH
forms of the two-photon absorption and stimulated Raman
scattering from x©). This establishes connection between the
CTPL and TA approaches. Both approaches yield the same
result but offer different interpretations. Section VI summa-
rizes our results.

II. HETERODYNE DETECTION AS A STIMULATED
PROCESS: QUANTUM FIELD FORMULATION

A material sample interacting with a quantized electric
field is described by the Hamiltonian

H(1) = Ho + Hiu(1), 2)

where H,, represents the bare material system and f],-,,,(t) is
the matter-field interaction. Equation (2) is written in the
interaction picture with respect to the field where the field
Hamiltonian is eliminated. We work in the units where #
=1.

The coupling between the material and the field is medi-
ated by the dipole operator, V(r)+V'(r). Here the first term
is the positive frequency (de-excitation) part defined by

N
V(r) =2 r—r,) X 2 wiliXk

a=1 j k>j

, 3)

where {|k)} represent the eigenstates of the bare material sys-
tem labeled according to increasing energy.

Similarly the field is partitioned as E(r,)+E'(r,?), where
the field annihilation operator at r and time ¢ is given by

n+l

2 A\ 12 )
E(r,t) = E (%’J.) aje’(k.ir"“’jt). (4)
j=1

Here, a; (aj-) are the annihilation (creation) operators for the
jth field mode, satisfying the bosonic commutation relation
[aj,aj.',]zﬁjj/. The index “j” runs over all the relevant field
modes and () is the quantization volume.

In the rotating wave approximation (RWA), H,,(t) as-

sumes the form

H,, (1) =E(r,t)V + E'(r,1)V. (5)
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The (n+1)th mode is singled out by the detection. Its
electric field operator consists of two terms: E,.(r,?)
=&,(r,t)+E(r,f). The classical (coherent) part E(r,?)
=&, expli(k,)r—w,] is not affected by the interactions with
the molecules. The second term E(r,7) is initially in the
vacuum state and populated due to the coupling with the
material. The signal is defined as the change in the intensity
of the detected mode due to the remaining n incoming
modes. In other words, we measure the change in the de-
tected mode intensity with and without the material sample:

S(¢) {J dr{[EX(r,1) + El(r,0)]

1
C ()& (r.0)

X[E(x,t) + E(r,0)]) - 5:(r,t)8s(r,t)}

= 20 [29%] dr(S;(r,t)ES(r,t))+fdr(EIEAr,t))].

T
(6)

The self-heterodyne part of the signal [Eq. (6)] is given by
the first term. This term dominates the signal since usually
E'E,>(E!E,). The expectation value of the induced electric
field can be calculated using the Heisenberg equation of mo-
tion for the detected mode:

d
E(c‘?:(l‘,t)Es(l‘,t)) = i€ (0,0 Hjp, Es(r,0)])

27w,

Q

= i8§(r,t)< )(V(r,t))e‘“‘xr. (7)

Here we took into account that the & (r,7) part of the de-
tected mode is not affected by the interaction with the matter
[H;y, E5(r,1)]=0. We also introduced the averaging over the
coupled light and matter (V(r,7))=Tr[ V(r)p(z)] described by
the time-dependent density operator p(z). The solution of this
equation along with the initial condition (E(r,r=-%))=0
can be substituted into Eq. (6), which yields for the station-
ary self-heterodyne signal:

Sypr=2Im J dre T f ’ dtE(t)(V(r,1)). (8)

Expanding p(f) to first order in each of the n incoming
modes and summing over all the molecules in the sample, we
obtain (V(r,7)) in the terms of the nonlinear polarization

P.(1) calculated in the k.= X *k; direction:

i=1

N
(V(r,1)y= >, 8(r —r,)P(1)e’™". 9)
a=1
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The heterodyne detected (n+ 1) wave mixing signals are thus
directed along one of the 2" directions given by all possible
plus minus combinations of the n incoming wave vectors.
Substituting Eq. (9) into Eq. (8) we obtain the signal as

+00

Sypr=2N Im J diE (P (1), (10)

—00

where we assumed the sample to be large enough for the
perfect phase matching k,—k,.=0.

Comparing Eq. (10) with Eq. (1) we conclude that there is
no principal difference between ordinary and self-heterodyne
detected signals. The following microscopic interpretation of
heterodyne-detected signals is offered by Eq. (10): all n+1
fields (including LO) interact with the matter and all n+1
transitions are stimulated. We measure the change in inten-
sity of the local oscillator. For a large sample, a change in its
intensity will occur only if k; approximately coincides with
one of the directions k. or equivalently w.—w;=0. The non-
linear polarization induced by n incoming modes contains all
the information necessary to calculate the signal.

III. DIAGRAMMATIC CLOSED-TIME-PATH-LOOP
CALCULATION OF HETERODYNE SIGNALS

Equation (10) serves as a convenient starting point for
calculating nonlinear optical signals. The nonlinear optical
polarization P.(¢) with a given wave vector k, will be calcu-
lated using a perturbative expansion of the density operator
p(t) with respect to the incoming n modes. In this section we
show how this expansion may be performed diagrammati-
cally using the CTPL. The loop expansion may be formu-
lated either in the time or frequency domain. Here we shall
focus on the frequency domain formation. However, since
the time-domain formulation is closely related to double-
sided Feynman diagrams, we present both. The rules for con-
structing and reading time- and frequency-domain diagrams
are summarized in Appendixes A and B, respectively.

