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Abstract – We present an analysis of waiting time distributions of consecutive single-electron
transfers through a double-quantum-dot Aharonov-Bohm interferometer. Waiting time distri-
butions qualitatively indicate the presence of interferences and provide information on orbital-
detuning and coherent interdot-electron transfer. The frequencies of interdot-transfer–induced
oscillations are Aharonov-Bohm phase sensitive, while those due to level detuning are phase
independent. The signature of the quantum interference in the waiting-time distribution is more
apparent for weakly coupled electron transfer detectors.
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Introduction. – Double-quantum-dot (DQD) junc-
tions provide an experimental setup to study phase coher-
ent transport [1–3] and to realize Aharonov-Bohm (AB)
interferometers [4–6]. So far theoretical studies on trans-
port properties of DQD-AB interferometers have been
focused on average current [7–14] and shot noise [15–18]
properties. Recently time-resolved detection of single-
electron transfers in single QD [19–22] and DQD in series
has become experimentally feasible [23]. The waiting-time
distribution (WTD) of consecutive electron transfers can
be obtained from time series analysis and provide detailed
information on QDs [24,25] and single molecules [26].
They were found to be sensitive to interference due
to multiple-electron paths in DQD junctions [24] and
contain more detailed information than current and noise
measurements [25].
In this work we present a WTD analysis of single-

electron transfer through a model DQD-AB interferom-
eter. The WTD signal reveals the energetic structure,
Coulomb interaction, and quantum interference of the
DQD. These quantities are connected with qualitatively
distinguishable oscillations in the WTD. The frequencies
of these oscillations are sensitive to the AB phase,
φ≡ 2πΦ/Φ0, and are suppressed at φ= 2nπ for an
integer n when interdot transfer is present. Here, Φ is the
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magnetic flux perpendicular to the junction and Φ0 = h/e
the magnetic flux quanta. In contrast, the frequencies of
the oscillations purely due to energy detunings of the DQD
orbitals are φ-independent. We show that their detection
requires weakly coupled electron detectors thereby avoid-
ing to inflict fast decoherence on the DQD. To this end, we
exploit a master equation in the many-body Fock space
of the DQD, assuming weak system-reservoir coupling.
The applied magnetic flux can be detected by current

measurements and the shot noise Fano factor is quanti-
tatively shifted by interdot transfers [16,17]. For WTD,
a qualitatively distinct dependence on interdot-electron
transfers and orbital detunings is given by the oscillations.
The information content obtained through WDT is can be
mostly replicated by the full shot noise spectrum [25] and
analysis of WTD can serve as an alternative approach to
study the system under investigation.
The paper is organized as follows. In the second section

we present the Hamiltonian of the AB-DQD interferom-
eter. In the third section, we derive the quantum master
equation and the expressions for the WTD. The fourth
section is dedicated the discussion of the analytical and
numerical results, followed by conclusion and outlook.

Hamiltonian. – The set-up under consideration is
illustrated in fig. 1. We consider spinless electrons and each
QD can hold only one electron at most. We decompose the
total Hamiltonian of the DQD-AB interferometer junction
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Fig. 1: Sketch of the DQD-AB interferometer and the involved
parameters.

into H̃T = H̃S + H̃R+ H̃SR(φ). The DQD part (system)
reads

H̃S =
∑
s=1,2

εsc
†
scs+Uc

†
1c1c

†
2c2−∆(c†1c2+ c†2c1). (1)

Here, εs with s= 1 or 2 is the orbital energy of the
specified QD; U denotes the strength of the Coulomb
repulsion between electrons; ∆ is the interdot-electron
transfer parameter in the DQD-AB interferometer.
Measuring the electrons directly inside the DQD-AB
interferometer would induce dephasing since acquisition
of the transfer path information suppresses interference
in accordance with the quantum-mechanical complemen-
tary principle [27] and the direct detection process can
alterate the statistics [22]. The analysis of the WTB does
not require the path information of transfers through
the DQD-AB interferometer but only the counting of
electrons entering and leaving the junction regardless of
their path. We consider the electrodes as two independent
free-electron reservoirs, HR =

