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The efficiency of natural light-harvesting complexes relies on delocalization and directed transfer of excitation
energy on spatially well-defined arrangements of molecular absorbers. Coherent excitation delocalization and
long-range molecular order are also central prerequisites for engineering energy flows in bioinspired devices.
Double-wall cylindrical aggregates have emerged as excellent candidates that meet these criteria. So far, the
experimental signatures of exciton relaxation in these tubular supramolecules could not be linked to models
encompassing their entire spatial structure. On the basis of the power of two-dimensional electronic
spectroscopy, we characterize the motion of excitons in the three-fold band structure of the bitubular aggregate
C8S3 through temporal, energetic, and spatial attributes. Accounting for intra- as well as interwall electronic
interactions in the framework of a Frenkel exciton basis, we employ numerical computations using
inhomogeneous and homogeneous microscopic models. The calculations on large but finite structures identify
disorder-induced effects, which become increasingly relevant for higher energy states and give insight into
the topology of the excited state manifold. Calculations in the infinite homogeneous limit capture the phenomena
evidenced in the experimental two-dimensional patterns. Our results provide a basis for understanding recently
reported correlated fluctuations of excitonic absorption bands and interband coherences in tubular aggregates.

I. Introduction

A novel ansatz in the development of artificial light harvesters
is the transfer of the self-organization tendency of organic
surfactants to molecular dyes.1 The approach relies on linking
hydrophobic and hydrophilic substituents to aggregate forming
molecular dyes with efficient excitonic couplings. Among such
amphiphilic (hydrophilic and hydrophobic) chromophores, the
class of cyanine derivatives has the outstanding ability to self-
organize into tubular structures that result from the interplay
between the hydrophobic effect and the dispersive interactions
between π-electrons of the cyanine backbone.2 As illustrated
in Figure 1a for a tubular aggregate formed by the dye C8S3,3

the spatial structure of the supramolecules can be well charac-
terized on a mesoscopic scale.4 In a motif that is typical for
molecular nanotubes, the C8S3 chromophores are wrapped into
a double-wall cylinder, with an inner diameter of ≈10 nm, a
wall-to-wall distance of ≈4 nm, and lengths approaching the
micrometer scale. The complexes thereby strongly resemble the
rod elements in light-harvesting chlorosomes of green bacteria,
which contain a huge number of bacteriochlorophylls in
cylindrical arrangements of comparable diameters and serve to
supply the bacterial reaction center with excitation energy.5,6

Even though the idea to use self-assembled tubules for
building artificial light-harvesting complexes or to combine them
as energy transport wires with photochemical reaction partners
is tantalizing, up to now, experimental and theoretical studies
addressing interwall exciton transport have not been clearly
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Figure 1. (a) Chemical structure of the monomer and a cryogenic
transmission microscopy image of the aggregated sample C8S3. The
curve on the right side shows the horizontally integrated image gray
tone. (b) Schematics of the spatial arrangement of monomer transition
moments in a single wall. Electronic coupling gives rise to one
longitudinal (µ|) and two (energy-degenerate) transversal transitions
(µ⊥′ , µ⊥′′). The splitting ∆ω between bands | and ⊥ is inversely
proportional to the diameter of the tubule. The spectral red-shift δ with
respect to the monomer transition (ω0) reflects interchromophore
coupling strengths (Jij).
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linked. As in linear aggregates, the spectroscopic properties (like,
e.g., narrow linear absorption line-shapes) of cylindrical ag-
gregates are determined by the close spatial proximity of coupled
molecular transition dipoles and the consequent formation of
Frenkel-excitons.7 However, in contrast to one-dimensional
structures, the linear absorption (LA) of a periodic lattice with
cylindrical symmetry splits into a longitudinal (coinciding with
the cylinder axis) and two energy-degenerate transversal transi-
tions (perpendicular to the cylinder axis, cf. Figure 1b).4,8 The
experimental LA spectrum of the double-wall C8S3-aggregate,
on the other hand, shows three bands, with two lower energy
bands (band I/band II) polarized parallel and a third band (band
III) polarized predominately transversal to the main tubular axis.
The question arises to which extent this spectral shape can be
regarded as an additive superposition of two single-wall
contributions. In contrast to simple dimer systems, which can
be easily classified into weak, intermediate, and strong coupling
regimes by looking at the ratio of coupling strength to dephasing
constant,9 this categorization is not that straightforward in large
systems, where non-nearest neighbor couplings have to be
considered.

There exist some discrepancies in the available literature
dealing with the treatment of band-mixing effects due to
interwall electronic couplings. In a combined experimental and
theoretical analysis of C8S3, the interwall interactions have been
assumed to be weak and were treated perturbatively.4 Recently,
by looking into the slightly different derivative C8O310 and
employing systematic experimental two-dimensional electronic
spectroscopy (2D-ES) studies, our group11,12 and Womick et
al.13,14 identified off-diagonal peaks in 2D correlation spectra
(t2 ) 0), in favor of a nonperturbative nature of electronic
interwall interactions. The cross-peaks in the correlation spectra
map-out early electronic coherence and display excitonic tube-
to-tube transfer dynamics in subsequent relaxation spectra as a
quantum-dissipative process.15 Because these partly controversial
results have been claimed for two morphologically slightly
different derivatives, the extent of comparability is not clearly
defined so far, as detailed experimental work on the bitubular
system formed by C8S3 that might clarify the conflicting results
is missing up-to now. The morphology of C8S3 is less
complicated as compared to the supra-molecular structure
formed by the dye C8O3.12 The supra-molecular helical structure
found in C8O3, which manifests itself by an additional electronic
transition, is absent in the thio-analog C8S3. Thus, the coupling
patterns including diagonal and off-diagonal peaks in 2D
correlation and relaxation spectra can be expected to be less
congested and more clearly arranged. This makes the simulation
of the 2D response feasible on the basis of an atomistic model
for the first time.

