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Signatures of ‘‘strong” J and ‘‘weak” K exciton couplings in the nonlinear femtosecond optical response of
the FMO photosynthetic complex are identified. The two types of couplings originate from interactions of
molecular transition charge dipoles and change of molecular permanent dipoles in their ground and
excited states, respectively. We demonstrate that by combining various two-dimensional optical signals
it should be possible to invert spectroscopic data to reconstruct the full exciton Hamiltonian (energies
and couplings).
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1. Introduction

Assemblies of chromophores play crucial roles in light-harvest-
ing, transport and primary charge-separation in photosynthetic
bacteria and higher plants. These mark the primary events in the
photosynthesis [1–4]. Collective excitations in photosynthetic
complexes undergo elaborate multi-step relaxation pathways,
optimized to capture light with high speed and efficiency [4–9].

These systems are typical to a broader class of molecular assem-
blies of electrically neutral chromophores with nonoverlapping
charge distributions, which interact via electrostatic couplings be-
tween molecular multipoles. One-dimensional aggregates are clas-
sified as J or H type depending on the relative orientation of
transition dipoles [10–12].

The optical excitations of such aggregates are known as Frenkel
excitons [4,10,13–20]. The number of singly-excited states is equal
to the number N of chromophores, whereas the number of dou-
ble-exciton states scales as �N2. The optical properties of aggre-
gates are governed by molecular properties and the intermolecular
interactions.

The two-dimensional correlation plots obtained by coherent
multidimensional correlation spectroscopy reveal molecular fluc-
tuation dynamics, intermolecular correlations, and exciton dynam-
ics in real time [9,21–26]. These experiments are carried out by
applying four femtosecond pulses, as shown in Fig. 1 and control-
ling the three time intervals, t1, t2, t3, between them. Fourier trans-
form of the signal with respect to these intervals generate
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multidimensional spectrograms, whose peak patten is associated
with the network of intermolecular interactions [23,27–29]. The
lineshapes contain valuable signatures of interactions with intra-
molecular and solvent vibrations: static fluctuations cause inho-
mogeneous broadening, while fast fluctuations are responsible
for exponential decay of coherences which shows up as homoge-
neous broadening. In this paper we study the signatures of two
types of intermolecular interactions in various 2D signals and
how they can be inverted to yield the exciton Hamiltonian.

2. The exciton model

Optical properties of a molecular aggregate are described by the
Frenkel exciton Hamiltonian:

ĤðeÞ ¼
X

m

emB̂ymB̂m þ
Xm–n

m;n

JmnB̂ymB̂n þ
1
2

Xm–n

m;n

KmnB̂ymB̂ynB̂mB̂n; ð1Þ

where j0i is the ground state of the aggregate, B̂ynj0i denotes the set
of single-excitons and B̂ymB̂ynj0i is a set of double-excitons. Their
properties are characterized by energies em and couplings J and K
as described below. B̂yn is the nth excitation creation operator, which
promotes molecule n into its excited state. B̂ are the conjugate anni-
hilation operators. These elementary excitations are hard-core bo-
sons with the Pauli commutation rules ½B̂m; B̂

y
n� ¼ dmnð1� 2B̂ynB̂nÞ.

This Hamiltonian is derived using the Heitler–London and the
adiabatic approximations in Appendix A. The relevant states form
three manifolds (ground state, single- and double-excitons). The
ground state energy is given by h0jĤðeÞ0i ¼ 0. In the single-exciton
manifold the mth singly-excited state energy is h0jB̂mĤðeÞB̂ymj0i ¼ em,
and the resonant coupling between singly-excited states m and n is
given by h0jB̂mĤðeÞB̂ynj0i ¼ Jmn. The N single-exciton eigenstates jei
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Table 1
Single-exciton Hamiltonian of FMO in cm�1 (e-diagonal and J-offdiagonal) taken from
Brixner et al. [8]. The exciton state energy of chromophore 7 (12,400 cm�1) is set to 0.

