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Closed expressions are derived which incorporate pulse shaping effects in femtosecond nonlinear
optical signals involving various combinations of temporally well-separated vibrationally resonant
infrared and electronically off-resonant Raman pulses. Combinations of broadband and narrow band
pulses that yield multidimensional extensions of coherent anti-Stokes Raman and sum frequency
generation spectroscopy are presented. © 2009 American Institute of Physics.
�DOI: 10.1063/1.3068548�

I. INTRODUCTION

Raman resonances are created when a difference of two
optical frequencies coincides with a molecular vibrational
transition. Such resonances carry useful information about
vibrational frequencies and may be used to monitor energy-
transfer pathways.1–6 Purely vibrational dynamics is best
studied by keeping all optical frequencies away from elec-
tronic resonances. Impulsive electronically off-resonance-
Raman �EOR� signals S�n� generated by n very short
��50 fs� pulses depend parametrically on the time delays
between pulses and are given by multipoint correlation func-
tions of the electronic polarizability �,

S�3��t1� �
i

h
����t1�,��0��� , �1�

S�5��t2,t1� �
i

h
�����t2 + t1�,��t1��,��0��� , �2�

S�7��t3,t2,t1�

�
i

h
������t1 + t2 + t3�,��t1 + t2��,��t1��,��0��� . �3�

S�3� represents coherent anti-Stokes Raman spectroscopy
�CARS� four wave mixing, which depends on a single time
delay and is thus a one-dimensional �1D� technique.1–4 Four-
wave mixing is generally a three-dimensional �3D� technique
by virtue of the three independent time delay variables be-
tween four pulses. However, under EOR conditions, two of
these variables involve off-resonant electronic coherence and
are thus very short. This leaves only one relevant time vari-
able, whose frequency conjugate � �see Eq. �13�� reveals the
Raman resonances. S�5� �see Eq. �19�� is the six wave mixing
two-dimensional �2D� technique proposed by Tanimura and
Mukamel7 and realized experimentally in molecular
liquids,8–11 whereas S�7� is the 3D eight wave mixing Raman

analog of the photon echo technique proposed by Loring and
Mukamel12 and also measured in molecular liquids.13,14

These impulsive signals are independent of pulse shapes and
profiles. The only control parameters are the time delays be-
tween pulses. EOR spectroscopy has been first carried out in
the frequency domain using long �nanosecond� pulses.3 Pi-
cosecond EOR spectra were used in the seventies to probe
vibrational dephasing in the time domain.1,2 Combinations of
impulsive broadband and long narrow band pulses have been
recently employed to manipulate these signals.15–19 Resonant
infrared �IR� signals are given by analogous expressions to
Eqs. �1�–�3� obtained by simply replacing � with the dipole
operator V. Equations �1�–�3� then represent S�1� �1D�, S�2�

�2D�, and S�3� �3D�, respectively.
Two ultrafast nonlinear spectroscopic techniques are

widely used to study molecular vibrations. The first is sum
frequency generation �SFG� performed with one resonant IR
pulse followed by an EOR visible pulse.20–24 The second,
CARS, only uses visible EOR pulses.15–19,25

Generally the calculation of nonlinear signals with finite
pulse envelopes requires multiple time integrations, which
complicates the simulation and analysis. However, Sch-
weigert and Mukamel26 derived closed expressions for mea-
surements involving resonant temporally well-separated
pulses that revealed their dependence on both pulse delays
and envelopes. Pulse shaping techniques may be used to de-
sign new signals by providing additional degrees of control
over excitation conditions. These may simply involve pulse
chirping or more elaborate pulse envelopes. In this article we
show how measurements involving pairs of off-resonant Ra-
man excitations can be analyzed in a similar fashion by in-
troducing two-photon envelopes. Various possible pulse se-
quences involving EOR and vibrationally resonant IR
pulses27,28 are described and their information contents are
compared and calculated. We demonstrate that heterodyne
detection,29–31 finite bandwidths, and frequency dispersion of
the signal field can increase the dimensionality of the
signals.32 Narrow band detection, for example, may turn
Eq. �1� from 1D into a 2D technique.a�Electronic mail: smukamel@uci.edu.
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II. MULTIDIMENSIONAL EXTENSIONS OF SUM
FREQUENCY GENERATION AND OFF-RESONANCE
CARS

The signal field �s��� �or �s�t�� is the ultimate observ-
able in nonlinear spectroscopy. In heterodyne detection the
field is interferometrically mixed with another strong �local
oscillator� field �LO

� yielding3,26–28 the frequency-dispersed
signal.