∑
ν=l,r

∑
q εqνc

†
qνcqν , which

serve as weakly coupled electron transfer detectors and no
additional apparatus for electron transfer measurement
is applied to the system. The index ν denotes the left (l)
or right (r) electrode, q their intrinsic degrees of freedom.
The electron creation (annihilation) operators c†s and
c†qν (cs and cqν) satisfy the anticommutator relations:
{ck, c†k′}= δkk′ and {c†k, c†k′}= {ck, ck′}= 0, for all k, k′ =
s, qν. The system-reservoirs coupling responsible for elec-
tron transfer between the electrodes and the DQD reads

H̃SR(φ) =
∑
ν=l,r

∑
sq

[
T (ν)qs (φ)c

†
scqν +H.c.

]
. (2)

The AB phase φ-dependent transfer parameters satisfy

T
(ν)
q1 (φ) = Tq1e

iφν/4 and T
(ν)
q2 (φ) = Tq2e

−iφν/4, for the two
parallel dots pierced by the single magnetic flux considered
here. The phase components φν in the couplings elements

T
(ν)
q1,2(φ) satisfy φl =−φr = φ. This relation accounts for
the mirrored orientation of the couplings elements T

(ν)
q1,2(φ)

to the right electrode with respect to the left electrode.
Hamiltonian (2) and the left/right phase relation were
employed in previous theoretical studies [14–17].

Formalism. – We describe the DQD by the reduced
density operator ρ(t) of the system. Note that the interdot-
electron transfer ∆ in eq. (1) leads to off-diagonal elements
in the system Hamiltonian H̃S in the orbital basis. We
transform it into eigenbasis, HS =O

−1H̃SO, where O
consists of the eigenvectors of H̃S . The same transforma-
tion is applied to the creation and annihilation operators
Ψs =O

−1csO and Ψ†s =O−1c†sO, with s= 1, 2 denoting
the two orbitals of the DQD, such that HSR =O

−1H̃SRO.
The standard perturbation theory leads to the quantum
master equation in eigenbasis [24]:

ρ̇(t) =−iLρ(t)+
∑
ν=l,r

(−Πν +Σ+ν +Σ−ν )ρ(t). (3)

The system Liouvillian L ·= [HS , · ] in eigenbasis describes
the coherent dynamics. The dissipative superoperator in
eq. (3) is separated into the diagonal contribution Πν that
leaves the number of electrons in the system unchanged,
and the off–diagonal Σ+ν and Σ

−
ν for the increase and

decrease the number of electrons in the DQD, respectively;
see ref. [24] for the derivation. This separation is necessary
in order to keep track of the trajectories of single-electron
transfers.
Consider, for example, the scenario of detecting an

electron entering the DQD through the left electrode at
time t0 and leaving through the right electrode at time t.
The waiting-time distribution of consecutive electron
transfer events is then given by the joint probability [24]

Pl→r(t, t0) = trS{Σ−r St,t0Σ+l ρS(t0)}, (4)

with St,t0 = exp[(−iL−Πl−Πr)(t− t0)] being the propa-
gator of the system in the absence of transfer events at the
electrodes within the waiting-time interval. Quantity (4)
can be obtained from the time series of single directionally
resolved electron transfers between the electrodes and the
system. One has to record a sufficiently large number of
the l→ r events and generate a histogram of the number
of occurrences as function of the time interval t− t0. The
histogram has to be normalized by the total number of
considered events.
The aforementioned physically distinct dissipative

components are formally given as [24] Σ+ν =
∑
s

→
Ψ†s
←
Ψ
(−)
νs +

←
Ψs
→
Ψ
†(−)
νs , Σ−ν =

∑
s

←
Ψ†s
→
Ψ
(+)
νs +

→
Ψs
←
Ψ
†(+)
νs , and Πν =∑

s

(→
Ψ†s
→
Ψ
(+)
νs +

←
Ψ†s
←
Ψ
(−)
νs +H.c.

