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The two-dimensional vibrational response of the disordered strongly fluctuating OH exciton band in
liquid water is investigated using a new simulation protocol. The direct nonlinear exciton
propagation generalizes the nonlinear exciton equations to include nonadiabatic time dependent
Hamiltonian and transition dipole fluctuations. The excitonic picture is retained and the large
cancellation between Liouville pathways is built-in from the outset. The sensitivity of the photon
echo and double-quantum-coherence techniques to frequency fluctuations, molecular reorientation,
intermolecular coupling, and the two-exciton coherence is investigated. The photon echo is
particularly sensitive to the frequency fluctuations and molecular reorientation, whereas the
double-quantum coherence provides a unique probe for intermolecular couplings and two-exciton
coherence. © 2009 American Institute of Physics. �DOI: 10.1063/1.3120771�

I. INTRODUCTION

Nonlinear Infrared spectroscopy is a major tool for
studying the dynamics of molecules in the condensed phase.
Two principal types of theoretical approaches have been de-
veloped for simulating and analyzing the nonlinear response
of assemblies of identical molecules forming vibrational
excitons.1,2,36 The sum over states �SOS� provides a conve-
nient low-cost algorithm for computing two-dimensional
�2D� signals by recasting them in terms of combinations of
correlation functions. Based on the SOS, the cumulant ex-
pansion of Gaussian fluctuations method can account for
fluctuations of arbitrary time scales and offers a unified de-
scription that interpolates between fast �motional narrowing�
and slow �inhomogeneous broadening� fluctuations limits.
This formalism has several limitations. �1� It only describes
Gaussian diagonal fluctuations of the energy. It cannot ac-
count for fluctuations of mode couplings and transition di-
poles and for non-Gaussian distributions of fluctuations. �2�
It uses a fixed exciton basis and neglects fluctuations in the
eigenstates. Strong structural fluctuations in proteins and mo-
lecular liquids such as water3 or formamide4 may not be
accounted for. �3� The third order response requires the ex-
plicit computation of doubly excited states ��N�N+1� /2 two
exciton states� for N coupled chromophores, followed by a
sum over all allowed transitions between the one- and two-
exciton manifolds. Practical applications have so far been
limited to small peptides �N�50�.5 �4� Massive cancella-
tions among individual Liouville pathways limit the accuracy
and complicate the physical interpretation of signals:6–8 The
individual contributions to the nonlinear response �Liouville
space pathways� scale as �N2, whereas the signal �their
sum� only scales as �N. This effect stems from the fact that
only when all interactions with the laser fields occur within a
coherence size, they contribute to the signal. Excitations at

far away sites that do not communicate with each other make
�N2 contributions to the individual pathways that eventually
cancel out once the pathways are summed over.6–8

The quasiparticle approach which is based on the non-
linear exciton equations �NEEs�2,9–11 resolves points �3� and
�4�, making it most suitable to large proteins and aggregates.
This protocol avoids the tedious repeated diagonalization of
two-exciton states by introducing an exciton scattering ma-
trix. The cancellations of �N2 terms are built-in from the
outset and individual pathways are never calculated. How-
ever, all applications so far employed a fixed basis and were
limited to weak fluctuations with either very fast or very
slow timescales.

Limitations �1� and �2� can be resolved by the numerical
integration of the Schrödinger equation �NISE�.12,13 This
SOS technique has been applied recently to the nonlinear
vibrational response of alanine dipeptide,13 liquid
N ,N-dimethyl-formamide,14 N-methyl-acetamide,15 trpzip2
�-hairpin peptide,16 and liquid water.3 A much less compu-
tationally intensive method, the time-average approximation
�TAA�, has been introduced by Skinner and Auer17 and Jan-
sen and Ruszel.18 By including a free timescale parameter
which separates slow from fast fluctuations, the TAA creates
an interpolation between uncoupled chromophores with fast
fluctuations and the coupled system in the inhomogeneous
limit.17 The NISE and TAA have been compared recently.18

Note, however, that both are based on the SOS approach and
compute individual Liouville pathways so the point �4� is not
addressed.

In this paper we develop a direct nonlinear exciton
propagation �NEP� method that relaxes all �1�–�4� limitations
by extending the NEE to include Hamiltonian fluctuations on
an arbitrary timescale. We follow the same derivation of the
connection between the SOS and the NEE expression as de-
scribed in Ref. 19, except that we retain the time dependent
Hamiltonian and average over stochastic realizations only ata�Electronic mail: smukamel@uci.edu.
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the end. The NEE equations of motion �rather than the
Schrödinger equation� are integrated numerically.

Numerous studies has been dedicated to exploring the
structure and dynamics of liquid water which are essential
for many physical and biological processes. In particular,
nonlinear IR spectroscopy has been widely used on dilute
HOD in either H2O or D2O �Refs. 20–28� and more recently
in neat water.3,29–34 The isotope labeling in HOD enables to
isolate a single OH �or OD� vibration out of the broad ab-
sorption band of the liquid, which acts as a heat bath. The
HOD molecule then provides a local probe of the structure
and dynamics of the surrounding water. This probe elimi-
nates the intermolecular vibrational couplings which cause a
strong excitonic delocalization in neat water, thus simplify-
ing the analysis. Both neat water and HOD were studied in
bulk water3,20–24,29–31 and in confined environment.25–28,32,34

One interesting challenge of nonlinear spectroscopy of water
is how to disentangle the influence of orientational dynamics,
population relaxation, frequency fluctuations, and wave
function delocalization. Using the NEP, we investigate the
sensitivity of nonlinear techniques to both the excitonic cou-
pling and the two-exciton coherence in liquid water.

The present work uses the same molecular dynamics
�MD� simulation protocol developed in Refs. 3 and 35. The
symmetric and asymmetric OH stretching are treated quan-
tum mechanically while the translations and rotations are
included classically using MD based on the SPC/E model.
The bending vibration is neglected and the OH vibrations are
described by a fluctuating adiabatic Hamiltonian. Three types
of third order signals can be generated by three pulses with
wavevector k1, k2, and k3. These are generated in the direc-
tion kI=−k1+k2+k3 �photon echo�, kII=k1−k2+k3 and kIII

=k1+k2−k3 �double-quantum coherence�. In Refs. 3 and 35,
the NISE methodology was used to compute the kI+kII sig-
nal. In this paper, we adopt the same model Hamiltonian and
MD trajectory to compute all three signals for two pulse
polarization configurations. We investigate the orientational
dynamics of water molecules and compare the sensitivity of
the three techniques to the intermolecular couplings and the
two-exciton coherence.