1 2 3 4 5 6 7

1 20
2 �106 160
3 8 28 �260
4 �5 6 �62 �85
5 6 2 �1 �70 60
6 �8 13 �9 �19 40 100
7 �4 1 17 �57 �2 32 0

k3k2k1

t 1 t 3

Sample

k1

k2

k3

kS

time

kS

FMO

dμ

BChla
FWM technique

Fig. 1. Left: geometry of the seven of BChl molecules in one unit of the Fenna–
Matthews–Olson (FMO) photosynthetic complex; center: dipole moments of the
BChl molecule (l indicates the transition dipole and d the difference between
permanent dipoles in the excited state and the ground state); right: schematic of
the time-domain coherent four-pulse experiment.
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are related to the local excitations B̂ymj0i by the transformation ma-
trix /me:

jei ¼
X

m

/meB̂ymj0i: ð2Þ

The eigenvalues ee are obtained by diagonalizing the matrix
hmn ¼ Jnm þ dmnem. We thus find that the single-excited states are
characterized by J coupling.

The double-exciton state energies are (m > n)
h0jB̂mB̂nĤðeÞB̂ymB̂ynj0i ¼ em þ en þ Kmn: the K coupling thus manifests
in the double-exciton manifold by shifting double-exciton ener-
gies. The off-diagonal coupling between two different double-exci-
ton states is h0jB̂mB̂nĤðeÞB̂ykB̂yl j0i ¼ dmkJnl þ dnlJmk (m > n and k > l): J
coupling is responsible for double-exciton delocalization.

The double-exciton eigenstates jf imay be expanded in the basis
set of direct Product of Real Space Excitations (PRSE)
jmni ¼ B̂ymB̂ynj0i (with m > n) by

jf i ¼
Xm>n

m;n

UðmnÞ;f B̂ymB̂ynj0i; ð3Þ

where U is a transformation matrix. The notation is simplified by
including a pair ðmmÞ in the basis set and setting UðmmÞ;f � 0. The
U matrix is obtained by diagonalizing the double-exciton block of
the Hamiltonian. The eigenvalues (energies) now depend on em,
Jmn and Kmn.

Double-exciton states may be alternatively expressed in the ba-
sis of Products of single-exciton Eigenstate Space Excitations
(PESE) [29], jee0i, by transformation:

B̂ymB̂ynj0i ¼
XePe0

e;e0
Umn;ee0 jee0i; ð4Þ

where

Umn;ee0 ¼ fee0fmnð/me/ne0 þ /me0/neÞ ð5Þ

is the unitary transformation matrix (m P n and e P e0);
fee0 ¼ 1þ dee0 ð2�

1
2 � 1Þ. The double-exciton states may then be ex-

panded in the PESE basis as

jf i ¼
X
e;e0

Wðee0 Þ;f jee0i; ð6Þ

Wðee0 Þ;f ¼
Xm>n

m;n

UðmnÞ;f Umn;ee0 : ð7Þ

This relationship between the single-exciton and double-exci-
ton eigenstates through W matrix is very convenient when describ-
ing double-exciton resonances and their relation with
single-exciton resonances [29]. Note that in the PRSE basis the
excitons are hard-core Bosons. In the PESE basis this is no longer
the case: two e and e0 excitations which compose a single dou-
ble-exciton are spatially delocalized and thus WðeeÞ;f is finite.
Since we are using a normally-ordered form of the Hamiltonian,
the single-exciton manifold only depends on J couplings. K cou-
plings only affect the double-exciton (and higher) manifolds. Jmn

is dominant for near degenerate chromophores em � en but is neg-
ligible when their energy difference Dmn ¼ jem � enj is large,
Jmn � Dmn (the J-induced frequency shift is � J2=D). In that limit
the leading contributions to the energy-shifts come from K. In
NMR J and K are known as strong and weak coupling and dominate
homonuclear and heteronuclear signals, respectively [30].