In the SC theory, optical signals are given by causal re-
sponse functions of the material to the classical field [14]. In
a quantum treatment of the field these are replaced by prod-
ucts of matter and field superoperator nonequilibrium
Green’s functions (SNGFs) [17] which represent the re-
sponse as well as spontaneous fluctuations in both matter and
field. The CTPLs provide an intuitive diagrammatic ap-
proach for computing the SNGF.

In the time domain, the loop is understood as a diagram-
matic representation of the density operator. This interpreta-
tion relies on its perturbative Liouville space expansion in
the incoming modes. We associate with each Hilbert-space
operator A, a left (L) and a right (R) superoperators [25,26]:

A X =AX,

ARX=XA, (11)
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where X denotes an arbitrary operator. We further introduce
the density operator in the L/R representation:

p(t) =expy — l'f [Hinr,L(T) - Him,R(T)]dT p(=2).

(12)

Perturbative expansion of the density operator [Eq. (12)] to
first order in each of the incoming n modes yields the time-
domain signal [Eq. (10)] in terms of the matter SNGF times
the field SNGF. Each SNGF is a partially time-ordered cor-
relation function of the dipole or the field L/R superopera-
tors. Partial time ordering means time ordering for L and R
superoperators, but there is no time ordering between those
groups of the superoperators. The time dependence of the
dipole superoperators stems from the transformation to the
interaction picture with respect to the bare molecule:

V(1) =expli(Hy — Hog)t]V, exp[— i(Hy, — Hy p)t],
(13)

where the subscript v stands either for L or R superoperator.

The CTPLs provide a graphic representations of the
SNGFs. The left branch describes V,(7)E,(t) interaction, and
the right branch shows V(1) Eg(f) interactions. The loop dia-
grams are partially time ordered in contrast to the fully time-
ordered double-sided Feynman diagrams. The latter are pic-
torial representation of the perturbative expansion of the
density operator in the Liouville space,

p(1) = exp{— lf Eim(T)dT] p(=). (14)

The left branch describes the ket and the right the bra. Since
for the CTPL interactions on the left and the right branches
are not time-ordered relative to each other [rule (TD6), Ap-
pendix A], it gives a more compact representation [(n+1)
terms] than the double-sided Feynman diagrams (2" terms)
for the nth-order response. Double-sided Feynman diagrams
can be generated from the CTPL diagrams by keeping track
of the relative time ordering between interactions occurring
with the ket and the bra [rule (TD6), Appendix A]. Therefore
the CTPL’s present no advantage over the double-sided
Feynman diagrams for a time domain experiment with non-
overlapping optical pulses where all interaction times are
controlled. In the frequency domain the time ordering be-
tween the interactions is not maintained, and the loop dia-
grams provide a compact picture in the Hilbert space where
the ket evolves forward (left branch) and then backward in
time (across the loop and on the right branch).

The loop represents a state vector in the Hilbert space,
propagated clockwise along a closed time pathway between
—co and the observation time ¢, i.e., —©—t——o. CTPLs
were originally introduced in quantum field theory to de-
scribe nonequilibrium states [27-31]. The following two
points are crucial for distinguishing the CTPL from the
double-sided Feynman diagrams. First, in the density-matrix
approach one may look at the ket and the bra separately
when drawing the diagrams for particular processes. The
construction is then done starting at the bottom of each
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branch and ending at its top, making sure that the material
system is in a diagonal element of the density operator at the
observation time ¢ (otherwise the trace vanishes). We can
therefore think of the process as forward propagation in time
on both the ket and bra. The second point concerns the last
interaction which can act on either the left or the right branch
since this leaves the corresponding matter-SNGF invariant
{Tt[Vp(1)]=Tr[p(r) V]}. We adopt the convention that the last
interaction occurs from the left [rule (TD5) in Appendix A].
However, this choice does affect the physical interpretation
of each interaction as either absorption or emission. This is
an ambiguity intrinsic to double-sided Feynman diagrams. In
the CTPL this is resolved at the price of having to introduce
backward propagation on the right branch of the loop dia-
gram.

Using rule (FD8) in Appendix B we define the retarded
Hilbert-space propagator

1

Glw) = ————.
= iy

(15)

The infinitesimal y> 0 arises from causality and guarantees
the convergence of the Fourier transform.

There are two basic transformations of loop diagrams.
Changing the last interaction from the top left to the top right
leaves a diagram, i.e., its corresponding SNGF, invariant.
Similarly, a reflection of all interactions through the center
line between the two branches amounts to taking the com-
plex conjugate of the related SNGF. This follows from
<AB‘ . .Z>*:<ZT. "B+AT>.

In summary, in the frequency domain, the loop represen-
tation has several advantages and resolves some conceptual
ambiguities that arise in the double-sided Feynman dia-
grams. One associates forward propagation with the left and
backward propagations with the right branch of the loop.
This implies that an arrow pointing to the right (left) always
represents absorption (emission) regardless on whether it oc-
curs with the left or the right branch. In particular, changing
the last interaction from the left to the right branch conse-
quently does not change its physical meaning. Hence for a
given frequency-domain diagram, there is no ambiguity
about the absorption or emission nature of the interaction at
the observation time. Ambiguity does exist in the density-
matrix representation which involves all-forward propaga-
tion and connects better to time-domain experiments.