In Sec. II, we present the formal expressions for the
signals. Section III describes the NEP computational algo-
rithm. The simulations are presented in Sec. IV. Conclusions
are given in Sec. V.

II. NONLINEAR RESPONSE OF DISORDERED
EXCITONS

We consider a system of coupled vibrations described by
the effective exciton Hamiltonian,2,36

H�t� = �
ij

hij�t�Bi
†Bj + �

ijkl

Uijkl�t�Bi
†Bj

†BkBl, �1�

where Bi
† and Bi are, respectively, boson creation and anni-

hilation operator of the ith vibration �Bi ,Bj
†�=�ij. hij is the

one-exciton Hamiltonian and Uijkl denotes the exciton-
exciton interaction which satisfies Uijkl=Ujikl=Uijlk. We as-
sume adiabatic decoupling between the high-frequency
quantum vibrations �vibrational excitons� which are probed
by the spectroscopic experiment and are treated explicitly,
and the slow low-frequency classical vibrations which are
included implicitly through the fluctuating parameters in the
Hamiltonian H�t�. The Hamiltonian H�t� conserves the num-
ber of excitons v=�iBi

†Bi and is thus block diagonal. Three
blocks are relevant for the present study: the ground state
and the one-exciton and two-exciton blocks.

The coupling of the vibrations to the optical field is

Hint�t� = − E�r,t� · V�t� , �2�

where

V�t� = �
i

�i�t��Bi�t� + Bi
†�t�� �3�

is the dipole operator and �i�t� are the transition dipoles.
We shall calculate the third order response function,1,36

S�4�3�2�1

�3� ��4,�3,�2,�1�

= � i

�
�3

	���V�4
��4�,V�3

��3��,V�2
��2��,V�1

��1��
 , �4�

where �i are Cartesian polarization indices. Since the water
OH stretching frequency is high compared to the temperature
hii�kbT, the excitonic system is initially in the ground state
�g
. The ensemble average 	¯
 needs to be computed over
the quantum states of the operator H as well as the slow
classical degrees of freedom by averaging over the stochastic
functions hij�t�, Uijkl�t�, and �i;	�t�. The latter can be carried
out by integration over the initial time. The average of an
operator A�t ; t0� is

	A�t + t0;t0�
 = lim
T→


1

2T
�

−T

T

dt0	g�A�t + t0;t0��g
 . �5�

The three nested commutators in Eq. �4� yield eight Liouville
space pathways. Each nonlinear technique selects a subgroup
of theses pathways.1,36 In the following, we present the
photon-echo signal generated in the direction kI=−k1+k2

+k3. The other two signals kII=k1−k2+k3 and kIII=k1+k2

−k3 �double-quantum coherence� experiments are calculated
similarly in Appendices A and B.

Three pathways contribute to the photon-echo signal,2,36

S�4�3�2�1

kI ��4,�3,�2,�1� = � i

�
�3

�
n1n2n3n4

�n1;�1
��1��n2;�2

��2��n3;�3
��3��n4;�4

��4� � �	g�Bn1
U��1,�2�Bn2

† U��2,�4�Bn4
U��4,�3�Bn3

† �g


+ 	g�Bn1
U��1,�3�Bn3

† U��3,�4�Bn4
U��4,�2�Bn2

† �g
 − 	g�Bn1
U��1,�4�Bn4

U��4,�3�Bn3

† U��3,�2�Bn2

† �g
� , �6�
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where U��2 ,�1� denotes the evolution operator of the vibra-
tions,

U��2,�1� = exp+�−
i

�
�

�1

�2

H���d�� �7�

and exp+ is the time ordered exponential. The three terms in
Eq. �6� correspond, respectively, to the ground state bleach-
ing �GSB�, excited state emission �ESE�, and excited state
absorption �ESA� contributions. To simplify our notation, in

Eq. �6� we have omitted the integration over the initial time
�Eq. �5��. Equations �6� can be simplified by introducing the
one-exciton and two-exciton Green’s functions

Gn2,n1
��2,�1� = 	g�Bn2

U��2,�1�Bn1

† �g
 , �8�

Gn2m2,n1m1
��2,�1� = 	g�Bn2

Bm2
U��2,�1�Bn1

† Bm1

† �g
 . �9�

Substituting Eqs. �8� and �9� in Eq. �6� gives

S�4�3�2�1

kI ��4,�3,�2,�1� = � i

�
�3

�
n1n2n3n4

�n1;�1
��1��n2;�2

��2��n3;�3
��3��n4;�4

��4� � �Gn4,n3
��4,�3�Gn2,n1

� ��2,�1�

+ Gn4,n2
��4,�2�Gn3,n1

� ��3,�1� − �
m1m2

Gn4m1,n3m2
��4,�3�Gm2,n2

��3,�2�Gm1,n1

� ��4,�1�� . �10�

For harmonic vibrations �Uijkl�t�=0� the two-exciton Green’s
function is given by

Gn2m2,n1m1

�0� ��2,�1� = Gn2n1
��2,�1�Gm2m1

��2,�1�

+ Gn2m1
��2,�1�Gn1m2

��2,�1� . �11�

Substituting Eq. �11� in Eq. �10� and using the relation

Gij��i,� j� = �
k

Gik��i,�k�Gkj��k,� j� , �12�

we find that the kI response function �Eq. �10�� vanishes.
This is to be expected since the harmonic system is linear

and all nonlinear response functions must vanish. To exploit
this cancellation, we introduce the Bethe–Salpeter equation
�two particle Dyson equation�,37