SFD��� = Re��LO
� ����s���� . �4�

In the time domain we similarly have the integrated signal

SI =� dt Re��LO
� �t��s�t�� . �5�

The two detection modes are related by an integration

SI =� d�SFD��� . �6�

The signal field can be recast in terms of the nth order non-
linear response function which, in turn, depends on the fol-
lowing type of integrals:3,32

�
−�

�n+1

d�n�
−�

�n

d�n ¯ �
−�

�2

d�1�V���n+1
� ¯ V���1

��

��1��1� ¯ �n��n� , �7�

where V is the dipole operator, � j��� is the jth pulse enve-
lope, and �1	�2¯ 	�n+1 are time-ordered variables. �n+1 is
the observation time and �1¯�n+1 is some permutation of
the indices 1¯n+1. Because of this permutation, the time
arguments within the multipoint dipole correlation functions
in Eq. �7� are not ordered chronologically. We shall present
expressions for various heterodyne-detected signals which
show explicitly the dependence on both the pulse delays and
bandwidths. The derivations involve various modular build-
ing blocks used for breaking up the multiple integrations in
Eq. �7�. For clarity these are given in the Appendix.

A. Infrared/infrared SFG

This is a 
�2� process involving two incoming fields, k1

and k2, which generate a signal at k3=k1+k2. We denote the
pulse envelopes as �1��� ,�2��� and the local oscillator ����.
We consider the level scheme shown in Fig. 1�a� and assume
that all three fields are resonant. We can then use Eq. �A2� to
get for the heterodyne-detected signal

SIR,SFG��2,�1� = Im 	
a,b,c

P�a�
VacVcbVba

��2 − �ca���1 − �ba�

��3��ac��2��cb��1��ba� , �8�

where �nm is the frequency of the nm transition and Vnm is
the corresponding dipole moment. P�a� is the equilibrium
population of state a, and �1 and �2 are Fourier conjugates
to the two time delays, t1 and t2, shown in Fig. 1. Equation
�8� reveals the information carried out by varying the pulse
delays thorough �1 and �2 in the denominators and by the
three pulse envelopes. Each transition is multiplied by a
pulse envelope � j��� whose bandwidth controls the allowed

transitions. Impulsive �broadband� pulses have flat
frequency-independent envelopes.

B. Infrared/Raman SFG

This 
�2� process involves one resonant IR pulse fol-
lowed by a single EOR pulse.20–24,33–36 The signal generated
at k3=k1+k2 is represented by the diagram in Fig. 2�a�. The
integrated heterodyne signal is obtained by using Eq. �A2�
for �1 and Eq. �A9� for fields �2 and �3,

SSFG��1� = Im	
a,c

P�a�
�caVcaf32��ca��1��ca�

�1 − �ca
. �9�

Here

FIG. 1. �a� Level-scheme and Feyman diagram for all-IR sum-frequency-
generation 
�2� process �Eq. �8��. �b� Feyman diagram for the IR/Raman/
Raman 
�4� process �Eq. �12��.

FIG. 2. �a� Level-scheme and Feynman diagram for the IR/Raman sum-
frequency-generation 
�2� process �Eq. �9��. �b� Level-scheme and Feynman
diagrams for the EOR CARS �
�3� process� �Eq. �13��.
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f32��ca� =
1

2�
� d��2����3

��� + �ca� �10�

is a two-photon spectral density.15,30

If the heterodyne field �3 bandwidth is narrow �com-
pared to �2� and is centered at frequency �, we have
f32��ca�=�3

�����2��−�ca�. Substituting this in Eq. �9�, we
obtain the frequency-dispersed heterodyne signal

SSFG��1,��

= Im	
a,c

P�a�
�caVca�3

�����2�� − �ca��1��ca�
�1 − �ca

. �11�

This is a 2D spectrum. The envelope of �1 selects transitions
�ca within its bandwidth. The dispersed-frequency � of the
signal field enters through the �2 and �3 pulse envelopes, as
in Eq. �A16�. Integrating over � �see Eq. �6�� turns it into a
1D technique �Eq. �9�� which contains phase information.

C. Infrared/Raman/Raman pulse sequence

It is straightforward to include additional IR or EOR
pulses in our modular approach and design more elaborate
pulse sequences. By adding another optical pair of pulses to
the SFG sequence Eq. �9� �Fig. 1�b�� we obtain the 
�4� pro-
cess involving one IR and two pairs of EOR pulses. This
signal, generated in the direction k5=k1+k2−k3+k4, is
given by

S�4���2,�1�

= Im 	
a,c,d

P�a�
�ad�dcVcaf54��da�f32��dc��1��ca�

��1 − �ca���2 − �da�

+ Im 	
a,c,d

P�a�
�ad�dcVcaf54��dc�f32��da��1��ca�

��1 − �ca���2 − �cd�
. �12�

As in Eq. �9�, if the heterodyne field �5 is narrow band �com-
pared to �4� and centered at frequency � we have f54��vv��
=�4��−�vv�� �5

����, turning Eq. �12� into a 3D technique
where the signal depends on �1, �2, and �. Even-order sig-
nals �
�2�, 
�4�, etc.� vanish for isotropic bulk ensembles and
are most adequate for probing oriented molecular assemblies
or interfaces. 
�4� is a multidimensional extension of SFG.