In a coherent parametric process the signal frequency is
given by a combination of the other field frequencies. We
now apply the CTPL to compute the four wave mixing signal
at k.=-k;+k,+k;. Pump probe spectroscopy is a special
case of this signal, as will be demonstrated in the coming
sections. Applying rule (FD3), we find that in this technique
fields k, and kj; are absorbed, (and represented by arrows
pointing to the right) whereas k; and k; are emitted (arrows
pointing to the left). The diagrams are generated by consid-
ering all possible ways of distributing these arrows along the
loop under the constraint that the interaction with K, is fixed
to the top left branch. We illustrate this for a three-level
ladder model system with sequential (|g)— |e) and |e)— |f))
dipole coupling, as shown in Fig. 1.
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FIG. 1. The three-band (ladder) model system and its transition
dipoles.

Hge

In accordance with the energy conservation in the field,
the loop describes propagation along the closed time path
—o0—t— —c0, where the material system must start and end
in the ground state |g). Within the RWA this implies that
along the loop the first interaction must be an absorption and
the last an emission. This gives the eight diagrams shown in
Fig. 2.

We adopt the following convention for the Fourier trans-
form:

1 )
A(7) = ;TJ dwA(w)e "

A(w):deA(T)ei“’T. (16)

We next use frequency-domain rules to calculate the hetero-
dyne signal at k.. We note that the loop diagrams can be
naturally divided into two groups. The first group given by
(a)-(d) in Fig. 2 involves the sequence V'V'VV, i.e., photon
absorption, absorption, emission, and emission. It should be
emphasized that this order along the loop does not represent
an ordering in real time. All two-photon resonances of the

7k;\/\mf/_\ 7k\4\/\/\f/\ 7ks<\/\/\4f/_\ 7kVK4V\/\At/_\

X
—k +k3 +ko
AN AAAEEEERVAVAVS AN
+ko +ky Y ki
AN AN NN NN
+k3 +ky +ko +k3
AN A AN AVAVAVS

(a) (b) () (d)

—k kg +k:
7k1<'vv» PV M IYA%Y4
+ks +k
ANAAN AN k ki
NAVAYAY NAYAYAY
+ky +y +ky +ky
[AVAVAV. 4| A VARV | JVAVAV 4

(e) () (9 (h)

FIG. 2. CTPL representation of the heterodyne detected k.
=-Kk;+k,+Kk; signal. Diagrams (a)-(d) represent two-photon ab-
sorption and the diagrams (e)—(h) represent the stimulated Raman
scattering.
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type w;+w; are included in this group, we thus label it TPA.
The second group given by pathways (e¢)—(h) in Fig. 2 rep-
resents the sequence ViVVIV, ie., photon absorption, emis-
sion, absorption, and emission; which correspond to SRS
resonances of the form w;— ;. Using the loop diagram rules
in Appendix B we get two contributions to the heterodyne-
detected signal:

Sypr=—47TN8w, — (- o + 0, + w3))

ng:g;(gzggx(?))(— Wy W3, Wy, — wl) (17)

Here the third-order susceptibility is partitioned into its two-
photon absorPtlon and stimulated Raman scattering parts

X 3)_XTPA+XSRS as

XTPA( W3 W3, ), — W)

=[(VG(w, + w3 —

XV'G(w, + a)g)VT) +(VG(w3+ 0 — 0] + 0,)
XVG(w3 + 0y + 0,) VIG(w3 + 0,) V')

+ (VG () + w3 —

XV'G(w, + wg)VT>

)+ ) VG(w; + 03+ )

s+ 0,)VG(w, + w3+ w,)

+ (VG (w3 + 0y — 0, + w,)

XVG(w;3+ 0y + ,) ViG(wy+ w,) Vi1, (18)

XSRS( Wy 03,0;,~ ©})
=[(VG(w, -
XVG(wy+ 0 )V') + (VG(w; - w) + 0, + w,)
XV'G(wy— o) + ,)VG(w; + wg)VT)

+ (VG () — 0, + 03+ 05) VI G (w, —
XVG(w, + wg)VJr) +(VG'(w; -
XVIG (w3 - 0, + 0) VG(w3 + w,) V] (19)

W+ 03+ ) VIG(w, - 0, + w,)

W+ w,)

0+ 0, + 0,)

Note that the momentum conservation condition could have
also been multiplied by (~1), thereby reversing all signs of
the wave vectors. All absorptions then become emissions and
vice versa. Diagrammatically this can be achieved by a re-
flection of all interactions through the center line between the
left and right branches. This transformation corresponds to
taking the complex conjugate of the associated SNGF. Since
the signal is proportional to the imaginary part of the polar-
ization [Im(z*)=-Im(z)], this operation will cause an overall
change in sign. This sign change simply implies that all the
interactions (absorptions and emissions) have been reversed
in their physical interpretation.

We may hence interpret the process either as an emission
(-k;+k,.=0) or an absorption (k,—k,=0) of a photon in the
detected mode. This freedom arises because the field is as-
sumed to be in a coherent state which is given by the follow-
ing superposition of number states |n):
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+ko +ko —ko
NANAF N> AN
—k
7k L ea +k
PNV AANA»
T AN A —k
NN
(a) (b) (c)

FIG. 3. CTPL diagrams for the processes (a) (|n;,ny)—|ny+1,ny+1)), (b) (|ny,n)— |ny,n+1)), and (c) (Jny,ny)—|n+1,n,—1)).
These correspond to the lowest-order contributions to each of the processes given in terms of four-point correlation functions. These
diagrams violate the RWA since they involve de-exciting the material system from its ground state.