Gn2m2,n1m1
��2,�1�

= Gn2m2,n1m1

�0� ��2,�1� −
i

�
�

n3m3n4m4

�
�1

�2

dsGn2m2,n4m4

�0� ��2,s�

�Un4m4n3m3
�s�Gn3m3,n1m1

�s,�1� . �13�

Substituting Eq. �13� in Eq. �10� we finally get

S�4�3�2�1

kI ��4,�3,�2,�1� = 2� i

�
�4

�
n1n2n3n4

�
m1m2m3m4p2

�n1;�1
��1��n2;�2

��2��n3;�3
��3��n4;�4

��4�

��
�3

�4

dsGn4,m4
��4,s�Um4m1m3m2

�s�Gm3m2,n3p2
�s,�3�Gp2,n2

��3,�2�Gm1,n1

� �s,�1� . �14�

The nonlinear response is now given by a time integral over
the interval s between interactions with the k3 and k4 pulses.
Note that the exact cancellation of the harmonic part in Eq.
�6� has been accounted for, and Eq. �14� now explicitly de-
pends on the anharmonicity Uijlk to first order �higher orders
enter through G�s ,�3��. Alternatively, Eq. �14� can be derived
using the NEE approach. This derivation is detailed in Ap-
pendix C. Equation �14� can be represented by the single
Feynman diagram shown in Fig. 1�a�. In this diagram, time
evolves from bottom to top. A wavy line represents an inter-
action with the laser field. A solid line represents a one-

exciton Green’s function propagating forward �upward ar-
row� or backward �downward arrow�. A double line
represents the two-exciton Green’s function G. Finally the
gray band represents the region between times �3 and �4

where exciton scattering takes place. This scattering stems
from the interaction Uijkl which splits the two-exciton
Green’s function into an exciton propagating forward from s
to �4 and a second exciton propagating backward from s to
�1. Similar expressions for the kII and kIII techniques are
given in Appendices A and B, respectively, and represented
by Figs. 1�b� and 1�c�.
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III. THE NEP ALGORITHM

For computational efficiency, we do not calculate
Green’s function in Eq. �14� but we compute the time depen-
dent one- and two-exciton wave functions,

�m1;�1

�1� �s;�1� = �
n1

Gm1,n1
�s,�1��n1;�1

��1� , �15�

�m1m2;�1;�2

�2� �s;�2;�1�

= �
n2n1

Gm2m1,n2n1
�s,�2��n2;�2

��2��n1;�1

�1� ��2;�1� , �16�

where �m1;�1

�1� �s ;�1� describe the propagation of a single exci-
ton created at time �1 by the action of the transition dipole
�n1;�1

��1�, while �m1m2;�1

�2� �s ;�2 ;�1� describe the two-exciton
propagation. The first exciton is created at time �1 and propa-
gates until time �2 where a second exciton is created and
propagate until time s. At the initial time s=�2, the two-
exciton wave function is given by a symmetrized product of
the one-exciton wave function �m;�1

�1� ��2 ;�1� and the transition
dipole �m;�2

��2�,

�m1m2;�1;�2

�2� ��2;�2;�1�

= �m1;�1

�1� ��2;�1��m2;�2
��2� + �m2;�1

�1� ��2;�1��m1;�2
��2� .

�17�

Using these definitions, we can recast Eq. �14� in the form

S�4�3�2�1

kI ��4,�3,�2,�1�

= 2� i

�
�4

�
n4

�n4;�4
��4�Rn4;�3�2�1

kI ��4,�3,�2,�1� , �18�

with

Rn4;�3�2�1

kI ��4,�3,�2,�1�

= �
m4

�
�3

�4

dsGn4,m4
��4,s�Xm4;�3�2�1

kI �s;�3,�2,�1� �19�

and

Xm4;�3�2�1

kI �s;�3,�2,�1�

= �
m1m2m3

Um4m1m3m2
�s�

��m3m2;�3;�2

�2� �s;�3;�2��m1;�1

�1�� �s;�1� . �20�

The one- and two-exciton wave functions are computed by
direct integration of the Schrödinger equation. For the one-
exciton wave function we have

i�
�

�t
���1

�1��t;�1�
 = H�t����1

�1��t;�1�
 , �21�

where ���
�1��t ; t0�
=�n�n;�

�1� �t ; t0�Bn
†�g
. A similar equation

holds for the two-exciton wave function,

i�
�

�t
���1

�2��t;�2;�1�
 = H�t����1

�2��t;�2;�1�
 , �22�

where ���1�2

�2� �t ;�2 ;�1�
= 1
2�n1n2

�n1n2;�1;�2

�2� �t ;�2 ;�1�Bn1

† Bn2

† �g
.
The response function S�t3 , t2 , t1� is computed versus the

different time intervals between the pulses t1=�2−�1, t2=�3

−�2, and t3=�4−�3. Details of our integration procedure used
to generate the response function are given in Appendix D.
Starting from a fluctuating Hamiltonian trajectory, our simu-
lation protocol for a kI signal is summarized as follows.

�1� We choose an initial time �1 along the Hamiltonian
trajectory.

�2� The first one-exciton wave function is created at time
�1 �Eq. �15�� and propagated until time �1+ t1+ t2+ t3

using Eq. �D4�.
�3� A second one-exciton wave function is created at time

�1+ t1 and propagated until time �1+ t1+ t2 using Eq.
�D4�.

�4� At time �1+ t1+ t2 the second exciton is used to create a
two-exciton wave function �Eq. �17�� which is propa-
gated until time �1+ t1+ t2+ t3 using Eq. �D5�.

�5� Using Eqs. �D7� and �20�, the function Rn4;�3�2�1
�s ,�1

+ t1+ t2 ,�1+ t1 ,�1� is computed between s=�1+ t1+ t2,
where Rn4;�3�2�1

is set to zero and the time s=�1+ t1

+ t2+ t3. The response function is finally given by Eq.
�18�.

To perform the ensemble averaging, this protocol is repeated
over several initial conditions and orientations. A similar pro-
tocol may used for the other two experiments �kII and kIII�,
where the single and two-exciton wave functions are created
at different times, as given by Eqs. �A3� and �B3�.