)
. The involved super-

operators are defined as the left or right actions (
→
Ψ · ≡Ψ ·

or
←
Ψ · ≡ ·Ψ) of the associated Hilbert-space Ψ-operators.

Besides the annihilation (creation) operators Ψs (Ψ
†
s) we

also have to consider their auxiliaries [24,28]:

Ψ(±)νs (t, φ) =
∑
s′

∫ t
t0

dt′C(±)νss′(t− t′;φ)e−iL(t−t
′)Ψs′ . (5)
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Here, C
(+)
νss′(t;φ) =

∑
qq′ T

(ν)∗
qs (φ)T

(ν)
q′s′(φ)〈c†qν(t)cq′ν(0)〉R

and C
(−)
νss′(t;φ) =

∑
qq′ T

(ν)
qs (φ)T

(ν)∗
q′s′ (φ)〈cqν(t)c†q′ν(0)〉R are

the AB phase-dependent interacting reservoir correla-
tion functions. The trace over the reservoir degrees of
freedom is denoted by 〈. . .〉R. Applying the given phase
relations in T

(ν)
qs (φ) and assuming further Tq1 = Tq2 = Tq

for the AB phase-free parts lead to the relations:

C
(±)
ν11 (t) =C

(±)
ν22 (t) =C

(±)
ν (t), C

(±)
ν12 (t) =C

(±)
ν (t)eiφν/2, and

C
(±)
ν21 (t) =C

(±)
ν (t)e−iφν/2. The auxiliary operators in their

non-Markovian form (eq. (5)) can be numerically evalu-
ated without further approximations as shown in refs. [24]
and [28]. To derive analytical results we apply the Born-
Markov approximation, together with the wide-band
limit for the reservoir spectral density Γ≡ |Tq|2δ(ε− εqν).
The latter leads to C

(±)
ν (t) = Γ

∫∞
0
dε f

(±)
ν (ε)e∓iεt. Here,

f+ν (ε) = 1− f−ν (ε) = [e(β(ε−µν)+1]−1 ≡ f(ε−µν) is the
Fermi distribution function, with β being the inverse
temperature and µν the Fermi energy of the electrode ν.
The Born-Markov approximation amounts to replacing
the range of time integration in eq. (5) with (−∞,∞).
As results, the auxiliary annihilation operators defined in
eq. (5) can be evaluated as

Ψ
(±)
ν1 =Γf

±
ν (L)(Ψ1+Ψ2e±iφν/2), (6a)

Ψ
(±)
ν2 =Γf

±
ν (L)(Ψ1e∓iφν/2+Ψ2), (6b)

which depend on the AB-phase but no longer on the time.

The auxiliary creation operators Ψ
†(±)
νs are of similar

expressions, but with the replacements of L→−L,
φ→−φ and Ψs→Ψ†s in eq. (6). Note that since HS is
diagonal in the many-body Fock space, the action of the
superoperator f±ν (L), which is determined by the Fermi
function and the diagonal system Liouvillian, can be

carried out easily. All the 16 auxiliary operators, Ψ
(±)
νs

and Ψ
†(±)
νs with ν = l, r and s= 1, 2, can now be evaluated

(cf. eq. (6)) in terms of 4×4 matrices in the Fock-space
representation. Consequently, the action of each dissi-
pative tensor in the second term of eq. (3), which has
been given in terms of the left and right multiplications

of some Ψs (Ψ
†
s) and Ψ

(±)
νs (Ψ

†(±)
νs ) is now determined. It

is worth to mention here that the approximation scheme
explored in eq. (6) leads to an eq. (3) in Lindblad form.