D. Raman/Raman pulse sequence; CARS

This 
�3� process involves one EOR pair followed by a
third off-resonant pulse to generate the signal at k4=k1−k2

+k3 �Fig. 2�b��.18,37 For frequency integrated heterodyne de-
tection we apply Eq. �A9� twice to get

SCARS��1� = Im	
ac

�P�a�

− P�c��
�ac�ca

�1 − �ca
f43��ca�f21��ca� , �13�

with the polarizability

�ca = 	
e

VceVea

�1 − �ec
, �14�

and

�ac = 	
e

VaeVec

�4 − �ea
. �15�

The frequency-dispersed detection Eq. �A16� which uses a
narrow-band local-oscillator �field �4� is recovered by setting
f43��ca�=�4

�����3��−�ca�.

SCARS��1,�� = Im	
a,c

�P�a� − P�c��

�
�ac�ca

�1 − �ca
�4

�����3�� − �ca�f21��ca� .

�16�

The � dependence turns this 1D �Eq. �13�� into a 2D tech-
nique �Eq. �16��. The numerator then contains the Raman �ca

resonances imprinted on the � axis, as permitted by the �4

bandwidth. When �3 is broadband, f43 becomes flat, indepen-
dent of �, and this reduces to the 1D result. CARS reso-
nances can be observed by using a combination of narrow
and broadband pulse and spectrally dispersing the signal.15–19

Note, however, that in Eq. �16� the same resonance �ca

shows up along both �1 and � frequency axes so that there
are no “crosspeaks,” and the extra dimensionability does not
provide new information in this case. Equation �16� can be
alternatively derived starting with the frequency-domain ex-
pression for the signal field.

SCARS = Im� d�1d�2d�3
CARS
�3� �− �s;�3 − �2,�1� ,

�17�
�1��1��2

���2��3��3��4
�������1 − �2 + �3 − �s� .

For our level scheme, �Fig. 1�, the third order CARS suscep-
tibility is


CARS
�3� �− �s;�3,− �2,�1�

� 	
acee�

P�a�Vae�Ve�cVceVea

��1 − �2 + �3 − �e�a���1 − �2 − �ca���1 − �ea�

−
P�c�Vce�Ve�aVaeVec

��3 − �4 + �1 − �e�c���3 − �4 − �ac���3 − �ec�
.

�18�

Equation �16� is obtained by performing the �1 and �2 inte-
grations and eliminating the � integral using the � function.

E. Raman/Raman/Raman pulse sequence:
Fifth-order-Raman

This 2D technique �Fig. 3� represents a 
�5� process in-
volving three pairs of EOR excitation pulses followed by a
detection pulse.8–11 The heterodyne signal generated at k6

=k1−k2+k3−k4+k5 is calculated by applying Eq. �A9�
three times, and is given by
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S�5���2,�1�

= Im	
acd

�P�a� − P�c��
�ad�dc�ca

��2 − �da���1 − �ca�

�f65��ad�f43��dc�f21��ca�

+ Im	
acd

�P�a� − P�c��
�ad�dc�ca

��2 − �cd���1 − �ca�

�f65��dc�f43��da�f21��ca� . �19�

Each transition is now controlled by a corresponding
two-photon pulse spectral density. Again, for a narrow
band local-oscillator field ��6� we set f65��vv��
=�6

�����5��−�vv�� and recover the frequency-dispersed 3D
signal with an extra dimension ��1 ,�2 ,��.

In summary, we have used four integrals �Eqs. �A2�,
�A9�, �A16�, and �A18�� to dissect the multipoint integrations
in Eq. �7� and derive closed expressions for various signals
generated by sequences of temporally well-separated pulses.
Each resonant IR pulse in Eq. �8� simply selects transitions
within its bandwidth. In an EOR process, on the other hand,
the Raman transition ��ca� is resonant, but the intermediate
state ��ae� is not. The process is then described by a two-
photon spectral density. We have demonstrated that the di-
mensionality of the signal may be increased by dispersing
the signal or by tuning of a narrow-bandwidth pulse. The
same goals may also be achieved by pulse shaping.
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APPENDIX: USEFUL INTEGRATIONS FOR
RESPONSE AND DETECTION

The expressions given below will be used to break up
the multiple integrations in Eq. �7�, as warranted in various
applications.

