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Abstract. Novel signatures of anomalous algebraic spectral relaxation, non Gaussian fluctuations
and bath-induced transition dipole moments in two dimensional optical lineshapes of excitonic
aggregates are predicted using stochastic models with longalgebraic relaxation tails.

1. Introduction
Two dimensional infrared and optical spectroscopy probes exciton dynamics through
cross (correlation) peaks extending ideas proven in NMR to the femtosecond timescale.

Multidimensional lineshapes are obtained by the coherent nonlinear response to
three laser pulses where three time intervalst1,t2 and t3 are controlled. Frequency-
frequency correlation plots inΩ1, Ω3, the Fourier conjugates tot1, t3, give valuable
insights into the pathways and time profiles of bath spectraldiffusion dynamics, as
observed in the contour shapes of 2D peaks and in the cross peaks dynamics respective-
ly. Virtually all modelling of these signals in molecular aggregates is limited to white
noise fluctuations of exciton couplings (Redfield equations) and Gaussian fluctuations
of frequencies. These describe multiexponential relaxation decay of correlations. Long
algebraic tails of anomalous relaxation are common in many complex systems (Glasses,
proteins, quantum dots) [1]. These require different dynamical models such as continu-
ous time random walks (CTRW) characterized by the probability distribution function
(WTDF) ψ(t) of waiting times for successive jumps between bath states.

We assume an excitonic HamiltonianH = ∑i εijiihij+ ∑i j Ji jjiihij [2] whose pa-
rametersεi, Ji j depend on stochastic bath variablesσ(t). All physical observables are
related to the weighted average over the ensemble of stochastic pathsσ(t) of the bath

ρ(t) =�Texp�i
Z t

0
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2. Anomalous relaxation and 2D lineshapes
Stochastic quantum dynamics can be computed by a direct generation of random bath
pathsσ(t). More efficient methods are at hand for specific bath models. The key point
of the CTRW model, which makes it tractable, is that all memory is erased at the time of
jump and the WTDF for the next jump is independent of the history. This is known as
renewal. We developed a general algorithm for calculating nonlinear response functions
for this model [3,4]. When the asymptotic decay ofψ(t) is fast and all moments of
ψ(t) exist the 2D lineshapes show a typical Markovian relaxationpattern (represented
by exponential WTDF). A qualitatively different behaviouris observed when the first
or the second moments of WTDF divergeψ(t)� 1=tα+1.



2.1. Stationary ensembles (1< α < 2).
When the first momentκ1 of ψ(t) is finite the process is stationary. Stationary en-

sembles are defined by prescribing special WTDFψ 0(t) = κ�1
1

R ∞
t ψ(t 0)dt 0 for the first

jump (it may differ fromψ(t) depending on the initial preparation) [3]. In Fig 1 2D
absorptive lineshapes are plotted for of a single two level chromophore whose tran-
sition frequencyε1 = �ω0 is modulated by a two state jump CTRW in slow lim-
it (κ1ω0 >> 1). Novel signatures of algebraic WTDF seen in Fig 1 are: divergen-
cies� Ωα�3 at peaks (-1,-1), (1,1), discontinuity of the first derivatives at fundamen-
tal frequenciesΩ1 = �1 andΩ3 = �1 and algebraic growth� t1�α

2 of cross peaks.
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Fig. 1. 2D absorptive lineshape of a single chromophore coupled to two state anomalous spectral
CTRW (α = 1:2;ω0 = 1). Diagonal peaks correspond fundamental frequencies of the bath states;
cross-peaks volume gives the fraction of paths that are in different states during intervalst1, t3.

2.2. Aging ; spectral diffusion with (0< α < 1).
Random walks with a diverging first moment ofψ(t) retain their memory and never

equilibrate. They represent nonstationary ensembles depending on choice ofψ 0(t).
Usually it is assumed that all allowed bath paths have a jump at some fixed time, where
the random walk is started (andψ 0(t) = ψ(t)). The mobility of particles will vanish at
long times since more random pathsσ(t) will be trapped due to the long tails ofψ(t).

The nonlinear optical response shows the dependence on the time t0 elapsed from
the start of the random walks to the first laser pulse. (For Markovian relaxation this
memory is lost at longt0.) The 2D lineshapes displayed in Fig 2 interpolate be-
tween motional narrowing limit of fast fluctuations at shortt0 (this is similar to Marko-
vian case). However, the static peaks at (-1,-1) and (1,1) which grow with t0 repre-
sent the ”trapped” paths (Fig 2). Both types of peaks coexistfor anomalous diffu-
sion, what may not be described by master equations with time-dependent rates [4].
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Fig. 2.Aging in 2D absorptive lineshape for nonstationary CTRW spectral diffusion ψ(t) �(κ=t)α�1 (α = 0:98, t2 = 0) on single chromophore. Peaks at -1 and 1 show up as the static
fraction of particles trapped in long tails of WTDF is developed witht0. The central motional
narrowing peak is consequence of fast jumps and (very) slowly decays witht0.



3. Peaks induced by slow bath fluctuations
For Markovian random walks the full information is contained in the density matrix in
the joint space of the system and the bath. The evolution of the joint density matrix
may be described by the Stochastic Liouville equations, which combine the Liouville-
von Neumann equation with the master equation for Markovianstochastic variableσ
(described byLσ ).

dρ(σ ; t)
dt

=�iΛ(σ ; t)ρ(t)+Lσρ(σ ; t) (2)

The third order response functions now factorize into products of Green’s functions for
the free evolution between pulses and the dipole moment elements that describe the
action of the laser pulses. Fastσ(t) modulation agrees with the Redfield equations,
since all memory effects of the fast bath variables are erased.

New effects which cannot be described by the Redfield equations (where the bath is
formally eliminated) are expected for slow or intermediatebath timescales. We consider
a homo-dimer with parallel dipole moments. One exciton state carries all oscillator
strength and the other is dark. Due to slow Gaussian-Markovian fluctuations of the
site frequencies, theσ dependent dark state acquires a transient dipole moment, and
additional diagonal peak at (-1,-1) is observed in Fig 3 for the delay times during bath
equilibration, but not longer.

The cross peaks (-1,1) and (1,-1) appear at all delay times, because these are induced
by the transient dipole moments at eithert1 or t3 intervals.
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Fig. 3. 2D absorptive lineshape of two coupled chromophores (J12 = 1) with slow Gaussian-
Markovian spectral difussion (ofε1 andε2) with various delay timest2, shorter and larger then
the bath autocorrelation time. The lower transient peak correspond to antibonding orbital, which
is dark at equilibrium, but carries transient dipolemomentinduced by slow spectral diffusion.
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