Results. – We use the following parameter scheme
to describe our calculation results. A bias of 2V is
applied symmetrically µl/r = µeq±V . Some theoretical
investigation employed degenerated orbitals [16–18] for
simplification while interesting effects could be predicted
in the non-degenerate scenario [12–14,24] that had also
been studied in experiment [4]. We consider the latter.
The orbital energies of the DQD are set to be ε1 = εg +α
and ε2 = εg −α; i.e., the orbital energy split (or detuning)
is 2α. We set the vacuum DQD state ε0 = 0 as the
energy zero, and εg = 1 the internal energy unit. In all
calculations, µeq = 1.0 and T = 0.1.

Fig. 2: Pl→r(t) (left panels) as functions of AB-phase φ and
time t. The corresponding Fourier transformation F (ω) (right
panels) at φ= 0 (dash), π/2 (solid), and π (dot), respectively.
The upper, middle and bottom panels are for three representing
sets of interdot transfer rate ∆ and orbital detuning α. Other
parameters are U = 1.0, T = 0.1, 2V = 0.2 and µeg = 1.0 (in unit
of εg); see text for details.

Figure 2 demonstrates the dependence of the waiting-
time distributions Pl→r(t) (left panels) on the AB-phase φ,
together with their Fourier transforms F (ω) (right panels)
exemplified at three representing values of φ= 0, π, and
2π. The Coulomb repulsion parameter U = 1.0 and the
bias 2V = 0.2 are common, while the interdot transfer
and orbital energy split parameters are (∆, α) = (0.1, 0)
in the upper, (0, 0.05) in the middle, and (0.1, 0.05) in the
bottom panels, respectively. Clearly, the influences of ∆
and α on the waiting-time distribution are qualitatively
distinct, especially in the two limiting regimes. While
Pl→r(t) shows only little dependence on φ in the dot
orbital split case (the middle panel: ∆= 0 but α �= 0),
it is strikingly sensitive to the AB-phase in the interdot
transfer case (the upper panel: ∆ �= 0 but α= 0). In the
latter case, the characteristic oscillation is maximized
at φ= π, but disappears at φ= 0 and φ= 2π. These
observations can be largely understood as follows.
The dot orbital split (∆= 0 but α �= 0) case resembles

the transport through double slits. The resulting inter-
ference [24] persists and is sensitive to the AB-phase
with a period of 2π as it was predicted for the electric
current [13–17]. Here the decrease and increase of the
amplitude of the WDT reflects this dependence of the
current on the AB-phase, since it can be obtained from
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Fig. 3: Pl→r(t) as a function of interdot transfer rate ∆ and
the time t and the corresponding Fourier transformation F (ω).
The AB-phase is φ= π and the orbital detuning α= 0. Other
parameters are same as fig. 2.

WDT by integration [24]. This accounts for the basic
feature observed in the middle panels of fig. 2.
In interdot transfer case (upper panels: ∆ �= 0 but

α= 0), the aforementioned double-slit feature is destroyed.
The interdot transfer allows electrons to switch between
the two pathways provided by the DQD. Thus, different
phases can be accumulated as the electron transfer
through the coupled DQD and the phase symmetry is
broken along some of the possible transfer trajectories.
As a result, the total accumulated phase depends on the
value of φ with a period of 4π. This periodic behavior
was recently predicted in ref. [17] for specific settings of
the eigenenergies of the DQD-AB interferometer.
Here, it leads to a pure exponential decay of Pl→r(t)

at the AB-phase φ= 0 or 2π. However, at other values
of φ, it leads to an effective phase difference between the
eigenlevels which are subject to an induced energy gap
of 2∆, responsible for the AB-phase activated oscillations
observed in the upper panels of fig. 2.
In the intermediate regime shown in the bottom panels

of fig. 2, oscillations can be observed for all φ; however,
the Fourier transform reveals a frequency shift when the
AB-phase is tuned by the magnetic field. At φ= π, the
observed frequency corresponds to the DQD eigenenergy
gap (2