In this contribution, detailed 2D experiments on the three-
fold band structure of C8S3 aggregates are presented in
conjunction with a novel theoretical-numerical simulation. A
key point of the present work is to explore the nature of excitonic
interwall couplings and wave function mixing that determine
the particulars and details of the optical exciton dynamics in
C8S3. We find evidence for strong electronic interwall interac-
tions and their spectroscopic signatures from an atomistic
computational analysis of 2D electronic correlation and relax-
ation spectra. The third-order nonlinear signals are reconstructed
by a microscopic model employing a double-wall cylindrical
structure.4 The experiments in combination with the microscopic
cylindrical model simulations specifically trace tube-to-tube
spatiotemporal excitonic transfer and are therefore a realistic
extension of previous simulations performed on single-wall

cylinders and linear spectroscopic properties.8,16-18 In addition,
the model is superior to the coupled multilevel energy scheme
employed in previous works,11,12 which used experimental input
quantities from 1D and 2D spectroscopy in the absence of
structural information and energy-space relations.

The format of the paper is as follows. Section II is concerned
with experimental details, describing the acquisition and evalu-
ation of linear and nonlinear spectra. In Section III we bridge
the gap between experiment and theory by presenting and
discussing experimental and theoretical results on the tubular
aggregate C8S3. Two approaches are presented; a finite (inho-
mogeneous) model with site disorder which is used to analyze
linear spectra and an infinite (homogeneous) model without
disorder that is compared to the 1D and 2D spectra. We close
in Section IV with concluding remarks.

II. Linear and Nonlinear Experiments

Linear Spectra. For all experiments, C8S3 was dissolved
in water and gently stirred for one week under exclusion of
light. This stock solution (c ) 5 × 10-4 mol/L) was diluted
with water (1:1) before the measurements to yield an absorption
of ≈0.4 in the maximum. Due to the huge disparity in spatial
dimensions, tubular aggregates tend to align along the flow
direction in thin liquid films even at relatively low flow speeds.
We take advantage of this fact by implementing a gravity-driven,
wire-guided drop jet of approximately 200 µm thickness,19 in
which, based on comparison with calculations, we estimate an
average angle of 20° between the longitudinal tubular axes and
the direction of the aligning flow. By switching the light
polarization between parallel and vertical to the jet, this allows
preferential excitation of either longitudinal or transversal
transition moments (for which we use the terminology parallel
and Vertical, respectively, excitation in the following).

The isotropic LA spectrum of C8S3 in aqueous solution (cf.
Figure 2) shows two well-resolved peaks of band I and II

Figure 2. Linear absorption (LA) spectra from experiment and infinite
model simulation. (a) Isotropic LA spectrum (solid line) with labeling
of bands. The dotted line shows a typical laser pulse spectrum for
comparison. The calculated isotropic LA is shown as a dashed line;
vertical solid lines indicate the stick spectrum. (b) LA spectra under
conditions of alignment in a flow-jet, recorded with light polarized
parallel (red line, ε|) and vertical (green line, ε⊥) to the flow direction.
Colored dots show the corresponding linear dichroism (LD) spectrum
(ε| - ε⊥). The corresponding simulated data is shown in (c).
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(located at 16590 cm-1 and 16900 cm-1) and a broad shoulder
at higher energies (band III). As can be seen by comparison
with the spectrum of our excitation pulses (cf. Figure 2), the
spectral bandwidth allows to cover each of the three absorption
bands with at least 80% of the maximal spectral pulse intensity.

Linear dichroism (LD) spectra were recorded with a home-
built LD spectrometer, consisting of a halogen light source,
collimating/focusing optics, a Glan-Thompson polarizer, the
wire-guided jet, and a miniature CCD-spectrometer (USB2000,
Ocean Optics). The LA substantially reshapes for parallel and
vertical excitation conditions, as illustrated in Figure 2b. For
parallel excitation, the two strong peaks of bands I and II
dominate the spectrum (ε|), and band III appears only as a weak
spectral ridge. For vertical excitation (ε⊥) band III is the most
intense feature, with a well-resolved peak maximum at 17 185
cm-1. To considerable extent, this linear dichroism (LD ) ε|
- ε⊥, cf. Figure 2b) has been taken to support the notion of
weak interwall interactions. Accordingly, the two main bands
(bands I and II) have been assigned to longitudinal transitions
of weakly interacting cylindrical monolayers, with transversal
transitions that energetically coincide in a high energy wing
(band III).

Two-Dimensional Electronic Spectroscopy. Two-dimen-
sional electronic spectroscopy (2D-ES) correlates exciton
frequencies that are traced during two time-intervals (t1, t3) and
allows testing against a particular scheme of electronic eigen-
states by projecting coupled (isolated) absorbers into the off-
diagonal (diagonal) part of a 2D correlation plot of conjugated
frequencies ω1 and ω3.20-22 Variation of the time-delay (t2)
between the two observation windows visualizes exciton motion
in a sequence of 2D relaxation spectra.11,23,24

The principle design of the experiment and the timing of the
three excitation pulses (k1, k2, and k3) are shown in Figure 3,
panels a and b, respectively. The spectra are acquired by
scanning delay t1 (separating the first two interactions of the
sample with the pulse sequence) symmetrically around t ) 0,
while keeping delay t2 (between the second and third interaction)
constant. For positive (negative) values of t1, the scanning
protocol collects rephasing (non-rephasing) contributions in the
wavevector architecture ks ) -k1 + k2 + k3 (ks ) +k1 - k2

+ k3). At each delay, signal reconstruction (in ω3-domain) is
achieved by spectral interferometry with a local oscillator pulse
(cf. Figure 3).

As outlined in detail previously11,25 2D-ES experiments are
realized with an amplified titanium-sapphire (Ti:sa) laser system

and a home-built noncollinear optical parametric amplifier
(NOPA)26 that was tuned to 17 300 cm-1 (spectral width 1250
cm-1 (fwhm), pulse duration 16 fs). To compensate the
dispersive elements of the NOPA and the experimental setup,
we apply a combination of Brewtser-angled chirped mirrors and
a sequence of fused-silica prisms.27 For full characterization,
effective compression of the pulses, and to ensure the shortest
possible pulse duration at the location of the experiment, we
apply zero-additional phase spectral interferometry for direct
electric field reconstruction (ZAP-SPIDER).28