In the dipole approximation for molecular charge densities the J
and K couplings are given by transition dipoles lm, and difference
of permanent dipoles, dm, between the excited state and the
ground state (see Appendix A):

Jmn ¼
1

4p��0

lm � ln

jRmnj3
� 3
ðlm � RmnÞðln � RmnÞ

jRmnj5

 !
; ð8Þ

Kmn ¼
1

4p��0

dm � dn

jRmnj3
� 3
ðdm � RmnÞðdn � RmnÞ

jRmnj5

 !
; ð9Þ

where Rmn is the vector connecting chromophores m and n. More
general expressions in terms of charge distributions are given in
Appendix A. The K coupling can be ignored for signals related to sin-
gle-exciton properties, where J controls single-exciton eigenvalues,
exciton delocalization and relaxation. It is also negligible when the
dipole moment in the molecular excited state is similar to that of
the ground state so that the difference is much smaller than the
transition dipole. Electronic structure calculations of Bacteriochlo-
rophyll molecules (BChls), which are the main pigments in photo-
synthetic complexes, show that the difference of permanent
dipole is comparable to the transition dipole [31]. The K couplings
must thus be crucial for signals which are sensitive to double-exci-
ton manifold, i. e. excited state absorption and exciton annihilation.

3. Signatures of exciton couplings in multidimensional signals
of the FMO complex

The FMO photosynthetic complex (Fig. 1) is widely studied
complex made of seven closely-packed bacteriochlorophyll a
(BChla) molecules (Fig. 1). Evidence of excitonic interactions and
relaxation pattern has been established by a variety of spectro-
scopic techniques. Its single-exciton Hamiltonian is well known
from spectroscopy investigations (Table 1) [9,32–35]. We have cal-
culated the K couplings assuming the dipole–dipole interaction
(Eq. (9) ) and the electronic structure calculations of Madjet et al.
[31]: the magnitude of the d dipole of BChl molecule is 2.8 D (we
use HF-CIS estimation) and it points out from ring I to ring III
twisted 18� off ring V. The dipole origin is taken at the Mg atom.
The calculated K couplings are given in Table 2 and will be denoted
as K0. The signals were calculated using sum-over-eigenstates
expressions as described by Abramavicius et al. [26].

Each chromophore is assumed to be coupled to two, one fast
and one slow, overdamped Brownian oscillators responsible for



Table 2
The K couplings in cm�1 (set K0) between molecules calculated from Eq. (9).

1 2 3 4 5 6

2 �26.3
3 0.04 8.52
4 �1.53 2.10 �17.1
5 2.51 �0.17 0.08 �10.0
6 �6.99 4.63 �1.97 �5.87 34.15
7 �3.79 0.18 �11.3 �14.5 3.70 7.14
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Fig. 3. Simulated 2D PE signal SkI
ðX3; t2;X1Þ of FMO for different delay times t2 and

three sets of K couplings, as indicated. The top traces show the sections of t2 ¼ 0
signal as marked by the black solid and dashed lines in 2D plots. The line-style of
the sections corresponds to the marker style in the 2D plots.
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Fig. 4. ESA contribution to the 2D PE signal SkI
ðX3; t2;X1Þ of FMO at different delay

times t2 and three sets of K couplings.
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homogeneous and inhomogeneous line broadening. The spectral
density corresponding to chromophore n is

C 00nðxÞ ¼ 2x
kðsÞn Ks

x2 þK2
s

þ kðf Þn Kf

x2 þK2
f

 !
: ð10Þ

We have used the relaxation timescales K�1
f ¼ 100 fs and

K�1
s ¼ 10 ps. The following coupling strengths were used to fit

the experimental absorption spectrum: kðf Þn ¼ 60 cm�1 for chro-
mophores 1, 2, 5, 6; 30 cm�1 for chromophore 3 and 80 cm�1 for
chromophores 4 and 7; kðsÞn ¼ 8 cm�1 for all chromophores (this
corresponds to Gaussian diagonal disorder with 20 cm�1 variance).

We have studied the signatures of K couplings in two types of
signal [26]. The two-dimensional photon-echo (2D PE) signal (see
Fig. 1) generated in phase-matching direction kI ¼ �k1 þ k2 þ k3

is the most common 2D technique for probing exciton dynamics
(kj is the wavevector of laser pulse j). This signal is described by
the three Feynman diagrams shown in Fig. 2 (left) which reflect ex-
cited state emission (ESE), ground state bleaching (GSB) and the
excited state absorption (ESA) pathways. The ESA and GSB path-
ways are limited to the single-exciton space and, thus containing
signatures of J couplings. The ESA pathway involves the double-
exciton states during t3, thus, carrying information about K
couplings.