√
∆2+α2 = 0.224), while at φ= 0 or 2π, it is

blue or red shifted, respectively. The amplification of the
oscillation at φ= π is characteristic for interdot transfer
and allows to distinguish it from orbital detuning. The
latter causes only small oscillations at φ= 0 or 2π.
Figure 3 examines further the influence of ∆ on Pl→r(t)

(left) and its spectrum F (ω) (right), with α= 0 and φ= π,
where oscillations due to AB-phase–activated interferences
between the eigenlevels are at maximum. Note that the
interference would remain dark at φ= 0 in this case; as
can be seen the upper panels of fig. 2. The amplitude of
Pl→r(t) oscillation decreases with ∆, which corresponds
to a decreased average current through the DQD.
To analyze other coherent operation conditions, let

us focus on the orbital-detuning (∆= 0 and α �= 0) case
where H̃S is diagonal. We also neglect the Liouville-space
off-diagonal elements in Πl+Πr, which have a relatively
small influence in the weak-coupling regime. As results,
the propagator St,t0 in determining Pl→r(t, t0) (eq. (4))

Fig. 4: The damping parameter a(U, V ) and the pre-
exponential amplitude parameter b2(V, α), as their functionial
dependence, for the oscillation term Posc(t) (eq. (7)). Interdot-
electron transfer is absent, ∆= 0.

becomes diagonal, and the analytical solution is achiev-
able. Moreover, the waiting-time distribution is separable
into Pl→r(t) = Posc(t)+Pdecay(t).
The decaying terms Pdecay(t) depend only weakly on

the AB-phase which would make it difficult to extract
information. For the case of incoherent transport through
single benzene molecules a detailed discussion of Pdecay(t)
is provided in ref. [26] which can be applied to QD-systems
as well.
As the coherent operation conditions are concerned, we

focus only on the oscillation term, which is independent
of the AB-phase for the orbital split case (cf. the middle
panels of fig. 2).

Posc(t) = p0Γ
2b2(V, α)e−2a(U,V )Γt cos(2αt), (7)

where p0 is the initial vacuum state occupation number,
a(U, V ) = a(U,−V ) = f(U +V )+ f(U −V )+ 2, and

b(V, α) =
1+ e2αβ +2e(V+α)β

eβ(V+2α+1)/2
f(V +α)f(V −α). (8)

The left panel of fig. 4 depicts the damping parameter
a as a function of U and V . It assumes the maximum
value of 4 for small Coulomb coupling U <V and is
independent of α. Also the decay rate proportional to
the system-electrode coupling strength Γ. Thus a weak
coupling is required for the observability of interferences.
This qualifies statistical analysis of waiting-time distri-
butions as an indirect method to study internal processes
indirectly avoiding fast decoherence in the system.
The right panel of fig. 4 depicts the pre-exponent

parameter b2 as function of V and α. It reveals further
the parameter regimes where oscillations are observable.
One condition is that V <α. Oscillations are suppressed
at negative bias larger than the DQD energy gap. The
amplitude is strongly increased when V >α. However, in
this regime the decay rate 2aΓ may reach its maximum and
prevent the observability of interferences. Apparently, the
presence of strong Coulomb coupling, as well as operating
at small bias regime, are favored for the observation of
interference effects by means of waiting-time distributions.
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Conclusion. – In conclusion, a Markovian quantum
master equation in the Fock space was formulated and
employed to calculate the waiting-time distribution of
consecutive electron transfers in AB interferometers.
Based on this we describe a novel statistical method

to determine quantum interferences, interdot-electron
transfers, orbital detuning and the AB-phase. Orbital
detuning and interdot transfer induce oscillations in the
waiting-time distribution in the presence of interference.
The two cases can be distinguished qualitatively since the
frequency of the latter one is sensitive to the AB-phase.
The observability of oscillations, from which the afore-
mentioned parameters can be quantitatively deduced,
requires the presence of strong Coulomb interaction,
small bias and a weak electrode-system coupling.
The predicted effects can be tested by combining