Upon the basis of the pioneering work of the groups of
Miller29 and Fleming,30 we implement a diffractive optics based
setup to realize heterodyne-detected two-dimensional electronic
spectroscopy experiments.11 The NOPA output is split into two
beams of equal intensity, one of which can be delayed with
respect to the other (delay t2), and focused onto a diffractive
optical element to generate two phase-locked replicas of each
of the two beams in the direction of the ( first orders. All four
pulses are collimated by a spherical mirror in such a way that
each of them is centered at the corner of a square. Beam 2 passes
a moveable glass-wedge pair to introduce time delay t1 with a
resolution of 5.3 as. Beams 1 and 3 pass identical static glass-
wedge pairs to balance the dispersion, whereas the LO is
attenuated by a neutral density filter. All beams are focused
toward the sample with another spherical mirror. The signal is
generated in the same direction as the LO and is focused onto
the slit of a thermo-electrically cooled CCD-spectrometer to
record the spectral interferograms. To reduce unwanted higher-
order effects and nonresonant signals from the solvent and to
prevent the sample from too fast photodegradation the input
beam is attenuated by a ND filter (after the NOPA) to yield not
more than 0.5 nJ of energy in each of the excitation pulses.
This energy corresponds to a fluence of 2.2 × 1013 photons/
cm2 for each excitation pulse, which results in excitation of
0.08% of the molecules. For the present sample the scanning
procedure for a given t2-time requires stepping the t1-delay from
-200 fs to +200 fs in 0.65 fs steps.

The evaluation of the interferograms follows the procedure
outlined by Jonas20 and Brixner et al.30 Briefly, we extract the
signal’s spectral amplitude and phase by Fourier transformation,
filtering, and back-transformation of every single interferogram.
After division by the local oscillator spectrum, the data set is
Fourier-transformed with respect to t1. This yields a 2D spectrum
for a given population time t2, consisting of a real (absorptive)
and imaginary (dispersive) part. The required absolute phase
of the 2D complex signal is determined by projecting the real
part onto spectrally resolved pump-probe spectra.20,30 Figure
4 shows the comparison of the spectrally resolved pump-probe
data with the projections of the corresponding “phased” 2D
spectra for 0 and 1000 fs for vertical (left) and parallel (right)
excitation.

III. Connecting Experiment and Theory

2D Correlation and Relaxation Patterns. Figure 5 shows
the amplitude representations of the complex 2D signals
S(3)(ω1, t2, ω3) recorded for both parallel and vertical excitation.
For a convenient visualization of electronic coupling patterns,
the 2D amplitude representations are partly overlaid with the
corresponding LA spectra. The latter are reflected in the signals
along the diagonal (ω3 ) |ω1|), which divides the plots into
two triangular parts (ω3 < |ω1| and ω3 > |ω1|). Note however,
that signals in 2D spectra scale differently with the transition
dipole moment than those in LA spectra (|µi|4 vs |µi|2).
Additionally, the intensities of the 2D signals are reshaped by

Figure 3. (a) Scheme of two-dimensional electronic spectroscopy.
Depending on the timing sequence, three laser pulses (wavevectors k1,
k2, k3) create a nonlinear signal in ks ) -k1 + k2 + k3 (rephasing -
R) and ks )+k1 - k2 + k3 (nonrephasing - NR), respectively. Spectral
interference with a local oscillator pulse (LO) permits signal detection/
reconstruction in frequency domain (ω3). (b) Definition of time-delays.
After a stepwise recording of signals in a symmetric t1-scan for a fixed
value of t2, a Fourier transform yields the 2D spectrum in (ω1, ω3).
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the finite pulse spectrum. The most striking 2D signals are the
off-diagonal peaks being indubitable fingerprints of electronic
couplings.11,12,23 They originate from typical combination transi-
tions whose excitation dipoles are correlated by a common
ground-state.31 Due to these off-diagonal cross-intensities, the
correlation spectra (t2 ) 0) in Figure 5 are asymmetric with
respect to the diagonal.

For parallel excitation (Figure 5a), the two strong peaks I
and II of the LA are recovered along the diagonal, and we
observe around 20% of the maximal intensity at the band II/
band I off-diagonal coordinate in ω3 < |ω1|. Peak III, which is
not resolvable both in LA and as a diagonal peak in 2D-ES
under parallel excitation, is directly detectable from the cross-
peak signal between bands II and III whose intensity is
proportional to |µII|2 · |µIII|2. Also for vertical excitation (Figure
5b), all cross-intensities in ω3 < |ω1| are nonzero. The diagonal
signal of band III is clearly seen in Figure 5b, although its
intensity is substantially weaker than one would expect from
its corresponding peak intensity in LA. Unlike for parallel
excitation in Figure 5a, a cross-peak between bands III and I is
resolved without difficulty under perpendicular polarization.
Generally, off-diagonal intensities reveal electronic couplings
between all of the three bands in the aggregate, the variation in
the coupling patterns reflecting the dominant orientations of
transition dipole moments. Parallel excitation intensifies the

cross-intensity between the predominantly longitudinal transi-
tions of bands I and II. Vertical excitation increases the relative
contribution of band III and highlights its correlation with both
of the two lower energy bands.

Apart from the differences in the correlation plots (t2 ) 0)
for parallel and vertical excitation, the temporal evolution of
the relaxation spectra (t2 ) 50, 200, 500, and 1000 fs) is
governed by comparable tendencies. A striking feature is the
growing-in of an intense cross-peak (ω3 < |ω1|), that arises via
exciton relaxation from band II into band I (cf. Figure 5). At
increasing t2-delays, the off-diagonal signals grow in intensity
and acquire a more and more elliptic shape with the long axis
parallel to the ω1-axis, thereby extending from the |ω1|-
coordinate of band II far into higher frequencies. Also the
diagonal contours of band I and band II become pronouncedly
horizontally streaked. Because of simultaneous energy uphill
transfer at longer waiting times (i.e., on a slower time scale), a
much weaker off-diagonal feature appears at reversed coordi-
nates (ω3 > |ω1|). At the same time, the relative intensity of
band II decreases, whereas the relative diagonal peak intensity
of band I steadily increases. This is an unbiased observation
and a convincing proof of concurrent intertube exciton transfer
driven by electronic coupling and relaxation, thereby conve-
niently illustrating the gain in information content by spreading
the system’s response into two dimensions.

Figure 4. Projections of the “phased” 2D spectra (solid line) for 0 and 1000 fs in comparison with the spectrally resolved pump-probe data (white
squares). Excitation vertical to the flow is depicted on the left, excitation parallel to the flow on the right side.