IV. THE OH STRETCH OF LIQUID WATER

A. The vibrational exciton Hamiltonian

We used the following effective Hamiltonian for M wa-
ter molecules each having two OH stretching modes �sym-
metric and asymmetric�:

(a)

�

�

�

�

−k1

k2

k3

k4

s

τ1

τ2

τ3

τ4

(b)

�

�

�

�

k1

−k2

k3

k4

s

τ1

τ2

τ3

τ4

(c)

�

�

�

�

k1

k2

−k3

k4

s

τ1

τ2

τ3

τ4

FIG. 1. Feynman diagrams representing various third order signals in the
quasi particle representation �Ref. 2� �a� kI �Eq. �14��, �b� kII �Eq. �A2��, and
�c� kIII �Eq. �B2��.
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H�t� = ��
i=1

M

�
	=a,s


i	�t�Bi	
† Bi	

+ � �
i,j=1

M

�
	,�=a,s

Ji	,j��t�Bi	
† Bj�

−
�

2 �
i=1

M

�
	,�=a,s

�i	,i��t�Bi	
† Bi�

† Bi	Bi�, �23�

where 
i	�t� is the harmonic frequency of the mode 	 �sym-
metric or asymmetric� of molecule i at time t. �i	,i��t� is the
intramolecular anharmonicities of molecule i. Intermolecular
anharmonicities were neglected. The transition dipole cou-
pling model was used for Ji	,j��t� with the dielectric constant
�=22.1 chosen to reproduce polarization anisotropy
measurement,35

Ji	,j��t� =
1 − �ij

4��Rij
3 �t�

�3��i	�t�nij�t���� j��t�nij�t��

− �i	�t�� j��t�� . �24�

We have used the same Hamiltonian trajectory reported
recently.3,35 It was obtained by a MD simulation of 64 water
molecules at 300 K using periodic boundary conditions and
the SPC/E water model. An electrostatic map based on ab
initio calculations at the MP2 /6-31+G�d , p� level was used
to describe the variation in the Hamiltonian parameters with
the electrostatic environment.3,35,38 Overall the simulation
has N=2M =128 vibrational modes. The electrostatic map
gives the local Hamiltonian of each water molecule �frequen-
cies, anharmonicities, and transition dipoles� as a function of
time.

The quartic anharmonicity in Eq. �23� is diagonal and
corresponds to Uijkl=�ij�ik� jl /2 in Eq. �1�. This greatly sim-
plifies the numerical protocol. Since, in general, the anhar-
monic term contains four indices, the calculation of the vec-
tor Xm4;�3�2�1

kI �Eq. �20�� takes a time proportional to N4.
Similarly, propagating the two-exciton state involves the
multiplication of the wave function by the operator �H �Eq.
�D5��, and the corresponding computational time scales as
�N4. For diagonal anharmonicity the number of indices of
Uijij is reduced to 2 and the calculation time of the vector
Xm4;�3�2�1

becomes �N2. In a similar fashion, the operator
�H contains only harmonic couplings and the multiplication
of the wave function of size N2 by �H takes a time �N3.
Using this approach we have greatly reduced the computa-
tional time required for calculation of the nonlinear signals
compared with similar computational methods. For example,
computation of SkI�t1 ,0 , t3� for a single trajectory and for the
time interval 0� t1�200 fs and 0� t3�200 fs using the
NEP method requires less than 2 min on a single AMD Ath-
lon© class processor.

B. Results

1. The kI and kII signals

Our calculation is based on 50, 1 ps long, Hamiltonian
trajectories. Each signal is averaged over 20 random orien-
tations. To remove finite sampling noise, we have filtered the

time-domain signals in a similar fashion as done
previously14,35 by multiplying by the filter function,

FkI;kII�t1,t3� = exp�−
1

2
� t1

Tf
�4

−
1

2
� t3

Tf
�4� , �25�

where Tf =100 fs is a cutoff time. Figure 2 compares the
bare and filtered kI signal for t1=0 and t2=0 �Fig. 2�a�� and
t2=500 fs �Fig. 2�b�� versus t3. Fig. 2 also reports the filter
FkI;kII�0, t3�. Note that for t1= t2=0, all techniques coincide
SkI�0,0 , t3�=SkII�0,0 , t3�=SkIII�0,0 , t3�. For t2=0, the bare
signal increases rapidly in the early times, has its maximum
around t3�20 fs, and then decreases quickly due to the fast
vibrational dephasing. For t2=500 fs, the bare signal has its
maximum around t3�30 fs and the decrease is slightly
slower than for t2=0. It is clear that amplitude present after
t3=150 fs corresponds to noise and should be eliminated
from our calculation. As shown in Fig. 2, using the filter
FkI;kII�t1 , t3� with a 100 fs cutoff does not modify strongly the
signal for both t2=0 and t2=500 fs.

The kI and kII signals are represented in the frequency
domain as

S�4�3�2�1

kI;kII ��1,t2,�3� = �
0


 �
0




S�4�3�2�1

kI;kII �t1,t2,t3�

�ei�1t1+i�3t3dt1dt3. �26�

In order to characterize our simulated 2D-IR spectra, we in-
troduce the diagonal �
 and antidiagonal �� widths of the
spectra defined as the half-maximum contour line in the ab-
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FIG. 2. Computed bare ��� and filtered ��� kI signals for t1=0 and t2=0 �a�
and t2=500 fs �b� as a function of t3. The filter function FkI;kII�0, t3� �Eq.
�25�� is also reported ���.
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solute value 2D spectrum as shown on Fig. 3. The kI signal
for the XXXX polarization �all laser pulse with the same po-
larization� is displayed on Fig. 4 for several time delays t2

=0, 100, 200, and 500 fs. Two peaks are observed in the
imaginary part of the kI signal. The positive peak comes
from the GSB and ESE, while the negative peak from the
ESA. The diagonal width, the antidiagonal width, and their
ratio are given on Table I. A strong correlation is observed
for t2=0 between the excitation frequency ��1� and the
probe frequency ��3� as shown by elliptical shape of the
absolute value of the signal. The diagonal �antidiagonal�
width is 577 cm−1 �420 cm−1�. As t2 is increased, the ratio
�� /�
 tends toward unity, reflecting loss of correlation. At
t2=500 fs, the signal has a circular shape ��� /�
 �1�.

It is a common practice to display instead of the photon-
echo signal defined as Eq. �26� a signal where the t1 time

integral is extended to the interval �−
 , +
�.3 In our notation
we maintain time ordering k1 comes first followed by k2 and
k3, and we keep all time intervals positive, a signal with a
negative time correspond to a permutation of the two first
lasers which is precisely the kII signal. This contribution is
often called nonrephasing signal, as opposed to the rephasing
signal �photon echo�. We define the total signal rephasing
plus nonrephasing as the sum of kI and kII,

S�4�3�2�1

kI+kII ��1,t2,�3� = S�4�3�2�1

kI �− �1,t2,�3�

+ S�4�3�2�1

kII ��1,t2,�3� . �27�

By integrating over the �1 frequency, this signal corresponds
to the impulsive pump-probe signal,

S��
PP��,
� =� d�1S����

kI+kII��1,�,
� , �28�

where 
 is the dispersed frequency and � is the time delay
between the two pulses with polarizations � and �. The kI,
kII, and kI+kII signals are displayed for t2=0 and t2

=500 fs in Fig. 5; each spectrum is normalized to its maxi-
mum. The relative maximum with respect to kI signal at time
t2=0 is given in parenthesis. For kI+kII, the exact same cal-
culation has been conducted recently using the NISE

FIG. 3. �Color� The diagonal �
 and antidiagonal �� linewidths for the
absolute value of a kI signal. The blue contour line marks the half-maximum
contour.