�i� Resonant interaction with an IR pulse. This involves
an integral of the type

I1 = �
−�

t

d�Vca������� . �A1�

The upper limit generally extends to the next pulse
�see Eq. �7��. However, for well-separated pulses
we can safely extend this limit to +� since the
pulse envelopes guarantee the required time order-
ing. This gives26

I1 
 Vca�
−�

�

����exp�i�ca�� = Vca���ca� . �A2�

Equation �A2� implies that only transitions �ca

whose frequency lies within the pulse bandwidth
are allowed in this case.

�ii� Off-resonant Raman processes.

Here we have two successive time-ordered interac-
tions, well separated from all others, but not with
respect to each other. These require integrals of the
form

Ica
21 = �

−�

�3

d�2�
−�

�2

d�1�2��2��1
���1�Vce��2�Vea��1� .

�A3�

�1 and �2 could be any pair of successive time vari-
ables in Eq. �7�. Since interactions with fields 1
and 2 are not well separated temporally, we can
only set �3, �but not �2� to �. By changing vari-
ables to �1=�−s , �2=�+s, Eq. �A3� is recast in
the form

Ica
21 = VceVea�

−�

�

d��
0

�

ds�2�� + s��1
��� − s� ,

�A4�
exp�i�ca� + i��ce + �ae�s� .

A Fourier transform of the fields

���� =
1

2�
� d� exp�− i����2��� �A5�

results in

Ica
21 =

1

2�
VceVea�

−�

�

d��
0

�

ds� d�

�� d���2����1
����� ,

�A6�
exp�i��ca + � − ���� + i��ce + �ae + � + ���s� .

The � integration now gives 2� ���ca+�−���. We
can then carry out the s integration to obtain

FIG. 3. The four Feynman diagrams contributing to the fifth order Raman

�5� process �Eq. �19��.
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Ica
21 =

1

2�
VceVea,

�A7�

� d�� d���2����1
��������ca + � − ���

�
1

�ce + �ae + � + ��
.

The �� integration gives

Ica
21 =

1

2�
VceVea� d�

�2����1
��� + �ca�

2�� − �ec�
. �A8�

Since both pulses are EOR, the denominator is
slowly varying and can be taken out of the integra-
tion to finally yield

Ica
21 
 i�caf12��ca� . �A9�

Here

�ca = 	
e

VceVea

� − �ec
�A10�

is an effective polarizability and

f12��ca� =
1

2�
� d��2����1

��� + �ca� �A11�

is a two-photon spectral density.11,30

Equations �A2� and �A9� are analogous; all we
need is replace 
 by �, and � by f . An important
difference is that in the IR the pulse envelope � j���
selects positive frequencies and � j

���� selects nega-
tive frequencies. These can be distinguished by the
relevant phase matching wave vector +kj ,−kj, re-
spectively. In the Raman case, in contrast, the
bandwidth of f jg��� spans positive and negative
frequencies and both contribute to ki−kj. Within
the rotating wave approximation �RWA� the signal
then contains additional terms, since phase match-
ing is less selective.

�iii� Off-resonant Raman detection.

If the last interaction is an EOR process, we need
the following integral:

Jac
j ��� = �

−�

�

d�2 exp�i��2�

��
−�

�2

d�1Vae��2�Vec��1�� j��1� . �A12�

Proceeding as before we get

Jac
j ��� =

1

2�
VaeVec�

−�

�

d�2�
−�

�2

d�1� d�1,

�A13�
exp�i��ae + ���2 + i��ec + �1��1�� j��1� .

Setting s=�2−�1 gives

Jac
j ��� = VaeVec�

−�

�

d�2�
0

�

ds� d�1,

�A14�
� j��1�exp��i��ae + � + �ec + �1��2�

− i��ec + �1�s� .

The �2 integration gives 2� ���ac+�+�1�. We can
then carry out the �1 integral and get

Jac
j ��� = VaeVec� j��ca − ��

��
0

�

ds exp�− i��ec + �ca − ��s� . �A15�

This finally gives

Jac
j ��� 
 i�ac� j��ca − �� �A16�

with

�ac = 	
e

VaeVec

� − �ea
. �A17�

In heterodyne detection we combine the signal
field with a much stronger local-oscillator field
�k��� and integrate over frequency. This results in
the following quantity:

1

2�
� Jac

j ����k���d� = Iac
jk f jk��ca� . �A18�

The imaginary part of Eq. �A18� is detected. Equa-
tion �A16� represents a spectrally dispersed signal.
Equation �A18� is not dispersed but retains the
phase information of the signal. Note that for inte-
grated detection we have

� ��t�P�n��t�dt =� ����P�n����d� . �A19�

This yields Eq. �6�.
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