W)= exp(— E |aj|2)exp{aa+}|0)
j

=exp(= 2ol 2 Tl (20)
J

n=0 V1

Here, |0) is the vacuum state.
A coherent state is an eigenstate of the annihilation opera-
tor,

a|\IfC> = a|\IfC) and (‘I’C|afa|‘I'> = |a|2. (21)

Therefore for a coherent state adding or removing one pho-
ton does not change the average number of photons.

The quantum description of the fields suggests a natural
classification of (n+1)-wave mixing experiments as either
phase sensitive or phase insensitive. A nondegenerate
(n+1)-wave mixing signal performed with (n+1) different
modes each initially in a number state is not possible since
its amplitude vanishes identically. However, degenerate pro-
cesses whereby each creation operator is accompanied by the
corresponding annihilation operator give a nonvanishing
field correlation function. Macroscopically, such phase-
insensitive signals involve exact phase cancellation of the
fields. These experiments can be readily interpreted in terms
of photon occupation numbers. Since phase-insensitive sig-
nals are possible for optical Fock states, they can be derived
alternatively using transition amplitudes represented by
single-sided Feynman diagrams. In doing so, it will be pos-
sible to partition the diagrams into absorptions and emissions
of a photon in the detected mode. This picture will be used in
the next two sections where we first derive the pump probe
signal in terms of photon fluxes in a nonequilibrium steady
state (Sec. IV) and then show how the CTPL expression can
be recast in the same form by dissecting the diagrams along
their center lines (Sec. V).

IV. PUMP-PROBE SIGNAL EXPRESSED AS A
NONEQUILIBRIUM STEADY-STATE PHOTON AND
MATTER FLUX

This section provides an intuitive derivation of the pump-
probe signal using scattering amplitudes without resorting to
susceptibilities. Single-sided diagrams represent transition
amplitudes corresponding to the system undergoing a change

from a given initial (matter/field) state to a specified final
state. Only forward propagation is necessary which allows
for a more intuitive picture. This is however only possible
for phase-insensitive processes, described in terms of number
states of the field.

The pump probe technique is a self-heterodyne detected
stimulated process. It involves two beams with wave vectors
k, and k,. In general the beams may also differ in their
polarization direction. Polarization indices are omitted here
for clarity. The intensity of one of the two modes (k,=K; as
the probe beam) is monitored, whereas the other mode (k)
is referred to as the pump beam. The signal is defined as the

ko +ko Ky +ko
AN AR AN A%
+k2
AN
_k]
NN\
+k
+ky ! +ky 1k
AN ANNP NNNF ANNP
(a) (b) (c) (d) (e)
-k -k
N enn| Tk K
AVAVAV. N\
+ki +ko -k
AN AP NN
+ko +ky +ko ko
ANNAF AN AN VYV
) (9) (h) 0]

FIG. 4. Single-sided Feynman diagrams representing the ampli-
tudes of processes of types (i)—(iv). The possible realizations (path-
ways) of the three processes are classified with respect to the num-
ber of interactions (=order). Time now runs from bottom to top.
Process (ii) is realized by two second-order pathways, shown in
panels (b) and (c). Process (iii) can be realized by a first order
pathway [panel (d)] or by third-order pathways [panels (e)—(h)].
Processes (i) and (iv) are given by second-order pathways illus-
trated in panel (a) and (k).
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difference in the transmitted intensity of the probe beam,
with and without the pump beam [Eq. (8)].

To calculate this signal we note its independence on the
phases of the fields. In a quantum description of the field this
implies that each field creation operator must be accompa-
nied by the corresponding annihilation operator. The process
may therefore be described in terms of a Fock state for the
field. Let |n;,n,) denote the initial state of the two modes at
t— —o. In order for a pathway to contribute to the signal at ¢,
the number of photons of the probe beam (n,) must change.
By definition, the signal represents how this change is medi-
ated by the pump beam. We only consider the lowest-order
processes where the number of photons in each mode may
change by =1 at most. The matter is described by the three-
band model system shown in Fig. 1.

The possible processes may be classified according to the
net change in the number of photons in the probe beam be-
tween — and observation time z. To lowest order in the
probe beam, the effect can either be photon emission (1,
—n,+ 1) or absorption (n, —n,—1). In each case the number
of photons of the pump beam may have either changed (n,
—n;* 1) or returned to its initial value (n; —n;). In total,
this gives rise to six processes in the joint two-mode space.
However only three survive the RWA. We show this dia-
grammatically. First, we note that when going around the
loop, the joint matter-field system must start and end in the
same state |n;,n,). Since at time ¢ the number of photons in
the probe beam must change, to lowest order, the system has
to undergo one interaction with the probe beam on either side
of the loop. Overall phase cancelation then requires two ad-
ditional interactions with the pump beam. Formally the sig-
nal will therefore be given in terms of four-point correlation
functions (two interactions with the pump beam and two
with the probe beam).

Applying these rules to each of the six possible processes
with a total of four interactions, the processes |n;,n,)—|n,
+1,n,+1), |ny,n)—|n,ny+1), and |n;,n)—|n+1,n,
—1) shown in Fig. 3 do not contribute within the RWA and
may be neglected. All three diagrams involve de-exciting the
molecule from its ground state.

The eight contributing loop diagrams are shown in Fig. 5.
Each diagram can be associated with one of the four possible
processes: (i) |nj,n)—|n—1,my+1), (i) |n;,n)—|n,
=1,ny=1), (iii) |ny,n5)—|ny,ny=1), and (iv) |ny,ny)— |
+1,n,—1). Due to phase cancelation of the fields, they only
enter in form of modulus squares (intensities). This allows
them to be taken out of the imaginary part of Eq. (10); what
remains is the imaginary part of the matter correlation func-
tions.