FIG. 4. �Color� kI XXXX signal for various t2 delay times. Upper row: imaginary part; lower row: absolute value. Each spectrum is normalized respectively
to its maximum.

TABLE I. Diagonal width and antidiagonal width of the kI signal with
XXXX polarization �Fig. 4�.

t2

�fs�
�


�cm−1�
��

�cm−1� �� /�


0 577 420 0.73
100 560 465 0.83
200 597 502 0.84
500 578 581 1.00
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methodology.3,35 Our result gives identical spectra within nu-
merical accuracy.

kII appears very different from kI, in particular, the two
peaks are elongated along the antidiagonal and the signal is
broader. This is due to the elimination of the inhomogeneous
broadening by the photon echo. The kII signal maximum is
only 0.352 compared to that of the photon echo, and conse-
quently the kI+kII signal is dominated by kI. The photon-
echo signal varies strongly with t2. At 500 fs, the maximum
decreases to 0.259 of its original value. In contrast, the kII

signal shape is hardly affected and its maximum decreases
only to 0.221 after 500 fs starting from 0.352 at t2=0. At
t2=500 fs, both kI and kII signals contribute almost equally
to the kI+kII signal. The loss of correlations observed in the
photon echo can also be seen in the kI+kII signal. At t2=0 it
is elongated along the diagonal, while at t2=500 fs, it is
oriented vertically. This trend has been observed
previously.3,33,39

We next consider the kI and kII signals using the XXYY
polarization configuration �k1 and k2 have parallel polariza-
tions which is perpendicular to that of k3 and k4�. When the
transition dipole magnitude and orientation are fixed, inter-
molecular couplings neglected and the fluctuations are slow,
we expect SXXYY =SXXXX /3. However, in our simulations,
none of theses conditions are true and this relation does not
hold. In Fig. 6�a� we display the XXXX and XXYY signals at
t2=0 for both kI and kII. For kI, the XXXX and XXYY signals
are very similar in shape but their relative intensity is not the
same. We define the ratio

	 =
max�SXXXX�
max�SXXYY�

. �29�

At t2=0, we found 	=2.72 for kI. Deviation from 	=3.0 is
caused by the dynamics of the water molecules and the de-
localization of the exciton wave function during t1 and t3.

FIG. 5. �Color� kI, kII, and kI+kII

imaginary part signals with XXXX po-
larization for t2=0 �upper row� and t2

=500 fs �lower row�. Each panel is
normalized to its maximum. The rela-
tive maximum with respect to kI signal
at time t2=0 is indicated in parenthe-
sis. The kI signal is displayed for nega-
tive �1 frequencies.

FIG. 6. �Color� kI and kII signals with polarization XXXX and XXYY for t2=0 for coupled molecules �a� and uncoupled molecules �b�. Each panel is
normalized to its maximum. The relative maximum with respect to kI signal at time t2=0 is indicated in parenthesis.
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For kII, the shape of the XXXX and XXYY signals are similar
but some small differences can be found. In particular, stron-
ger absorption is visible in the range �1=3500–3800 cm−1

of the positive peak of the XXYY signal. We found 	=2.43
for kII. As t2 is increased, 	 rapidly decreases toward unity
reflecting the loss of correlation between the X and Y direc-
tions due to the orientational dynamics of water molecules,
the intermolecular coupling, and the vibrational dephasing.
To show this effect, we have computed the generalization for
the photon echo of the polarization anisotropy commonly
used in pump-probe spectroscopy. The difference SXXXX

kI

−SXXYY
kI is displayed in Fig. 7 for various t2. The kI polariza-

tion anisotropy signal rapidly vanishes. At t2=100 fs, the
maximum of the anisotropy signal is only 15% of the t2=0
value. The decay of the polarization anisotropy is certainly
complex, however, it can be understood as a direct signature

of the fast vibrational dynamics created by the hydrogen
bond network.

To explore the sensitivity of the kI and kII signals to the
intermolecular coupling, we have repeated in Fig. 6�b� the
calculations of Fig. 6�a� by setting the coupling Ji	,j�=0. For
kII the small difference between XXXX and XXYY signals
disappears totally when the molecules are uncoupled, indi-
cating that this difference was clearly due to the intermolecu-
lar coupling. For kI no difference is apparent in shape but the
spectra have different intensities. At t2=0 we find 	=2.79
for kI and 	=2.57 for kII. By neglecting the coupling we
have made the exciton wave function localized. Only the
molecular reorientation and the dephasing now influence the
ratio 	 and its value is now closer to 3. It has been found
previously3 that for fixed t2 the kI+kII signal in water is not
very sensitive to the intermolecular coupling. Our simula-
tions show that this holds also for kI and that kII is slightly
more sensitive. However, when varying t2 the influence of
the excitonic coupling appears. Indeed, it is known that the
excitonic coupling induces a faster decay of the polarization
anisotropy.3,40,41

To investigate the sensitivity of the kI and kII signals to
the two-exciton coherence, we have computed them also in
the mean field approximation.2 This neglects the two-exciton
coherence by replacing the two-exciton wave function �Eq.
�16�� into Eq. �14� by a symmetrized product of two single
exciton wave function,

�n1n2;�1;�2

�2� �s;�2;�1� � �n2;�2

�1� �s;�2��n1;�1

�1� �s;�1�

+ �n1;�2

�1� �s;�2��n2;�1

�1� �s;�1� . �30�

This approximation greatly reduces the simulation time. The
calculation time necessary to compute the two-exciton
propagation scales as N2 instead of N3. For our system, com-
putational time was divided by 4 when this approximation is
used. Figure 8 shows that the kI and kII signals at time t2

FIG. 7. �Color� kI polarization anisotropy signal SXXXX
kI −SXXYY

kI for time t2

=0, 25, 50, and 100 fs. Each panel is normalized to the maximum of the
t2=0 signal.

FIG. 8. �Color� Upper row: kI signal for t2=0 and t2=500 fs and the corresponding mean field approximate signals. Lower row: same for the kII signal.
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=0 and t2=500 fs are very similar to the corresponding
mean field spectra.