QD-AB experiments [3] with recent single-electron
counting experiments [23]. The DQD may have to be
employed in parallel geometry. Such an experiment
would allow to extend single-electron counting spec-
troscopy [25,26] to AB-interferometers, and thus, provide
more detailed information than conventional current and
noise measurements.
The indirectness of the statistical detection avoids fast

decoherence but a large number of transfer events is
necessary in order to extract information. Also other
sources of decoherence like coupling to phonon bath have
to be minimized. The signature of interferences in the
waiting-time distribution can survive in the presence of
a phonon bath [25].
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K. and Kotthaus J. P., Science, 297 (2002) 70.

[4] Holleitner A. W., Decker C. R., Qin H., Eberl K.
and Blick R. H., Phys. Rev. Lett., 87 (2001) 256802.

[5] Ihn T., Sigrist M., Ensslin K., Wegscheider W. and
Reinwald M., New J. Phys., 9 (2007) 111.

[6] Sigrist M., Ihn T., Ensslin K., Loss D., Reinwald
M. and Wegscheider W., Phys. Rev. Lett., 96 (2006)
036804.

[7] Apel V. M., Davidovich M. A., Chiappe G. and Anda
E. V., Phys. Rev. B, 72 (2005) 125302.

[8] Moldoveanu V., Tolea M., Aldea A. and Tanatar
B., Phys. Rev. B, 71 (2005) 125338.

[9] Mourokh L. G. and Smirnov A. Y., Phys. Rev. B, 72
(2005) 033310.

[10] Simon P. and Feinberg D., Phys. Rev. Lett., 97 (2006)
247207.

[11] Kang K. and Cho S. Y., J. Phys.: Condens. Matter, 16
(2004) 117.

[12] Kubala B. and König J., Phys. Rev. B, 65 (2002)
245301.

[13] Li F., Li X.-Q., Zhang W.-M. and Gurvitz S. A.,
Magnetic field switching in parallel quantum dots,
arXiv:0803.1618.

[14] Tokura Y., Nakano H. and Kubo T., New J. Phys., 9
(2007) 113.

[15] Loss D. and Sukhorukov E. V., Phys. Rev. Lett., 84
(2000) 1035.

[16] Zhang G. B., Wang S. J. and Li L., Phys. Rev. B, 74
(2006) 085106.

[17] Dong B., Lei X. L. and Horing N. J. M., Phys. Rev.
B, 77 (2008) 085309.

[18] Peng J., Wang B. and Xing D. Y., Phys. Rev. B, 71
(2005) 214523.

[19] Lu W., Ji Z., Pfeiffer L., West K. W. and Rimberg
A. J., Nature, 423 (2003) 422.

[20] Fujisawa T., Hayashi T., Hirayama Y. and Cheong
H. D., Appl. Phys. Lett., 84 (2004) 2343.

[21] Gustavsson S. et al., Phys. Rev. Lett., 96 (2006) 076605.
[22] Sukhorukov E. V. et al., Nat. Phys., 3 (2007) 243.
[23] Fujisawa T., Hayashi T., Tomita R. and Hirayama

Y., Science, 312 (2006) 1634.
[24] Welack S., Esposito M., Harbola U. and Mukamel

S., Phys. Rev. B, 77 (2008) 195315.
[25] Brandes T., Ann. Phys. (Berlin), 17 (2008) 477.
[26] Welack S., Maddox J. B., Esposito M., Harbola U.

and Mukamel S., Nano Lett., 8 (2008) 1137.
[27] Chang D. I. et al., Nat. Phys., 4 (2008) 205.
[28] Welack S., Schreiber M. and Kleinekathöfer U.,
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