Figure 4 gives the single-sided diagrams for each of the
four processes (i)—(iv). In contrast to the loop, time now goes
forward from bottom to top. Different pathways may inter-
fere in a given process. The total amplitude of each process
is hence given as the sum of the amplitudes of the possible
pathways. The material transition amplitudes are given in
Appendix C. Since the fields are in coherent states, their
transition amplitudes are simply given by products of corre-
sponding electrical fields of the modes, as in the SC theory.

Processes (i) and (iv) are each given by single two-photon
TA for the matter and light interacting system,
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2
Ti= 66T (@), (22)

Ty, = 6615 (). (23)
Process (ii) are given by two two-photon TA,
T;i= EELTH) (o) + T3 (0)]. (24)

There are five TA (one single-photon and four three-photon)
for process (iii):

Tyi= 5272,;) + 52|51|2[7§?(w1 - 0,0+ 72)(0’2 + 0y, w))
+ 72)((1)1 + Wy, ) + 72)((1)2 - w,0)]. (25)

All material 7 matrix elements are given in Appendix C. The
pump-probe signal is given by the absolute square of the
amplitudes of each process scaled with corresponding reso-
nant factor (Dirac delta function). The signal can be inter-
preted as the difference between stimulated emission (posi-
tive) and absorption (negative) in the detected mode (probe
beam in this paper). This gives us Kramers-Heisenberg form
(indicated by the tilde) of the pump-probe signal,

Sppl@y,0) =47N 2 P([|T* 8w, - ) - Wg1,)

g ef
—|T|? 8w, — @ - Wy )
— Tl dlw, + 0y — wp) = [Tii* 8w, — w,)].

(26)

Here P(g) is the equilibrium population of the ground state
|g). T; represents an overall gain of photons in the detected
mode (stimulated emission), whereas T, T;;, and T}, repre-
sent loss (absorption). The first two terms represent SRS as a
difference of two photon fluxes. The third term represents
TPA as a two-photon flux. When the photon frequencies are
tuned off any single-photon resonance, the last term van-
ishes. Otherwise it provides a resonant contribution to the
signal. From Eq. (26) we see that it contains both SRS- and
TPA-type resonances. Note that in order to get the Kramers-
Heisenberg form we had to include terms with different or-
ders in the fields ~&? and ~&°. The actual pump-probe sig-
nal is obtained from Eq. (26) by keeping only the
contributions which scale as ~|&[?|&,|*.

Notice that the only ingredient necessary to derive Eq.
(26) is the changes in the number of photons in the optical
modes. Since we monitor the change in the probe beam
mode only An, defines the sign of each term. In the next
section we show how this result can be derived using the
CTPL expansion of ).

V. PUMP-PROBE SPECTROSCOPY REVISITED:
FACTORIZING x©® INTO TRANSITION AMPLITUDES

The pump-probe signal can be obtained from Egs. (18)
and (19) as in self-heterodyne detections by putting ky=k;
and k,=k;. It is given by ¥ (—w,; 0,,-0;, ).

We start with the loop diagrams for the pump probe signal
shown in Fig. 5. The material correlation functions represent-
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FIG. 5. The eight CTPL diagrams for the pump-probe signal. These can be grouped into three processes according to the state
of the field at the observation time, t, into three processes: (a) and (b) |n;,n,)—|n—1,n,—1), (c)=(g) |ny,ny)—|n;,ny—1), and

(h) |ny.np)—|n=1,np+1).

ing the diagrams may be recast in the form products of am-
plitudes corresponding to single-sided Feynman diagrams.
To this end we consider each branch of the loop separately.
Pictorially this amounts to dissecting the loop along its cen-
ter line. Such dissection is possible, since by definition, the
top of both branches represents the matter-field system at the
same time ¢. Formally this can be obtained by inserting the
identity after the dipole operator representing the interaction
at t. Applying rules (FD7)-(FD9) in Appendix A, the ad-
vanced propagator G'(Aw+ ,) joins the two branches as
shown in Fig. 6. Here, Aw denotes the cumulative sum of the
signed field frequencies of the interactions on the left branch.
Physically, Aw represents the change in the energy of the
field that has occurred between —o and f. Each branch is
treated separately and represents a scattering amplitude
which may be represented by a single-sided Feynman dia-
gram.

The signal has two components: two-photon absorption
and stimulated Raman scattering,

(27)

Using the definitions in Appendix C the two-photon absorp-
tion contribution can be written in terms of the complex
amplitudes as

Stpa(wy, 0,) =~ 477'N|51|2|52|2 ImE P(g)[|7;§,)(w1)|2
g.e.f

Spp(w1,0)) = Srpa( @), ®)) + Sgrs(wy, wy).

1
w2+w1—wfg—i’y

+ PQIT) 1) (w0 + 01, 0))

+ T () 75 ()]

Gl Aw + w
e N
SAAAALE N
|y
A M

FIG. 6. By dissecting the loop along its center line it factorizes
into two single-sided Feynman diagrams. This is possible since the
system remains in the same state |¢(r)) between the topmost inter-
action on the two branches which occur, respectively, at times ¢ and
7. The advanced propagator G'(Aw+ w,), representing backward
propagation from ¢ to 7, joins the two.
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+7070

€g ~eg

1
X (@) + w3, )] . (28)
W) = Wy — iy

The first term corresponds to diagrams (a) and (b) in Fig. 5,
the second term is related to diagrams (f) and (g).