2. Double-quantum-coherence signals

When varying t2, kI and kII techniques show the fast
vibrational dynamics. However, the above simulations dem-
onstrate that for fixed t2, kI and kII techniques are not very
sensitive to the intermolecular coupling and the two-exciton
coherence. The double-quantum-coherence kIII technique is
expected to be more sensitive to latter effects, since it pro-
vides a clean projection of two-exciton states.2,42 The kIII

signals are represented in the frequency domain as

S�4�3�2�1

kIII �t1,�2,�3� = �
0


 �
0




S�4�3�2�1

kIII �t1,t2,t3�

�ei�2t2+i�3t3dt2dt3. �31�

In the following simulations, we display the kIII signal in
time domain using the following filter:

FkIII�t1,t3� = exp�−
1

2
�2t2

Tf
�4

−
1

2
� t3

Tf
�4� . �32�

We use the same cutoff Tf =100 fs as in the kI and kII sig-
nals. Figure 9 compares the XXXX and XXYY kIII signals at
t1=0 with and without intermolecular coupling Ji	,j�. The
imaginary part shows a negative peak and a positive peak.
Intermolecular coupling spreads the signal along the �2 axis
which is a direct projection of the two-exciton states. The
absolute value spectrum is much stronger with the coupling
in the blue side, 6500–7000 cm−1 frequency range. To trace
the origin of this effect, we have computed the two-exciton
density of states �DOS�,

��
� = �
�

	��
 − 
��
 , �33�

where 
� are the two-exciton eigenfrequencies. For un-
coupled molecules, the two-exciton states are simply the
three states corresponding to the symmetric overtone, the
asymmetric overtone, and their combination band. The un-
coupled DOS displayed on Fig. 10 has its maximum at
6705 cm−1 and a full width half maximum �FWHM� of
790 cm−1. We also show the harmonic DOS where the two-
exciton states include states characterizing one exciton on
one molecule and one exciton on an other molecule. This has
maximum at 6835 cm−1 and FWHM of 580 cm−1. The
130 cm−1 shift between the two maxima is a signature of the
intramolecular anharmonic couplings.

When the molecules are uncoupled, all states are local-
ized. Two-exciton states made of excitons residing on two
different molecules do not contribute to the signal. Conse-
quently, the uncoupled kIII signal can only show states ob-

FIG. 9. �Color� XXXX and XXYY kIII signal for t1=0 with the corresponding uncoupled signals. Upper row: imaginary part; lower row: absolute value. Each
spectrum is normalized to its maximum.
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served in the uncoupled DOS. In contrast when the mol-
ecules are coupled, these states which are not sensitive to the
anharmonicity are observed. This explains the broader spec-
trum in the blue side for the coupled system.

In Fig. 9 we also compare the XXYY kIII signal for t1

=0 with the corresponding uncoupled signal. For uncoupled
molecules, the XXXX and XXYY signals appear to be very
similar in shape as we found in kI. However, for coupled
molecules, the two signals are very different.

Finally to explore the sensitivity of the double-quantum-
coherence signal to the two-exciton coherence, we display in
Fig. 11 the XXXX signal using the mean field approximation.
The absolute value mean field signal is narrower, in particu-
lar, in the red tail. This is due to the absence of anharmonic
shift in the two-exciton states.

V. CONCLUSIONS

In this paper, we have developed a new NEP algorithm
for computing the coherent third order nonlinear signals of
disordered excitons. This is based on a generalization of the
NEE approach to include fluctuating Hamiltonian and tran-
sition dipoles. The various Liouville pathways are not calcu-
lated separately; the cancellation between them is built in
from the outset. Our algorithm designed for large systems is

very efficient compared to similar methodologies. This for-
malism is used to compute the nonlinear signals kI, kII, and
kIII for liquid water. The kI signal is a powerful tool to ob-
serve the fast vibrational dynamics by varying the time t2.
This dynamics is influenced by the frequency correlation, the
transition dipole reorientation, and the excitonic coupling.
However, for a fixed t2, it is insensitive to the intermolecular
coupling and the two-exciton coherence. The same conclu-
sion also applies to the kII even though we found a slightly
increased sensitivity in the intermolecular coupling. The
double-quantum-coherence signals are complementary and
appear to be very sensitive to both the couplings and the
two-exciton coherence.

Recently observed kI+kII signals3,30,31 in liquid water
have shown a good correspondence with simulations for t2

=0 �see Ref. 3�. However, a fast decay with delay time t2 on
a 100 fs time scale with a persistent GSB was observed. This
relaxation was not included in our theoretical model. To re-
produce both the decay and the persistent GSB, the simula-
tion in Refs. 3 and 35 introduced an ad hoc population re-
laxation. A microscopic simulation of the population
relaxation will be desirable. It is believed that the rapid
population relaxation of the OH stretch is due to a Fermi
resonance with the HOH bending.29 Consequently, it will be
necessary to include the bending mode explicitly in our
simulations.

Due to its efficiency, this algorithm will be a great tool to
predict nonlinear spectra. In particular, using the mean field
approximation, it is now possible to compute the optical re-
sponse of very large systems ��103�. This is of great interest,
for example, to simulate water in biological environment.
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APPENDIX A: RESPONSE FUNCTION
FOR THE kII TECHNIQUE

The kII=k1−k2+k3 signal is expressed as a sum of three
terms,36 in analogy with Eq. �6�,

S�4�3�2�1

kII ��4,�3,�2,�1� = � i

�
�3

�
n1n2n3n4

�n1;�1
��1��n2;�2

��2��n3;�3
��3��n4;�4

��4��	g�Bn4
U��4,�3�Bn3

† U��3,�2�Bn2
U��2,�1�Bn1

† �g


+ 	g�Bn2
U��2,�3�Bn3

† U��3,�4�Bn4
U��4,�1�Bn1

† �g
 − 	g�Bn4
U��4,�2�Bn2

U��2,�3�Bn3

† U��3,�1�Bn1

† �g
� . �A1�

Using Green’s function �Eq. �9�� and the Bethe–Salpeter equation �Eq. �13��, we find the analog of Eq. �14�,