The simulated 2D PE signal is displayed in Fig. 3. At t2 ¼ 0 cross-
peaks related to J coupling can be identified, reflecting cooperative
exciton dynamics. The lineshapes are elongated along the main
diagonal, which is characteristics of slow bath fluctuations. At
longer t2 delay times the exciton transport can be followed through
the redistribution of blue crosspeak amplitudes. The difference
between K ¼ 0 and K0 can be identified by changes in green/
yellow-color regions, which signify the induced absorption and
are sensitive to K couplings. Thus the main exciton peaks are unaf-
fected by K. Only small part of the 2D plot reveals the K depen-
dence of ESA. The sections of the 2D plot show (black solid and
dotted lines) that K0 induces significant variations of various peak
amplitudes. These differences become smaller at long t2.

In Fig. 4 we show the ESA contribution to the 2D signal and its
dependence on K couplings (the other, ESE and GSB, contributions
do not depend on K and thus are not shown). K0 induce small but
visible changes to the ESA: the peaks amplitudes significantly
change at t2 ¼ 0. For the two strongest peaks we have: a is stronger
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Fig. 2. Double-sided Feynman diagrams for the photon echo technique (left) and
the double-quantum coherence signal (right).
than b for K ¼ 0, while b is stronger than a for K0. At longer delay
times the signatures of K couplings vanish.

For comparison we also show the signal calculated using larger
couplings K1 ¼ 4K0. The K1 spectra show larger changes in Figs. 3
and 4: the various peaks change amplitudes. Two strongest peaks
a and b shift as indicated by black arrows. At long t2 some variation
can be observed for peak c. The ESA contribution to the signal alone
is however not a direct experimental observable.

We have further simulated the two-dimensional double-quan-
tum coherence signal (2D 2Q) generated in kIII ¼ k1 þ k2 � k3.
The corresponding Feynman diagrams are shown in Fig. 2 (right)
[29,36]. Both diagrams are of the ESA type: they only differ by
the order of two final interactions. During the delay time t2 the dia-
grams show double-exciton resonances, which directly depend on
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K couplings. During t3 the two diagrams show different resonances.
The two diagrams exactly cancel when t3 ¼ 0. They show oscilla-
tions with single-exciton frequencies in t1 and double-exciton fre-
quencies during t2.

A convenient 2D representation of the signal uses the Fourier
transform with respect to t1 and t2 at a fixed but finite t3 > 0.
The absolute value of this signal is presented in Fig. 5. It shows very
high sensitivity to the K couplings. At t3 ¼ 10 fs, K0 shows changes
in peak amplitudes and peak positions compared to K ¼ 0. These
are strongly-affected by the K couplings as can be seen in sections
of 2D signal separately shown in Fig. 6. At longer t3 the peak pat-
terns between K ¼ 0, K0 and K1 be included change dramatically.
Note that the single-exciton resonances along X1 axis do not
change. The t3 evolution offers direct probe of double-exciton
wavefunctions in the PESE basis (Eq. (4)). Our simulations show
that double-exciton wavefunctions are very sensitive to K.

A different, ðX2;X3Þ, projection of the 2D 2Q signal at t1 ¼ 0 is
shown in Fig. 7 (the t1 evolution reflects exciton wavefunction as
can be seen from diagrams in Fig. 2, while peak amplitudes decay
as in the linear polarization; we thus keep t1 ¼ 0). The peaks along
X3 mix the single-exciton and double-exciton states and their res-
onances. The influence of K couplings is strong: this is confirmed
by the section plots. K0 couplings significantly change distribution
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Fig. 5. Absolute value of the simulated 2D 2Q signal SkIII
ðt3;X2;X1Þ of FMO for

different delay times t3 and three sets of K couplings. Black solid and dashed lines
mark the sections plotted in Fig. 6.
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along the black solid and dotted lines marked in Fig. 5. The line-style of the sections
corresponds to the marker style in the 2D plots.
of peak amplitudes (see ratio between two strongest negative
peaks in the section plot). K1 shows clear frequency shifts.
4. Discussion and conclusions