Figure 5. Amplitude representations of 2D electronic spectra recorded with excitation pulses polarized (a) parallel and (b) vertical to the flow
direction (all spectra are normalized). From left to right, each row shows the 2D correlation spectrum (t2 ) 0 fs) and relaxation spectra recorded
for t2-delays of 50, 200, 500, and 1000 fs, respectively. The corresponding (normalized) linear absorption spectra are shown for comparison in the
first and last 2D spectrum of each sequence, along with dotted guidelines that mark the absorption maxima.
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Depending on whether the system evolves in a one-exciton
coherence or a coherence between a one- and a two-exciton
state during t3, absorptive 2D-ES signal parts of coupled
absorbers feature both positive and negative contributions.21,30,32

In the language of pump-probe spectroscopy, 2D peaks with
negative sign are related to excited-state absorption (ESA) from
the one- into the two-exciton band, whereas positive features
can be assigned to ground state bleaching (GSB) and stimulated
emission (SE).21,22 Since transitions between successively higher
exciton manifolds are blue-shifted with respect to each other,
ESA contributions to the 2D signal become shifted off of the
diagonal into ω3 > |ω1|. Turning to the 2D absorptive correlation
spectra shown in Figure 6, we observe this effect for both lower
energy bands I and II. In particular for parallel excitation, ESA
signals are strong and contribute significantly to all of the
recorded relaxation spectra (cf. Figure 6a). For vertical excita-
tion, the negative signals are generally weaker, and essentially
disappear within 500 fs (cf. Figure 6b). The transition prob-
abilities into the two-exciton manifold are enhanced for one-
exciton states with longitudinal transition dipoles.

Beyond these aspects, the sequences of 2D absorptive spectra
resemble the evolution of diagonal and off-diagonal intensities
in the amplitude plots. Although correlation spectra (t2 ) 0)
are dominated by the intense signal of band II, the relaxation
spectra highlight the evolution of the off-diagonal peak in ω3 <
|ω1| (simultaneously gaining in intensity and ellipticity) and the
appearance of a considerably weaker cross-peak in ω3 > |ω1|.
Within 1 ps, the motion of relaxing excitons thus reshapes the
diagonal signals of band I and band II into peaks of almost
equal intensity.

Our experimental findings prompt us to draw the following
conclusions. First, 2D electronic spectra prove that all of the
excitonic bands of C8S3 are coupled and share a common
ground state. Second, intensity growth of cross-peaks with
increasing waiting time t2 images ongoing exciton population
relaxation. Third, since a cross-peak imaging exciton transfer
in a 2D relaxation spectrum is proportional to the product of
the squared transition dipole magnitudes of both of the states
involved (∝ |µi|2|µj|2), it permits observing the process as long
as at least one of the states absorbs strong enough. In our case,
the formation of streaked profiles, despite the only weak
diagonal intensities at high frequencies, reflects the character-

istics of excitonic states to substantially change across the
spectrum of eigenstates. We substantiate these statements in the
following.

Construction of a Microscopic Model. As the 2D experi-
ments (cf. Figure 5 and Figure 6) demonstrate, essential aspects
of the relaxation dynamics in tubular aggregates may be
presumed to originate from site disorder and the consequent
variation of the spatio-energetic exciton characteristics across
the spectrum. In contrast to the assessable number of coupled
pigments in most of the natural antennas currently studied in
nonlinear experiments,33-35 molecular nanotubes are huge with
respect to their building-blocks. The sheer number of molecules
building up the tubular structure is an obstacle in any theoretical
approach that aims to account for individual site-properties, like
site-orientation or static site-disorder. In C8S3, roughly one
hundred sites fill a tubular volume of one nanometer length,2,4

so that roughly 104 sites would be needed to set up a reasonably
converged structure with a length to diameter ratio of ap-
proximately 10:1. An atomistic calculation of the nonlinear
response of N excitonically coupled sites requires explicit
information of the N single- and the N(N - 1)/2 double-excited
eigenstates.36 Even though we clearly perceive disorder effects
from the streaking of the diagonal and off-diagonal peaks in
the experimental two-dimensional electronic spectra, a simula-
tion of nonlinear spectra within a microscopic model that
includes disorder effects is too expensive. Therefore, in order
to account for disorder effects on the one hand and nevertheless
keep the computational expenses manageable on the other hand,
we apply a two-fold strategy. In a first step, to account for the
experimental disorder evidenced by the streaks in the 2D
electronic spectra, we analyze the manifold of excitonic states
beyond the homogeneous limit, by introducing energetic and
spatial site disorder in a finite model structure and restrict
ourselves to the calculation of linear signals (LA, LD). In a
second step, for simulating the third-order nonlinear signals at
reasonable computational costs, we employ an infinite model
in the homogeneous limit.

In the present work, for the double-walled cylindrical model
diameters of 10 and 3.3 nm are assumed for the outer and inner
rings, respectively. The two rings are equidistantly occupied
with 24 (outer wall) and 16 (inner wall) sites, reflecting the
occupation ratio of roughly 60 versus 40 sites as deduced from

Figure 6. Absorptive parts of 2D electronic spectra recorded with excitation pulses polarized (a) parallel and (b) vertical to the flow direction.
Same delay times as in Figure 5. The curves in the side panels of the first and the last column show the 2D signals integrated along ω1, and are
equivalent to frequency resolved pump-probe spectra. All spectra are normalized to their maximum absolute value.
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experiment.4,18 Since we observe the key spectral properties to
remain essentially unaltered for a broad range of tubular
diameters if we keep the interwall distance fixed (if site-per-
ring occupation numbers are appropriately adjusted), this
approach allows to reduce the number of chromophores. All
other microscopic parameters compare well to previous esti-
mates.4 We use a lattice constant (distance of adjacent rings
along the longitudinal cylinder axis) of 1.1 nm, the site transition
energies are set to ω0 ) 18 380 cm-1, and site-to-site couplings
are calculated within the extended dipole model, assuming two
charges Q ) (0.41e (e, electron charge) separated by l ) 0.56
nm (corresponding to a molecular transition dipole moment of
µ ) 11.03 D). In an iterative procedure (carried out in the
homogeneous limit, see below), we initialize the above param-
eters, restrict transition dipole orientations to tangential planes,
and perform a fit to the experimental line-shapes under variation
of the dipole alignments. Doing so, we obtain the transition
dipoles of the inner and outer wall oriented at an angle of 32
and 38°, respectively, to the longitudinal cylinder axis (cf. Figure
7).