FIG. 11. �Color� kIII signal for t1=0 with XXXX polarization: Full simula-
tion �left column� and mean field approximation �right column�. Upper row:
imaginary part; lower row: absolute value. Each panel is normalized to its
maximum.
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S�4�3�2�1

kII ��4,�3,�2,�1� = 2� i

�
�4

�
n1n2n3n4

�
m1m2m3m4p1

�n1;�1
��1��n2;�2

��2��n3;�3
��3��n4;�4

��4�

��
�3

�4

dsGn4,m4
��4,s�Um4m2m3m1

�s�Gm3m1,n3p1
�s,�3�Gp1,n1

��3,�1�Gm2,n2

� �s,�2� . �A2�

In terms of the wave function, the response function takes a similar form as for the kI technique �Eqs. �18� and �19��, except
that the function Xm4;�3�2�1

�Eq. �20�� is

Xm4;�3�2�1

kII �s;�3,�2,�1� = �
m1m2m3

Um4m2m3m1
�s��m3m1;�3;�1

�2� �s;�3;�1��m2;�2

�1�� �s;�2� . �A3�

The Feynmann diagram corresponding to Eq. �A2� is displayed in Fig. 1�b�.

APPENDIX B: RESPONSE FUNCTION FOR THE kIII TECHNIQUE

The kIII=k1+k2−k3 signal is given by a sum of two terms36 in analogy with Eq. �6�,

S�4�3�2�1

kIII ��4,�3,�2,�1� = � i

�
�3

�
n1n2n3n4

�n1;�1
��1��n2;�2

��2��n3;�3
��3��n4;�4

��4�

� �	g�Bn4
U��4,�3�Bn3

U��3,�2�Bn2

† U��2,�1�Bn1

† �g
 − 	g�Bn3
U��3,�4�Bn4

U��4,�2�Bn2

† U��2,�1�Bn1

† �g
� .

�B1�

Using Green’s function �Eq. �9�� and the Bethe–Salpeter equation �Eq. �13��, we find the analog of Eq. �14�,

S�4�3�2�1

kIII ��4,�3,�2,�1� = 2� i

�
�4

�
n1n2n3n4

�
m1m2m3m4p1

�n1;�1
��1��n2;�2

��2��n3;�3
��3��n4;�4

��4�

��
�3

�4

dsGn4,m4
��4,s�Um4m3m2m1

�s�Gm3,n3

� �s,�3�Gm2m1n2p1
�s,�2�Gp1,n1

��2,�1� . �B2�

In terms of the wave function, the response function takes a
similar form as for the kI technique �Eqs. �18� and �19��,
except that the function Xm4;�3�2�1

�Eq. �20�� is

Xm4;�3�2�1

kIII �s;�3,�2,�1�

= �
m1m2m3

Um4m3m2m1
�s�

��m2m1;�2;�1

�2� �s;�2;�1��m3;�3

�1�� �s;�3� . �B3�

The Feynmann diagram corresponding to Eq. �B1� is dis-
played in Fig. 1�c�.

APPENDIX C: CALCULATING THE RESPONSE
WITH THE NEEs

In Sec. II, the third order response function was derived
starting with sum-over-states expressions �Eq. �6��. Alterna-
tively, the response function can be derived in the quasipar-
ticle picture. The derivation starts by considering the expec-
tation value of the polarization operator,

P̂��� = �
m

�m����B̂m
† ��� + B̂m���� , �C1�

which is obtained from the Heisenberg equation of motion
for operators,

i�
�

��
B̂k = �B̂k,Ĥ���� , �C2�

followed by a trace over the initial density matrix ��g
	g��,

i�
�	B̂k


��
= �

n

hkn���	B̂n
 + 2 �
m,m�,n�

Uknm�n����	B̂n
†B̂m�B̂n�


− �k��� · E��� . �C3�

This equation is not closed since it depends on 	B̂n
†B̂m�B̂n�
.

As described in Ref. 9, this leads to an infinite hierarchy of
many-body equations of motion to be solved simultaneously.
These equations can be closed by assuming various types of
factorization schemes and by neglecting terms above fourth
order in the fields.1 Here, we adopt the coherent limit factor-

ization, 	B̂n
†B̂m�B̂n�
= 	B̂n

†
	B̂m�B̂n�
. The range of validity of
this approximation is discussed in Ref. 2. In this case, the
polarization is obtained by solving the following set of equa-
tions:

i�
�Bk

��
= �

n

hkn���Bn + 2 �
n,m�,n�

Uknm�n����Bn
�Ym�n�

− ��k��� · E��� , �C4�
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i�
�Ykl

��
= �

mn

�hkl,mn
�y� ��� + 2Uklmn����Ymn − ��k��� · E���Bl

− ��l��� · E���Bk, �C5�

where Bk= 	B̂k
, Ykl= 	B̂kB̂l
 and where hkl,mn
�y� ���=�kmhln���

+�lnhkm���.
The parameter � keeps track of the powers in the exter-

nal fields �� will be set to 1 in the end�. We seek a solution
for Bk��� in powers of the external fields,

Bk��� = Bk
�0���� + �Bk

�1���� + �2Bk
�2���� + �3Bk

�3���� + ¯ ,

�C6�

Ykl��� = Ykl
�0���� + �Ykl

�1���� + �2Ykl
�2���� + �3Ykl

�3���� + ¯ .

�C7�

These are then inserted into Eqs. �C4� and �C5� and solved
order by order in �. It is easy to show that Bk

�0����=0 and
Ykl

�0����=0 for our initial equilibrium density matrix where the
system is in the ground state. The first nonzero contribution
is of order of 1 in �,

i�
�Bk

�1�

��
= �

n

hkn���Bn
�1� − �k��� · E��� , �C8�

i�
�Ykl

�1�

��
= �

mn

�hkl,mn
�y� ��� + 2Uklmn����Ymn

�1� . �C9�

To this order, the equations for B and Y are independent,
their solutions are

Bk
�1���� =

i

�
�

n
�

0

�

d��Gkn��,����n���� · E���� , �C10�

Ykl
�1���� = 0, �C11�

where the single exciton Green’s function G is defined by
Eq. �8�. To second order in �, we get

i�
�Bk

�2�

��
= �

n

hkn���Bn
�2�, �C12�

i�
�Ykl

�2�

��
= �

mn

�hkl,mn
�y� ��� + 2Ukl,mn����Ymn

�2�

− �k��� · E���Bl
�1� − �l��� · E���Bk

�1�, �C13�

which give the following solutions:

Bk
�2���� = 0, �C14�

Ykl
�2���� =

i

�
�
mn
�

0

�

d��Gkl,mn��,����m��� · E����Bn
�1����� ,

�C15�

where the double exciton Green’s function G is defined by
Eq. �9�. Note that Bk

�2����=0 implies that the second order
response function vanishes.