Our simulations demonstrate that the kI technique is most sen-
sitive to properties of the single-exciton manifold, governed by site
energies and J couplings. Many earlier simulations have been per-
formed and compared with experiment, firmly establishing the
single-exciton Hamiltonian block [8,33,37]. Note that the exciton
transport timescales and pathways are related to overlaps of sin-
gle-exciton wavefunctions w, which also reflect the J coupling
network.

The kI signals are only weakly-sensitive to the double-exciton
block via the ESA (and the K). Double-quantum 2D signals on the
other hand are highly sensitive to the K couplings, since they di-
rectly probe the double-exciton manifold. It should be noted that
these signals are equally sensitive to the single-exciton manifold
through the single-exciton resonances along either the X1 or the
X3 axis. The K couplings mainly induce the shifts of the double-
exciton eigen energies. Observed variations of the double-exciton
peaks mainly come from K-induced perturbations of the interfer-
ence pattern of strongly-overlapping positive and negative contri-
butions. Note that the K-induced shifts (1–50 cm�1) are smaller
than the absorption linewidth. However these small variations of
transition frequencies in 2D 2Q signals are mapped into strong
variations of the peak amplitudes.

The K couplings originate from the permanent dipole differ-
ences in the ground and excited state of molecules. These dipoles
are relatively weak in FMO pigments. However, in more close-
packed BChls (like in the photosynthetic reaction center) the
excited state permanent dipole moment is highly affected by the
surrounding BChls and contributions of the charge-transfer (CT)
states become significant. The K couplings could then be very
strong due to the large dipole moments of the CT states. The CT
character of excited states are also important in donor–acceptor
complexes. The accuracy of the estimated K couplings can be fur-
ther improved by going beyond dipole–dipole coupling model
[31]. Higher multipoles or the entire excited-state and transition
charge distributions can be included using the expressions given
in Appendix A.

In conclusion, we note that by combining the �k1 þ k2 þ k3 and
k1 þ k2 � k3 signals we can obtain the exciton Hamiltonian param-
eters directly from experiment: the single-exciton manifold and J
couplings are obtained from the absorption, pump–probe as well
as 2D kI signals. The K couplings can then be obtained from the
double-quantum signals. The sensitivity can be further increased
and specific resonances enhanced and optimized using chirality-
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induced techniques combined with coherent control and pulse
shaping algorithms [28,38].
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Appendix A. The Frenkel-exciton hamiltonian

In this appendix we derive the exciton Hamiltonian based on
the Heitler–London and adiabatic approximations. The Frenkel
exciton Hamiltonian for an excitonic aggregate is

Ĥ ¼
X

n

ĥn þ
1
2

Xm–n

mn

Vmn; ðA:1Þ

where ĥn ¼ K̂n þ Ûn is the Hamiltonian of isolated chromophore: K̂n

is the kinetic energy operator of all electrons of chromophore n, Un

is the intramolecular potential energy operator. Vmn is the intermo-
lecular Coulomb interaction energy consisting of electron–electron,
nuclei–nuclei and electron–nuclei interactions [31]:

V̂mn ¼
q2

4p�0�

X
jmjnkmkn

N2

jrjm � rjn j
þ Zkm Zkn

jRkm � Rkn j
� NZkm

jRkm � rjn j

� NZkn

jrjm � Rkn j
; ðA:2Þ

where q is an electron charge, N is the number of electrons, r are elec-
tron coordinates and R are the nuclei coordinates; Z denote the atom-
ic number (N reflects Pauli principle for exchange of electrons).