We stress that in comparison to the brick-layer lattice model
used in previous studies,4,18 the model employed in this work
is less sophisticated. The brick-layer lattice model relies on
wrapping a 2D lattice structure with 2D bricks representing the
individual molecular sites onto a cylindrical surface along a
wrapping vector. Since the wrapping vector has to com-
mensurate with the lattice periodicity but is otherwise arbitrary,
such an approach has more freedom in its fitting parameters
and allows the inclusion of, for example, helical ring stacking
in a straightforward manner. Within the approach taken here,
some aspects related to the detailed spatial orientation might
be missed. However, we emphasize that in the present work,
we aim at a first comparison with nonlinear spectral data,
keeping an eye on a simultaneous description of the essential
signatures in linear and nonlinear experiments. A comparison
of experimental and theoretical results strongly supports the
notion that the essential physical aspects are captured accord-
ingly. The fact that we are able to reasonably reproduce linear
aswellascirculardichroismproperties justifies thisapproximation.

Disorder and Spatio-Energetic Exciton Properties. The
finite model calculations are performed on a structure containing
80 adjacent double-rings (i.e., a total of 3200 sites), building
up a tubule of roughly 90 nm length. To model orientational
disorder, we allow for a random deviation of site-transition
moments from their ideal lattice position by at most 10%. For
energetic disorder, site transition energies are randomly assigned

from a Gaussian distribution with a width σω ) 225 cm-1

centered at ω0 ) 18 380 cm-1. These parameters for static
disorder ensure exciton properties to be converged for the chosen
size of the system (i.e., to be independent of a further increase
of the tubular length). Dynamical disorder is modeled by
coupling every site to a bath mode (an overdamped Brownian
oscillator with a reorganization energy of 100 cm-1 and a
correlation time of 50 fs).22 By calculating the electronic site-
to-site couplings, the exciton wave functions can be obtained
by diagonalization of the Frenkel-Exciton Hamiltonian. The
averaged (104 realizations) linear spectra are calculated employ-
ing the cumulant expansion of Gaussian fluctuations (CGF)
approach.37

Figure 8 illustrates the essential characteristics of the excited
state manifold. The LA and LD spectra of the model structure(s)
are shown in Figure 8a, where the inset demonstrates the
convergence of the LA spectra with increasing cylinder lengths.
As expected from theoretical considerations, each of the two
cylinders features one longitudinal transition at lower energies
and one (degenerate) transversal transition at higher energies,
with the energetic separation between these two being inversely
proportional to the tube diameter (cf. also Figure 1b). Hence,
considering both cylinders in the double-wall architecture in
the absence of interwall interactions, the energetic separation
between the two transitions is intrinsically decreased for an
isolated outer wall. Apart from this notion, the number of states
effectively contributing to the absorption spectrum is diminished
for the outer wall, so that absorption results from a lower number
of states, which in turn leads to a narrowing of the absorption
line shape. On the other hand, the absolute absorption strength
of the outer wall is higher than that of the inner wall, due to
the larger number of sites in the former. Upon calculating the
absorption spectrum under inclusion of interwall interactions,
a redistribution of oscillator strengths is observed (cf. the
rightmost panel in Figure 8a). On the lower energy side, the
spectra show two longitudinal transitions, closely resembling
the original longitudinal transitions of the isolated walls.
However, the energetically higher lying transversal transitions
deviate strongly when comparing the linear combination of the
inner and outer wall with the coupled double-wall system. These
transitions are broadly scattered energetically, with low oscil-
lator-strengths of the individual states only. This is the case
even for very low values of disorder. Upon inclusion of realistic
values of disorder and system-bath interaction strengths of the
individual sites, we thus obtain a three-band structure in linear
absorption. Note that the finite model calculations with low
disorder (cf. insets in Figure 8a) eventually converge into the
infinite (homogeneous) limit results discussed below.

In Figure 8b, we plot inverse participation ratios (excitation
delocalization lengths) against absorption frequencies for the
inner wall, outer wall, and the double wall structure for a single
(randomly chosen) realization of disorder (statistical averaging
does not affect our conclusions). Each dot represents an
excitonic state and is colored according to the (normalized)
absolute value of the corresponding transition dipole moment
(µi). A comparison of the rightmost panel in Figure 8 with the
linear absorption spectrum of C8S3 allows to classify bands
I-III according to the underlying transitions. For each finite
tubular segment, there are only a few dominant states that
contribute to band I, which can be characterized to be of highly
localized nature. For band II, it is still a relatively small number
of states that determine the absorption peak. However, their
delocalization lengths span a wide range of values, precluding
a simple characterization of the absorption band. Finally, band

Figure 7. Lattice used for simulations. Tick labels indicate the spatial
dimensions in angstroms. The clip shows a stack of 10 adjacent unit
cells, arrows indicate the orientation of the molecular transition dipole
moments (scaled for a correspondence of 1 D to 1 Å).
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III originates from a large number of only weakly absorbing
excitonic states, which are less densely spaced in energy and
are strongly delocalized.

For extracting the predominant spatial location of the exci-
tonic wave functions in terms of the inner or outer tubular wall,
we show in Figure 9, for the same data set, the sums of the
wave function amplitudes collected on sites of the outer wall
only. Recalling that for every exciton wave function a summa-
tion of amplitudes over all sites gives unity, this fraction tends
to zero for excitons that mainly reside on the inner wall, while
approaching unity if the wave functions are spread on the outer
wall only. The functional form of this plot, which resembles a
rectangular shape with a rounded edge on its low energy side,
is revealing. Although the localization of excitons within band
I, in fact, takes place on the inner wall, the states within band
II are not only dispersed in delocalization lengths, but are also
highly scattered in their spatial properties with respect to the
double-wall structure. The effect is less pronounced for band
III excitons, which can be crudely described as excitations that
are equally shared between both of the two aggregate walls.
Again, we point out that the strong interwall delocalization of
all but the lowest energy states falsifies a straightforward
classification of the aggregate’s absorption bands.