Similarly the stimulated-Raman scattering signal can be
written as

Ssrs(@1,@7) = 47N|E [P1E,
1

W= W)= Werg— 1Y

XIm >, |75 ()
8.8"e

- P(QITVTV* (w0, - w),0))

eg ~eg

+ 72272)’*(‘02 - 0}, ,)

+ 72,)(0’1 - whwl)']i;)’*]
1
X —. (29)

W) = Weg — 1Y

The first term corresponds to diagram (h) in Fig. 5, the sec-
ond term is related to diagrams (c)—(e).

In these equations we have expressed x© in terms of
products of T matrix elements. This is a step toward recast-
ing the signal in the KH form of Eq. (26). Note that Eq. (27)
unlike Eq. (26) does not contain the matrix elements which
correspond to the pump beam being the last to interact with
the matter. These terms are the only difference between those
equations provided one neglects the high-order terms (to
fourth order in the field). As we show below these terms
mutually cancel each other. We prove the statement by add-
ing and subtracting diagrams with the last interaction occur-
ring with the pump beam instead of the probe beam from the
signal [Eq. (27)].

We start with the SRS part of the pump probe signal. Let
us consider diagram (h) in Fig. 5 and interchange the pump
beam and the probe beam so that the last interaction occur
with the pump beam. Using the basic transformation rules of
Sec. III (the last interaction is brought to the right branches
and then the diagrams are reflected with respect to the central
line) one can prove the following identity:

47N Im >, P(g)|&PIE P
g.8".ef
1

3 1),
X Teg)(wz - wl,wz)']ﬁg) ) ;
W) = Weg — 1Y

1
+172 () —[=0. (30
Wy — Wy — a)grg— Ly

Here the first term corresponds to the pump beam absorption,
and the second term stands for the pump beam emission, and
the total contribution from this terms is zero. We will also
need the following trivial identity:
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1

4nNIm X PITE) - T8 |& ] ———=0
, ¢ ¢ Wy = Wee = 1Y
8.8 .e.f g
31)
and the high-order terms
4102 !
4N Im 3 P& &P —————
g2 ef 2 eg Y
X[ljﬁ?(wz - o, wz)’]ﬁ?’*(wz - 0}, 0,)
+ 72)(0’1 - wl,wl)ﬁ?’*(ﬂ’l - 0, o))
+ 72)(0)2 - wbwz)']ﬁ?’*(a’l - 0}, o))
+ 7?;(‘01 - wl,wl)ﬁ?’*(wz -0, w)]. (32)

By adding Egs. (30)—(32) into Eq. (29) we can bring it to the
generalized KH form of the stimulated Raman scattering,

§SRS(wl’w2)=47TN > P(g)|€]|2|52|2|7§%2(w])|2
88" ef

X 8w, = ;= wyy) = P(R)|E P& TE) ()
X 8w = 1 = wgrg) + P(Q)|ELI T &y

= wee) = P(Q)|ETE) + 116,15 (0 - w1, 0))
+1EPET () - 00 X0, - w,,).  (33)

eg/
In addition to terms corresponding to two interactions with
the pump beam and two interactions with the probe beam. It
contains higher-order terms in the field. Comparing the
CTPL [Eq. (29)] and KH [Eq. (33)] expressions for the
stimulated Raman scattering, we find that they only differ by

six order terms in the optical field: Sggs(w;,,)
—Sers(@;,0,)=0(|&|&|*). The imaginary part in Eq. (29)
is brought on the advanced Green’s function across the loop
in Eq. (33) and gives the Dirac delta function with the argu-
ment corresponding to specific molecular resonances.

In the form of Eq. (33), the SRS process can be inter-
preted as follows. The first term describes one photon deple-
tion of the pump beam mode followed by the emission of a
photon into the probe beam mode. The second term describes
emission into the pump beam mode after a probe beam pho-
ton was annihilated. The two terms are of opposite sign and
correspond to different resonances. In the degenerate case
(w;=w,) they exactly cancel each other. The remaining
terms describe perturbation in the probe beam linear absorp-
tion due to the pump beam. The pump beam, in a sense,
catalyzes the molecular transitions from ground |g) to ex-
cited |e) since the number of photons in the pump beam
mode remains unchanged [see diagrams (b) and (h) in Fig.
5].

We next turn to the TPA component of the pump-probe
signal. Considering the diagrams (a) and (b) in Fig. 5 with
switched the pump beam and the probe beam and using the
diagrams transformation rules, we find the following
identity:
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1

W+ W — =1y

+ [72)(@2 + wl,wz)’]fgi,)'* + 72)(@1 + w27w1)7£?'*]
1

X —————— =0 (34)
W) = Weg — 1Y

(1753 (@2)]? + T3 () T ()]

In the above equation the first term is the absorption of the
pump beam, and the last term is the emission of the pump
beam. We will also need the high-order terms

47N Im >, P(g)|& Y€
w
g.8".e.f

X[']ﬁz)(wz + wl’w2)7§;)’*(w2 + 0, w))

Z_weg_ly

3 3),%
+ 7§g)(w2 + wy, w1)7§g) (0, + 0}, @)
+ 72,)(0)2 + wy, wz)ﬁ?’*(wz + 0y, 0;)
+7Sg)(w2+ wl,wl)ﬁ?’*(a’z"‘ wp,@))]. (35)