The third order equations of motion for B are

i�
�Bk

�3�

��
��� = �

n

hkn���Bn
�3�

+ 2 �
m3,m2,m1

Uk,m3,m2,m1
���Bm1

�1��Ym3m2

�2� , �C16�

whose solution does not require the knowledge of Ymn
�3�.

Hence, Green’s function solution for Bk
�3� is

Bk
�3���� = −

2i

�
�

m4,m3,m2,m1

�
0

�

dsGkm4
��,s�

�Um4m1,m3m2
�s�Bm1

�1���s�Ym3m2

�2� �s� . �C17�

Using Eqs. �C10� and �C15�, we obtain the following expres-
sions for Bk

�3����:

Bk
�3���� = 2� i

�
�4

�
m1,m2,m3,m4

�
n1,n2,n3,p2

��
0

�

ds�
0

s

d�1�
0

s

d�3�
0

�3

d�2 � Gkm4
��,s�Um4m1m3m2

�s�Gm1n1

� �s,�1�Gm3m2,n3p2
�s,�3�Gp2,n2

��3,�2�

� ��n1
��1� · E��1����n2

��2� · E��2����n3
��3� · E��3�� . �C18�

The third order polarization is given by P�3���4�=�n4
�n4

��4��Bn4

�3���4�+ �Bn4

�3���4����. This contains all contributions to the third
order signal �kI, kII, and kIII�. The polarization that will induce a signal in the kI direction is given by

PkI

�3���4� = 2� i

�
�4

�
n1,n2,n3,n4

�
m1,m2,m3,m4,p2

�n4
��4�

��
0

�4

ds�
0

s

d�3�
0

�3

d�2�
0

�2

d�1 � Gn4m4
��4,s�Um4m1,m3m2

�s�Gm3m2,n3p2
�s,�3�Gp2,n2

��3,�2�Gm1n1

� �s,�1�

� ��n1
��1� · E��1����n2

��2� · E��2����n3
��3� · E��3�� , �C19�
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where �1��2��3 are the respective time of action of the
three pulses. From the relation

PkI,�4

�3� ��4� = �
0

�4

d�3�
0

�3

d�2�
0

�2

d�1

�S�4�3�2�1

kI ��4,�3,�2,�1�E�3
��3�E�2

��2�E�1
��1� ,

�C20�

we recover the expression of the kI response function, Eq.
�14�, which was obtain in the sum-over-states representation.

APPENDIX D: THE NUMERICAL
INTEGRATION PROCEDURE

1. Wave function propagation

Our vibrational system has three characteristic energy
scales: The vibrational frequency 
0, the dephasing �, and
the exciton coupling J. The vibrational frequency of the OH
stretch of water 
0�3400 cm−1. � originates from fast fre-
quency fluctuations. In general, the bath has multiple time
scales. In vibrational spectroscopy, the shortest time is typi-
cally around 50 fs �corresponding to hydrogen bonding dy-
namics�. This gives ��100 cm−1. J represents the exciton
coupling between the optically active vibrational modes, off-
diagonal elements of hij. The coupling between the two OH
stretching modes in a water is J�30 cm−1.43 �For the
amide-I vibrations in peptide we have 
0�1650 cm−1 and
J�10 cm−1.�

By taking the time step �� to be small compared to the
bath dephasing ���1 /�, we can assume that the Hamil-
tonian is constant over this period of time. For each t such as
�� t��+��, we have H�t�=H���, the Schrödinger equation
for the one-exciton wave function can then be solved during
this interval,

���1

�1��� + ��;�1�
 � exp�−
i

�
H���������1

�1���;�1�
 . �D1�

To calculate this exponential, the Hamiltonian is divided into
a local and a nonlocal part. H=H0+�H. To simplify the

notation, the � dependence of the Hamiltonian is not written
explicitly. The local part corresponds to the local frequen-
cies,

H0 = �
i

hiiBi
†Bi + �

ij

UijijBi
†Bj

†BiBj , �D2�

while the nonlocal part corresponds to the exciton coupling
�H=H−H0. Typically for the one-exciton states H0�
0 and
�H�J. The one-exciton wave function is

���1

�1��� + ��;�1�
 � e−iH0��/�

�exp+�−
i

�
�

0

��

dteiH0t/��He−iH0t/��
����1

�1���;�1�
 . �D3�

Expanding Green’s function up to the order �H2 and using a
trapezoidale rule44 to numerically evaluate the integrals, we
find

���1

�1��� + ��;�1�
 � �e−iH0��/� − i
��

2
�1 − i

��

2
�H�

� �e−iH0��/��H + �He−iH0��/���
����1

�1���;�1�
 . �D4�

In a similar fashion, we can obtain the propagation of the
two-exciton wave function,

���1�2

�2� �� + ��;�2;�1�
 � �e−iH0��/� − i
��

2
�1 − i

��

2
�H�

� �e−iH0��/��H + �He−iH0��/���
����1�2

�2� ��;�2;�1�
 . �D5�

2. Response function propagation

The response function is expressed in terms of the vector
Rn4;�3�2�1

kI �Eq. �19��. At time �+�� we have

Rn4;�3�2�1

kI ��4 + ��,�3,�2,�1� = �
m4

Gn4,m4
��4 + ��,���Rm4;�3�2�1

kI ��4,�3,�2,�1�

+ �
m4

�
�4

�4+��

dsGn4,m4
��4 + ��,s�Xm4;�3�2�1

kI �s;�3,�2,�1� . �D6�

The trapezoidal rule gives

Rn4;�3�2�1

kI ��4 + ��,�3,�2,�1� � �
m4

Gn4,m4
��4 + ��,���Rm4;�3�2�1

kI ��4,�3,�2,�1�

+
��

2 �Xn4;�3�2�1

kI �� + ��;�3,�2,�1� + �
m4

Gn4,m4
��4 + ��,s�Xm4;�3�2�1

kI ��;�3,�2,�1�� . �D7�
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In Eq. �D7�, Green’s function is not directly computed. In-
stead, the function Rm;�3�2�1

kI ��4+�� ,�3 ,�2 ,�1� is propagated
in a similar fashion as for the one-exciton wave function �see
Eq. �D4��.
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