Modeling Spectral Properties in the Homogeneous Limit.
To reconstruct the linear as well as nonlinear signals of C8S3
within a microscopic (homogeneous) model, we employ a

1D periodic lattice (structural parameters as described above),
whose unit cell contains two circular arrangements of
transition dipoles. In the following, we label the sites inside
a single unit cell by indices m and identify each cell by its

Figure 8. Characteristics of the one-exciton manifold from finite model calculations including disorder. (a) From left to right: averaged absorption
spectrum of an isolated inner wall, an isolated outer wall, and the double-wall structure (all spectra are normalized to the double-wall LA). Colored
dots show the corresponding LD. In the rightmost spectrum (double-wall), the sum of the inner and outer wall LA is shown for comparison (dashed
line). The inset shows the convergence of the spectra (calculated at low values of disorder) as the number of rings is increased from 5 to 10, 20,
40, 60, and 80 rings (bottom to top, same absolute scale). (b) Inverse participation ratio versus exciton energy for inner wall (left), outer wall
(middle), and double wall (right). All plots are for a single (randomly chosen) realization of disorder. Each dot represents an excitonic state, its
color indicating the normalized transition dipole moment. The plotting sequence of points thereby follows increasing transition strengths, ensuring
that a particular state can be overlaid only by a state with stronger absorption. The density of states (gray line) and the absorption spectrum (dark
gray line) are shown as overlay.

Figure 9. Sum of wave function amplitudes located on the outer wall
for a single realization of disorder in the finite model calculations. Each
dot represents an excitonic state, its color indicating the normalized
transition dipole moment. The plotting sequence of points thereby
follows increasing transition strengths, ensuring that a particular state
can be overlaid only by a state with stronger absorption. Dark gray
line shows the averaged LA spectrum.
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position vector R. Each chromophore is treated as an identical
two-level system. Due to translational invariance, the chro-
mophore coupling Jmm′(R - R′) is a function of the distance
between the cells R and R′. The real-space Hamiltonian is:38

where B̂Rm
† is the exciton creation operator on the mth

chromophore in the Rth conjugate annihilation operator. We
use Boson statistics for the excitons with commutation
relations [B̂Rm, B̂R′n

† ] ) δmnδRR′. This model is called soft-
core boson model. The first term in the Hamiltonian
represents one-exciton site energies ε ) Jmm(0) and resonant
interactions, whereas the second term is a double-exciton
binding parameter: taking ∆ f ∞ we recover the two-level
chromophore model.

The one-exciton states of this system are the Bloch states
with wave functions

where L is the number of unit cells. Each eigenstate has a pair
of quantum numbers qλ, where λ denotes different Davydov’s
subbands in the one-exciton band, and q ) (π/L)[ -1, 1], with
a step δq ) (2π/L), is the momentum. φ are the one-exciton
states of a unit cell:

where

and ελ(q) is the exciton energy at λ Davydov’s sub-band.
Exciton response to the optical fields is given in terms of

many-exciton propagatorssthe exciton Green’s functions. The
single-exciton Green’s function is Gqλ(t) ) θ(t)exp[-iελ(q)t -
γλ(q)t], where γλ(q) is the exciton dephasing. The linear
response function essential for calculating the LA and LD
spectra is given by37

where µλ ) Lmµmφmλ is the single-exciton transition dipole (the
summation is over a single-cell). Note that we assumed La ,
λj, where a is the lattice constant, and λj is the optical wavelength,
thus only zero-momentum exciton states contribute to the
response; thus, the q ) 0 parameter can be neglected.

The third-order response also depends on the double-exciton
states. Using the quasi-particle representation, the third-order
response can be calculated from the Green’s function solution
of the Nonlinear Exciton Equations (NEE).38,39 For the photon-
echo phase-matching direction, ks ) -k1 + k2 + k3, we find

Here, V is the “scattering potential” obtained by transforming
the second term in the Hamiltonian to the single-exciton
eigenstate basis, G(Y) is the double-exciton Green’s function,
and G(N) is the single-exciton density-matrix Green’s function;
both in the single-exciton basis. This expression reflects the
interaction and propagation sequence in third-order response,
that is, the first interaction generates one exciton that propagates
according to G*, then the second interaction generates a density
matrix in single-exciton space that propagates according to G(N).
After the third interaction we have factorized the propagation
into Gλ1

′* and Gλ2
′ λ3

′ ,λ2
′′λ3

(Y) to account for double-exciton states.
These particles finally interact through the scattering potential
and generate the signal at λ4. Similar to the linear response, we
included only the zero-momentum states that do interact with
the field.

To avoid the explicit calculation of G(Y), which involves
finding all double-exciton states, we describe their resonances
using the exciton scattering matrix Γλ4λ3λ2λ1

. In the frequency
domain we have

where Gλ4λ3, λ2λ1
(0) (ω) ) δλ4λ2

δλ3λ1
Iλ2λ1

(ω) is the free-double-exciton
Green’s function (when excitons do not interact) with Iλ2λ1

(ω)
) (ω - ελ2

- ελ1
+ iγλ2

+ iγλ1
)-1.

The response function using this scattering matrix after
applying double Fourier transformation is

The scattering matrix is calculated using the Dyson equation,
and its final form for two-level molecules is:

and

The exciton density matrix Green’s function is obtained from
the Redfield equation for the density matrix:22

Ĥ ) ∑
RR′

∑
mn

Jmn(R - R′)B̂Rm
† B̂R′n + ∆

2 ∑
R

∑
m

B̂Rm
†2 B̂Rm

2

(1)

ΨRm
qλ ) 1

√L
e-iqR

φmλ(q) (2)

∑
n

Jmn(q)φnλ(q) ) ελ(q)φmλ(q) (3)

Jmn(q) ) ∑
R

eiqRJmn(R) (4)

R(1) ) ∑
λ

|µλ|2Gλ(t) (5)

R(3)(t3, t2, t1) ) ∑
λ4λ3λ2λ1

∑
λ2

′′λ3
′ λ2

′ λ1
′

µλ4
µλ3

µλ2
µλ1

×

∫0

∞
dτGλ4

(t3 - τ)Vλ4λ1
′ λ2

′ λ3
′ Gλ1

′*(τ)Gλ2
′ λ3

′ ,λ2
′′λ3

(Y) (τ)Gλ2
′′λ1

′ ,λ2λ1

(N) (t2)Gλ1
* (t1)

