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Abstract. A simulation study shows how coherent exciton dynamics ot@éynthetic complexes
may be revealed in two-dimensional photon-echo signalpbyific laser pulse polarization con-
figurations. Dynamics of single-exciton density matrix entences shows strong signatures of
excitonic coherences prior to energy relaxation.

I ntroduction

Multidimensional correlation spectroscopies are valegsbbes of dynamical pro-
cesses in molecules, which provide detailed dynamicakmétion on complex struc-
tures: proteins, excitons, and semiconductors [1]. Thedeniques are performed by
applying four well-separated chronologically-orderenlaghort laser pulses as shown
in Fig. 1.
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Fig. 1. Top row: Scheme of the coherent third order photon echo tqukr(left) and the Feyn-
man diagrams of the contributing Liouville space pathwaighf). Bottom row: Configurations
of BChls in photosynthetic complexes FMO (left) and PSlIH{tjgscales are different.

We consider the photon-echo signal generated in the phasehing direction-k; +
ko + ks, where the delay times between puldest, andts serve as control parameters.
A double Fourier transform with respecttio— Qi andts — Q3 at fixed delay; is used
to display the two-dimensional coherent spectra (2D CS)gbmal Q; = Q3) peaks
carry similar information as linear absorption: peak pos# correspond to excitation



energies. However, unlike linear techniques, the homagenend inhomogeneous
broadenings in 2DCS show up in anti-diagonal and diagomrattons, respectively,

and can be separated. Crosspeak@{ # Q3z) carry novel information about couplings
and correlations of different states [2]. We show how symiyngtoperties of these sig-

nals with respect to pulse polarization configurations (PR&y be used to probe the
system’s density matrix coherences [3].

Signatures of density matrix coherences

In broad-band impulsive optical techniques, when the [guése resonant with in-
terband transitions, the signal is proportional to thedtbirder response functic?® at
the photon echo phase-matching direction [5]. The respfumsgion is given by a sum
over three Liouville space pathways (LSP): excited statis&on (ESE), ground state
bleaching (GSB) and excited state absorption (ESA) (Fig\Wi§ classify the LSPs as
follows [4]: coherence (population) pathways, wHara andket are different (same)
duringt.

The following set of transitions is characteristic to thepplation pathways: the
population is created from the ground state by two transitim the same initial state
i, it relaxes to a finalf state duringt,, and f is deexcited to any other state. The
population LSP contains the produgty* py* ui?pui*); herep; (K;) is the excitation
(deexcitation) transition dipole. Angular brackets denotientational averaging and
V4V3Wov; (V = XY, 2) denote the laser pulse PPC. For three basic tensor comgsarfen
the response function we have [3]:

(W ) = 1571 uspf — (Bs - 1)), (1)
(W) = (E ) ) = 30 (—pe e +3(H¢ - 1i)?). 2)

We found that the following combinatios = §§2<y - §<§sz cancels for all population
LSPs [3]. For localized excitons we would hge= p; and therefor® also vanishes.
TheB signal therefore solely shows the coherence LSPs of déteckéxcitons.

Results and Discussion

We study coherent exciton dynamics in two photosynthetioexes: the Fenna-
Matthews-Olson (FMO) complex of a green sulfur bacteriathed®hotosystem | (PSI)
photosynthetic complex of a cyanobactdrier mosynechococcuselongatus[4]. Simu-
lations were performed using the Frenkel exciton model apded two-level molecules
as described in previous publications [3,6]. The FMO compdeone of the most ex-
tensively studied photosynthetic pigment-protein comgde It is a trimer of small
noninteracting identical subunits, each consisting oéeévacteriochlorophyll (BChls)
molecules (see Fig. 1). The broad absorption spectrum éxtieam 12000 cnt to
13000 crit (see Fig. 2). Th® signal at different, delay times is shown in Fig. 2 (top
row). We see well-resolved offdiagonal peaks, which oatglwitht,. Peak positions
can be correlated with the excitons and their wavefuncti@sly highly delocalized
excitons contribute to the signal, while the lowest-engrggk (localized exciton) is not
observed.

The PSI complex is a larger energy-conversion apparatusaainyg in trimeric and
monomeric forms. The absorption band of the PSI monomer @éttchlorophylls



extends between 13500 — 15500 ¢mThe B signal of PSI [Fig. 2 (bottom row)] at
t, = 0 contains unresolved features at the bulk antenna regiodisthkct pattern of
exciton density matrix appears at later delay times. Thevielh-resolved crosspeaks
at 100 fs can be related to the reaction center, which caqany strong couplings
between molecules and its excitons are delocalized.
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Fig. 2. Absorption and two dimensional photon echo techniaueﬁ?&y— S@x for two photo-
synthetic complexes: FMO and PSI at varidpgelay times.

In summary, the single-exciton density matrix can be diygotobed by two di-
mensional sighals through crosspeaks in 2D CS using PP@so&dillatory pattern of
the signal with the delay time follows propagation of density matrix coherences. It
implies exciton delocalization since localized excitorsfdtered out by thd3 signal.
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