Substituting Egs. (31), (34), and (35) into Eq. (28) we again
bring it to the generalized KH form

§TPA(¢01,£02) == 47TNE P(g)|51|2|52|2|7}?(w1)
g.e.f

+ 7§§)(w2)|25(w2 + o)~ )

+ P(2)|&,T8) + €T (w0, + 01, )
+|€1P6T5) (0 + 0.0 8w, — o,

- P& 8w - w,). (36)

Here the first two terms describe the absorption of the pump
beam and the probe beam. The remaining terms represent the
pump beam catalyzed change in the linear absorption of the
probe beam. The KH form represents the two-photon absorp-
tion signal up to the fourth order in the optical field. Similar
to SRS we have §TPA(w1’w2)_STPA(w1’w2)=0(|52|2|51|4)~

Equations (27), (33), and (36) are equivalent to Eq. (26).
The simple KH form in terms of modulus square of transi-
tion amplitudes is recovered for both TPA and SRS when the
single-photon  transitions are off-resonant (|w,—w,,|> 7).
Otherwise, in order to match that form, we must go beyond
x%); however we still use the same transition amplitudes
which are the building blocks of ). A KH form of the
signal is possible if we include six order terms which can be
made negligible by keeping the fields sufficiently weak. The
KH form can thus be used for numerical simulations pro-
vided we carefully adjust the field amplitudes &, and &,, as is
done experimentally.

VI. CONCLUSIONS

In this paper we have formulated heterodyne-detected (n
+1)-wave mixing signals using a quantum description of
both the matter and the field. In this approach signals are
defined as the change in intensity in the detected mode with
and without the n incoming modes. As in the SC theory,
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these are expressed in terms of the nonlinear polarization
induced by the incoming modes.

In the SC description of heterodyne-detected techniques
the local oscillator serves as the detected mode. The present
formalism does not require the local oscillator to be external
to the material; the signal is viewed as a single (n+ 1) photon
process where all modes (the 7 incoming as well as the local
oscillator) do interact with the material. Self-heterodyne de-
tected signals such as a pump probe spectra arise naturally
the same framework. All transitions (including the signal
generation) are now stimulated, and spontaneous emission is
neglected.

The CTPL provides a convenient diagrammatic tool for
calculating the polarization for frequency-domain experi-
ments. Rules for constructing and reading these diagrams
were presented. It resolves certain conceptual ambiguities
associated with double-sided Feynman diagrams. Contrary to
latter, an arrow pointing to the right (left) always represents
absorption (emission) irrespective on whether it is placed on
the left or the right branch of the loop. The CTPL represents
dynamics of a state in the Hilbert space which propagates
forward (left branch) in time and then across the loop back-
ward (right branch). This resolves the ambiguous role of the
interaction at the observation time, which diagrammatically
can be placed on either of the two branches. In the CTPL
formalism this interaction has a definite interpretation as ei-
ther photon emission or absorption.

For frequency-domain experiments the CTPL generally
yields more compact expressions for the signal than the fully
time-ordered double-sided Feynman diagrams [(n+1) vs 2"
terms]. We have employed CTPL to derive an expression for
the frequency-domain four-wave mixing signal k.=-k;+k,
+k;. The CTPL is particularly useful when the signal is gen-
erated by highly nonclassical optical field and is not defined
by the causal response function y). In this case dissecting
the loop at the central line is not always justified since cor-
responding single or (and) three-photon optical transition
amplitudes might vanish.

By treating both field and matter quantum mechanically,
wave-mixing signals can be classified as either phase-
sensitive or phase-insensitive type. The expressions for
phase-sensitive signals contain a different number of creation
and annihilation operators for at least one of the field modes.
Phase-sensitive experiments are not possible with fields ini-
tially prepared in a Fock number state. The signal then van-
ishes identically. Such processes are only possible in the
presence of a Fock-space-coherence of the field, e.g., when
the field is in a coherent state. Such signals however, cannot
be interpreted in terms of changes of photon occupation
numbers as a difference of absorption and emission.

Expressions for phase-insensitive signals contain an equal
number of creation and annihilation operators in each of the
participating field modes. Such processes are possible even if
the fields are initially prepared in number states and may
therefore be interpreted more intuitively in terms of photon
occupation numbers. Each loop diagram can then be factor-
ized into a product of two complex transition amplitudes
represented by single-sided Feynman diagrams which only
involve forward propagation. The signal can be interpreted
as the difference between emission and absorption in the
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detected mode. As an example of a phase-insensitive signal
we considered the pump probe technique composed of two-
photon absorption and stimulated Raman scattering parts. By
combining the CTPL with the 7" matrix formalism we ap-
proximate both signals by the generalized KH form. This
shows that heterodyne detection selects only resonant com-
ponents of the Im y'. The KH form becomes an exact rep-
resentation of the signal when single-photon transitions are
off-resonant or at sufficiently low-field intensity when terms
higher than ~|&,|?|&,|* make negligible contributions to the
signal.
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APPENDIX A: RULES FOR THE CTPL IN THE TIME
DOMAIN

In this appendix we summarize the rules for the time-
domain (TD) interpretation of the CTPL. Derivation of these
rules may be found in Ref. [21].

TD1: in the time domain the loop represents the density
operator. Its left branch stands for the ket, the right corre-
sponds to the bra. Time runs from bottom to top on both
branches.