(6)

G(Y)(ω) ) G(0)(ω) + G(0)(ω)Γ(ω)G(0)(ω) (7)

R(3)(Ω3, t2, Ω1) )

∑
λ4λ3λ2λ1

∑
λ2

′ λ1
′

µλ4
µλ3

µλ2
µλ1

× Gλ4
(Ω3)Γλ4λ1

′ λ2
′ λ3

(Ω3 + ελ1
′ +

iγλ1
′ )Iλ2

′ λ3
(Ω3 + ελ1

′ + iγλ1
′ )Gλ2

′ λ1
′ ,λ2λ1

(N) (t2)Gλ1
* (Ω1) (8)

Γλ4λ3λ2λ1
(ω) ) ∑

mn

φmλ4
φmλ3

φnλ2
φnλ1

[D-1(ω)]mn (9)

Dmn(ω) )

1
L ∑

q
∑
λ2λ1

φmλ2
(q)φmλ1

(-q)φnλ2
* (-q)φnλ1

* (q)

ω - ελ2
(q) - ελ1

(-q) + iγλ2
(q) + iγλ1

(-q)

(10)

d
dt
Fλλ′ ) -i(ελ - ελ′)Fλλ′ - ∑

λ′′λ′′′

Kλλ′,λ′′λ′′′Fλ′′λ′′′ (11)
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where K is the Redfield relaxation rate matrix. We use the
secular approximation for the density matrix, so that the pop-
ulations (diagonal elements in the density matrix) and the
coherences (off diagonal elements in the scattering matrix)
evolve independently. The populations follow the Pauli master
equation, and the coherences show exponentially damped
oscillations. The Redfield rate matrix then attains the form:

Kλλ, λ′′λ′′ is the population transport rate from exciton state λ′′ to
λ, and γλλ′

(N) is the dephasing rate for interband coherence (i.e.,
coherence between single exciton states).

The final signal is obtained by convoluting the response
function with the envelopes of the optical fields (semi-impulsive
limit). The signal expressions become very simple if pulse
overlapping regions can be neglected. We then have

Calculation of the signal requires knowledge of the relaxation
parameters. These are calculated assuming that each chro-
mophore is coupled to a statistically independent bath repre-
sented by a single overdamped Brownian oscillator. It is
characterized by a spectral density of transition energy fluctua-
tions, ε̃(t):40

The relaxation rates in real space can then be calculated using
the second-order perturbation theory in fluctuations and taking
the Markovian (fast fluctuation) limit. For our system, using
the auxiliary function22

we obtain

where φλλ′ ) ηnφnλ
2 φnλ′

2 , and for the interband coherences we
neglect the pure dephasing and use γλλ

(N) ) (1/2)(Kλλ, λλ +
Kλ′λ′, λ′λ′). The parameter η ) L-1 vanishes for the limit L f ∞.
This is physically justified since the relaxation in infinite systems
reflects a coherent act over the whole infinite set of molecules

with the probability vanishing for such an event. However,
realistic systems with moderate disorder are characterized by
some coherence length κ, where the realistic wave functions
are delocalized. We thus use η ) κ-1 and leave this number as
a fitting parameter.

The approach presented here bears considerable advances
compared to the effective model of coupled oscillators used in
the analysis of 2D electronic spectra of C8O3.11,12 On the one
hand, the new treatment uses the Green’s function solution of
the nonlinear exciton equations (NEE) and the exciton scattering
matrix for the description of the double-exciton resonances. On
the other hand, the bitubular architecture of C8S3 and its energy-
space coordinates are taken into account explicitly in this
simulation, which yields solutions for 2D correlation and
relaxation spectra in the limit of periodic boundary conditions.

Results of Homogeneous Limit Calculations. Despite the
limitations inherent to an infinite model, the linear spectra are
well reproduced by the simulation result, as shown in Figure
2c. The stick spectrum of the infinite lattice features two
longitudinal transitions peaking at 16 508 and 16 904 cm-1, and
two transversal transitions located at 16 920 cm-1 (weak) and
17 236 cm-1 (dominant). Each of the transversal transitions
stems from two energy-degenerate contributions with orthogonal
transition dipole moments. Note that in the homogeneous limit,
the two longitudinal transitions can be spatially assigned the
inner and outer wall, respectively, while the excitonic states
giving rise to the two transversal transitions are spatially shared
between both of the walls. By introducing a system-bath
coupling strength of 280 cm-1 (time scale 50 fs), the experi-
mental LA spectrum is well reproduced by the simulation results,
apart from a slight energy shift of band I and an overestimated
spectral resolution of band III.

As the essential features of the 2D spectra are similar at both
excitation polarizations, for the present context of experiment
and theory, we resort to a comparison with spatially averaged
signals (i.e., to simulations of the isotropic nonlinear response).
As illustrated in Figure 10, despite a systematic overestimation
of band II signal strength, the key spectral properties of the
experimental 2D signals can be reasonably reproduced in the
homogeneous limit. We assign the systematic overestimation
of band II intensity to the limitations of the present model, in
particular, on the one hand, input parameters like the reduced
number of sites, and, on the other hand, approximations invoked
in the calculation itself (like the inclusion of zero-momentum
exciton states only). Nevertheless, in the correlation spectra,
we recover the asymmetry of the two triangular 2D signal parts.
Though the diagonal signal of band III is virtually missing on
the normalized scale, its cross-correlation with bands II and I
is readily perceived. Similar is true for the intensity rearrange-
ments in the sequence of 2D relaxation spectra. As can be seen
by comparing the experimental and simulated spectra for t2 )
1000 fs, the agreement thereby improves with increasing time
delays, except for the cross-peaks in the ω3 > |ω1| signal part,
which are too intense in the simulation. We attribute the relative
overestimation of energy uphill transfer rates to mainly originate
from experimentally observed excited-state population decay
by fluorescence from band I, which is not included in the model.