We consider two-level chromophores and denote the ground
state wavefunction of chromophore n as

/g
nðr1; . . . ; rN;R1; . . . ;RNÞ ¼ dðR1 � �R1n Þ � � � dðRN

� �RNnÞ � � �ug
nðr1; . . . ; rNÞ; ðA:3Þ

its excited state is

/e
nðr1; . . . ; rN;R1; . . . ;RNÞ ¼ dðR1 � �R1n Þ � � � dðRN

� �RNnÞ � � �ue
nðr1; . . . ; rNÞ; ðA:4Þ

where u denotes the wavefunction of electrons in the field of nuclei
and �Rkn denotes the position of kth nuclei of nth molecule.

We next introduce excitation creation and annihilation opera-
tors. In the Heitler–London approximation the ground state of
the aggregate is given by j0i ¼ Pn/

g
n. The singly-excited state of a

complex is obtained by promoting one chromophore to its excited
state, which is obtained by acting with nth excitation creation
operator: B̂ynj0i ¼ /e

nP
m–n
m /g

m. Double excitations on a single chro-
mophore are not allowed so we have B̂y2n ¼ 0. However, double
excitations of the complex can be created by promoting two differ-
ent chromophores to their singly-excited states. We thus get
B̂ymB̂ynj0i ¼ /e

m/e
nP

k–n;m
k /g

k . B̂ have the commutation relations of
Paulions (hard-core bosons) ½B̂m; B̂

y
n� ¼ dmnð1� 2B̂ynB̂nÞ.

Using the basis of j0i, B̂ynj0i and B̂ymB̂ynj0i and shifting the ground-
state energy to 0, we construct the Frenkel exciton Hamiltonian in
Eq. (1). The various parameters in this Hamiltonian are given as
follows:

em ¼ h/e
mjĥmj/e

mi � h/
g
mjĥmj/g

mi

þ
Xk–m

k

½h/e
m/g

k jV̂mkj/e
m/g

ki � h/
g
m/g

k jV̂mkj/g
m/g

ki�

¼ eð0Þm þ
Xk–m

k

1
4p��0

Z Z
drmdrk

½qee
m ðrmÞ � qgg

m ðrmÞ�qgg
k ðrkÞ

jrm � rkj
ðA:5Þ
is the excitation energy of chromophore m adjusted by inter-chro-
mophore interactions. The angular brackets denote integration over
coordinates of all particles; we have additionally introduced the
molecular charge density

qab
m ðr1Þ¼q

X
km

Zkm dðr1� �Rkm Þ�N
Z

dr2 � ��drNua	
m ðr1 � � �rNÞub

mðr1 � ��rNÞ
" #

ðA:6Þ

for arbitrary states a; b.

Jmn ¼ h/e
m/g

njV̂mnj/g
m/e

ni

¼ 1
4p��0

Z Z
drmdrn

qeg
m ðrmÞqge

n ðrnÞ
jrm � rnj

; ðA:7Þ

is the resonant J coupling between transition charge densities of
two chromophores and

Kmn ¼ h/e
m/e

njV̂mnj/e
m/e

ni � h/
g
m/g

njV̂mnj/g
m/g

ni

þ
Xk–m;n

k

½h/e
m/g

k jV̂mkj/e
m/g

ki � h/
g
m/g

k jV̂mkj/g
m/g

ki

þ h/e
n/

g
kjV̂nkj/e

n/
g
ki � h/

g
n/

g
k jV̂nkj/g

n/
g
ki�

¼ 1
4p��0

Z Z
drmdrn


 ½q
ee
m ðrmÞ � qgg

m ðrmÞ�½qee
n ðrnÞ � qgg

n ðrnÞ�
jrm � rnj

; ðA:8Þ

is the K coupling between densities of charge-differences.
Using the dipole approximation we replace the charge densities

by dipole moments. We define the transition dipole

lm ¼
Z

dr rqeg
m ðrÞ ðA:9Þ

and the charge-difference dipole between the molecular excited
state and the ground state charge distributions

dm ¼
Z

dr r½qee
m ðrÞ � qgg

m ðrÞ�: ðA:10Þ

Eqs. (8) and (9) are obtained by making multipole expansion of
Eqs. (A.7) and (A.8) and using Eqs. (A.9) and (A.10) [4].
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