TD2: each interaction with a field mode is represented by
a wavy line on either the right (R operators) or the left (L
operators).

TD3: the field is indicated by dressing the wavy lines with
arrows, where an arrow pointing to the right represents the
field annihilation operator E(r,t), which involves the term
e'®&jm-01) [see Eq. (4)]. Conversely, an arrow pointing to the
left corresponds to the field creation operator E'(r,?), being
associated with ¢~® 7). This is made explicit by adding
the wave vectors *K; to the arrows.

TD4: within the RWA, each interaction with E(r,?) is
accompanied by applying the operator V', which leads to
excitation of the state represented by the ket and de-
excitation of the state represented by the bra, respectively.
Arrows pointing “inwards” (i.e., pointing to the right on the
ket and to the left on the bra) consequently cause absorption
of a photon by exciting the system, whereas arrows pointing
“outwards” (i.e., pointing to the left on the bra and to the
right on the ket) represent de-exciting the system by photon
emission.

TDS5: the interaction at the observation time ¢, is fixed and
is always the last. As a convention, it is chosen to occur from
the left. This choice is arbitrary and does not affect the result.

TD6: interactions within each branch are time-ordered,
but interactions on different branches are not. Each loop can
be further decomposed into several fully time-ordered dia-
grams (double-sided Feynman diagrams). These can be gen-
erated from the loop by simply shifting the arrows along
each branch, thus changing their position relative to the in-
teractions on the other branch. Each of these relative posi-
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tions then gives rise to a particular fully time-ordered
diagram.

TD7: the overall sign of the correlation function is given
by (=1)"k, where Ny stands for the number of interactions
from the right.

TD8: diagrams representing (n+ 1)-wave mixing acquire a
common prefactor i".

APPENDIX B: RULES FOR THE CTPL IN THE
FREQUENCY DOMAIN

In this appendix we summarize the rules for the
frequency-domain (FD) interpretation of the CTPL. Deriva-
tion of these rules may be found in Ref. [21].

FD1: time runs along the loop clockwise from bottom left
to bottom right.

FD2: each interaction with a field mode is represented by
a wavy line.

FD3: the field is indicated by dressing the wavy lines with
arrows, where an arrow pointing to the right represents the
field annihilation operator E(r,), which involves the factor
¢'ksT=o0)  Conversely, an arrow pointing to the left corre-
sponds to the field creation operator E'(r, 1), being associated
with e~®s7=s) This is made explicit by adding the wave
vectors *Kk; to the arrows.

FD4: within the RWA [Eq. (5)], each interaction with
E(r,?) is accompanied by applying the operator V', which
leads to excitation of the material system. Arrows pointing to
the right cause absorption of a photon by exciting the mol-
ecule, whereas arrows pointing to the left represent de-
exciting the system by photon emission.

FDS5: the interaction at the observation time ¢ is fixed to be
with the detected mode and is always the last. It is chosen to
occur on the left branch of the loop. This choice is arbitrary
and does not affect the result.

FD7: the loop translates into an alternating product of
interactions (arrows) and periods of free evolutions (vertical
solid lines) along the loop.

FDS: since the loop time goes clockwise along the loop,
periods of free evolution on the left branch amount to propa-
gating forward in real time (iG), whereas evolution on the
right branch corresponds to backward propagation (—iG").

FDO: the frequency arguments of the various propagators
are cumulative, i.e., they are given by the sum of all “earlier”
interactions along the loop. Additionally, the ground-state
frequency w, is added to all arguments of the propagators.

FD10: a diagram representing n+ 1 mixing caries the pref-
actor i"(=1"k) (Ny is the number of interactions from the
right).

APPENDIX C: THE SCATTERING T MATRIX ELEMENTS

In scattering theory the 7 matrix is given by 7=V
+VG(E)V. By working in the joint matter and field space we
only need this definition where E is the initial energy. How-
ever, we shall define a scattering matrix in the matter space
alone 7. Changes in the numbers of photons can then be
included by varying the argument of the Green’s function
since the energy of the system alone is not conserved. This
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will require to define different 7 matrix for each order as a
series of multiphoton transition amplitudes (TAs) as

T=TY+7T(0) + (0’ + 0,0) + -
=V +V'G(o+w)V'

+V'G(o *+ o+ w,)

XV'G(o+w)V' + -+, (C1)
where the dipole moment operator is portioned as V'=V
+V'. The superscript indicates the order (number of interac-
tions with V) of each term. For the three-level system ini-
tially in its ground state shown in Fig. 1 we obtain the fol-

lowing matrix elements.
Single-photon transition will need

7 = (el Vi]g) = ey (C2)

Two-photon transitions are described by

lu’g’elu“eg
. 9
©— W, + iy

75(0) = (¢ [VG(0+ 0,)V']g) = (C3)
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72(0) = (VI Glw+ w)Vi[g) = —LE4— - (c4
W= W +1Y

Three-photon transitions need

’fog)(w’ - w,0)={e|VG(o —w+ 0,)VG(o+ wg)V+|g>

*
/'l’eg’Mg’e/'Leg

(0" - 00—y, +iy)(w- wgg+iy)’

(C5)

’Zii,)(a)’ +0,0)=(|VG(0' + 0+ w,) ViG(w+ wg)V+|g)

- MZflufeMeg ) (C6)
(0" + 0= 0 +iY) (0= @, +i7)

The T matrix elements can be illustrated by single-sided
Feynman diagrams. The diagrams relevant for the pump-
probe signal are shown in Fig. 4.
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