In essence, the calculations do show best agreement with
experiment if the low energy regions of the 2D spectra are
compared (i.e., bands I and II). This is remarkable insofar, as
due to the symmetry of the perfectly ordered structure, in the
homogeneous limit, as our model involves only four states with
a nonzero transition moment. Thus, in the experiment, the
spectral properties of the corresponding bands are presumably

Kλλ′,λ′′λ′′′ ) δλλ′δλ′′λ′′′Kλλ,λ′′λ′′ + δλλ′′δλ′λ′′′(1 - δλλ′)γλλ′
(N)

(12)

S(3)(Ω3, t2, Ω1) ) ∑
λ4λ3λ2λ1

∑
λ2

′ λ1
′

µλ4
µλ3

µλ2
µλ1

×

E4*(ελ4
- ω4)E3(ω3 - ελ3

)E2(ω2 - ελ2
)E1*(ελ1

- ω1) ×
Gλ4

(Ω3)Γλ4λ1
′ λ2

′ λ3
(Ω3 + ελ1

′ + iγλ1
′ )Iλ2

′ λ3
(Ω3 + ελ1

′ +

iγλ1
′ )Gλ2

′ λ1
′ ,λ2λ1

(N) (t2)Gλ1
* (Ω1) (13)

C''(ω) ) 1
2 ∫ dt eiωτ〈[ε̃(t), ε̃(0)]〉 ) 2l

ωΛ
ω2 + Λ2

(14)

M(()(ω) ) ∫0

∞
dt eiωt ×

∫ dω
2π

C''(ω)[coth(�pω
2 )cos(ωt) - i sin(ωt)] (15)

γλ ) ∑
λ′

M(+)(ελ - ελ′)φλλ′ (16)

Kλ′λ′,λλ ) 2ReM(+)(ελ - ελ′)φλλ′ (17)
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determined by a relatively small number of electronic levels
only. On the other hand, the limitations of the few-level model
become increasingly apparent at higher frequencies. The ongoing
elongation of the cross-peak and the diagonal contour of band
II, both stretching far into the high energy region of |ω1|, are
not fully reconstructed. Apart from deviations that arise from
the assumption of purely homogeneous lineshapes, this finding
reflects a growing density of excitonic states, accompanied by
a decrease of the average oscillator strength, as discussed above.

IV. Conclusions

The present sample is only one out of the available tubular
supramolecules. Nevertheless, we expect our key conclusions
to be general, and to hold also for structures that are either
spatially even more complex (like interwoven tubules12,14,15),
or whose detailed microscopic structure is tuned toward new
morphologies by the admixture of surfactants.15,41 In particular,
a simple translation of spectral (energetic) band positions into
spatial properties will generally fail in these huge systems (≈104

chromophores as compared to, e.g., 7 chromophores in the
intensively studied Fenna-Matthews-Olson protein23,42), due
to the delocalization of excitons induced by both intra- and
interwall couplings. It is the consideration of all electronic
interactions, in the framework of an excitonic Hamiltonian basis,
which provides an appropriate description of the experimental
data.

It is essential to note that the behavior described in Section
III.3, even though with variably stringent contrasts, is observed
for a wide range of disorder parameters. We thus underline the
implications for not only the spatio-energetic assignment of
absorption bands, but also for the perception of the exciton
relaxation process. Because of intra- and interwall electronic
interactions, all bands share at least a part of their wave function
on the inner cylindrical assembly. As band I is dominated by
(site-) localized transitions located on the inner tubule, the
energy downhill motion of relaxing excitons is associated with
an overall spatial transfer toward the inner wall and, simulta-
neously, a localization on a decreasing number of molecular

sites. Even for quite large tubular segments, the lower energy
parts of the absorption spectrum are determined by a handful
of states only. Thus, the essential spectral signatures of exciton
motion can be fitted either into phenomenological schemes of
effective levels,11-13,15 or, as demonstrated in the present
contribution, recovered in the infinite limit of a microscopic
model. Our finite model results, in turn, explain why a
congruence of experimental data and few-level simulations
becomes increasingly difficult to achieve for the high energy
region of the density-of-states.12,15 The higher the exciton
frequencies, the more the consequences of molecular disorder
come into play. Thereby, as also evidenced in the experimental
2D spectra, disorder affects transversal transitions (with typically
high transition energies) to a greater extent than longitudinal
ones (which dominate the red side of the spectrum).

The picture we draw can be readily connected to the recently
reported correlated fluctuation of excitonic bands in a related
tubular aggregate.14 Since we find all exciton wave functions
to be at least partly located on one and the same wall, and to
consequently overlap in space (i.e., to involve common molec-
ular chromophores), also their fluctuations share a certain degree
of correlation. Notably, the effect does not necessarily implicate
correlated fluctuations of individual molecular sites. We further
note that, even in the presence of disorder, only a relatively
small number of states governs the aggregate’s spectroscopic
properties. Combined with the notion that fluctuation amplitudes
become exchange-narrowed for delocalized (excitonic) states,
our theoretical considerations are thus in line with experimen-
tally observed interband coherences,13,15 as a consequence of a
slowly dephasing, small ensemble of excitons. In a broader
context, our results indicate that for large excitonic systems,
interband coherences result from the physics that governs the
evolution of highly delocalized electronic states, and do not
necessitate a surrounding protein matrix like in small natural
photosynthetic complexes.43

This contribution provides a guideline of how exciton motion
in supramolecular systems can be studied, despite the limits
currently set for connecting experimental and theoretical state-

Figure 10. (a) Amplitude and (b) absorptive parts of simulated (spatially averaged) 2D electronic spectra recorded for t2-delays of 0, 50, 200, 500,
and 1000 fs, respectively. The corresponding (normalized) linear absorption spectra are shown for comparison in the first and last 2D spectrum in
panel (a), whereas the curves in the side panels of the first and the last column in panel (b) show the 2D signals integrated along ω1 and are
equivalent to frequency resolved pump-probe spectra. Dotted guidelines mark the absorption maxima. All spectra are normalized to their respective
absolute maximum value.

8188 J. Phys. Chem. A, Vol. 114, No. 32, 2010 Sperling et al.



of-the-art methodologies. Though we report on an artificial light
harvester that self-assembles in aqueous solution, it is inspiring
to think about likely functional analogies to tubular complexes
occurring in nature,6,44 which, similarly, do not require any
structural templates. A forthcoming work that compares ex-
perimental results from single- as well as double-quantum 2D
electronic spectroscopy45,46 against refined calculations is in
progress.
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