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ABSTRACT

For nanostructures such as semiconductor quantum dot emitters or biological systems like light harvesting com-
plexes (photosynthesis) the coupling between individual constituents leads to the formation of delocalized exciton
states. Coherent two dimensional spectroscopy is a versatile tool to investigate the structure of the excitonic
states, whereas nanoplasmonics allows to localize optical fields on a nanoscale: We combine these two methods
in a theoretical study and propose new experiments, such as the two dimensional spectra containing spatial
resolution via localized fields. Using post processing of different spectra with localized fields, we can enhance
certain spectroscopic features in standard coherent spectroscopy, e.g. by suppressing unwanted resonances.
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1. INTRODUCTION

The spatial resolution of optical measurements with conventional light sources is limited by the wavelength of
the incident light. Achieving electronic control below the diffraction limit opens a number of new methods in
investigating nanosystems. Confining electronic excitations simultaneously on a nanometer length scale and on
a femtosecond time scale becomes possible by combining nanoplasmonics with pulse shaping techniques.1–3

Nanoplasmonics uses different arrangements of metals or hybrids like nano antennas,4–6 sharp triangles or
metal tips2 and exploits their frequency dependent properties. The metal nanostructures can be illuminated by
polarization shaped short optical pulses that are formed with the help of a genetic algorithm7,8 and simulated
theoretically to obtain a detailed understanding of the local interaction.

On the other hand, multidimensional coherent spectroscopy yields a description of electronic excitations
and couplings in complex molecular and nanoscale systems such as photosynthetic aggregates or semiconductor
devices.9,10 That provides also the basis for quantum computing, OLEDs or quantum effects in biological energy
conversion.

The main idea of our work is to bring nanoplasmonics and coherent spectroscopy together to obtain new
information on nanoscale materials. That means that we do coherent spectroscopy11 with optimized shaped
pulses to obtain more information than in ordinary two dimensional spectroscopy.

We begin with presenting the techniques of how to achieve spatiotemporal control in Sec. 2. Before we discuss
the advantages and disadvantages of several tested geometries we introduce the underlying control mechanisms.
We finish the first section by presenting some theoretical elements of our simulation methods. The following
Sec. 3 gives a short introduction in two dimensional spectroscopy, especially in the double quantum coherence
technique and explains the content of 2d spectra. That section also shows calculated signals. We conclude with
the main idea in Sec. 4 by combining the methods presented in Sec. 2 and 3 to a “localized coherent spectroscopy”.
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Figure 1: In this illustration of plasmonic structure for spatiotemporal studies silver particles are randomly
distributed around four quantum dots. As explained in Sec. 2.2.1, this arrangement turns out to be inefficient.

2. SPATIOTEMPORAL CONTROL

A confinement of electronic excitations on length scales smaller than the wavelength of light is possible by
combining nanoplasmonics with pulse shaping techniques1–3 and will be discussed in more detail in the next
section.

2.1 Control Mechanisms

In our setup we use combinations of different plasmonic materials with dielectrics to achieve field confinements.
Resonant materials like silver, gallium arsenide or indium arsenide are simulated with the dielectric function of
Ref. 12. Those arrangements produce enhanced electric field depending on the frequency of the incoming light.

Not only the optical material resonances, but also the form, size, and orientation of the nanostructures
influence the spatial field distribution. All these effects interplay in the geometries described in Sec. 2.2.2, where
triangles with different sizes and orientations are used: The sharp vertices of the tip are able to concentrate
the field. With different sizes it is possible to address different optical frequencies. Finally, the position of the
triangles plays an important role to use polarization effects of the polarization shaped pulses. Further discussion
of such polarization effects can be found in Sec. 2.2.2.

A principal effect of confining excitation is the interference and enhancement of electromagnetic fields via
local reflections and plasmon effects. Although all these fields interfere constructively or destructively we see that
just one incoming pulse does not supply enough degrees of freedom. To achieve sufficient control of e. g. three
coupled quantum dots we use three or more incoming pulses with individual shapes from different directions.
Thus the fields of the incoming pulses can also interfere constructively or destructively at the sample. The
specific simulation is discussed in Sec. 2.3.

2.2 Geometries

As stressed in the last section, the geometrical form of a setup strongly influences the field distribution. So,
not all geometries are well-suited for an optimization process. In this section we will discuss how to find the
optimized geometry.

There exist already some well-know setups, e.g. in Ref. 1–3, which are shown to control the excitation at two
spatial positions in time. To investigate coupled quantum dots we like to control the excitation of three or more
spatial points, which are in close vicinity. In particular, we focus on spatial points not be further apart than 50
nanometers.

2.2.1 Random geometries

In a naive approach one would start with a randomly arranged setup with intent to use as many of the discussed
effects as possible. However, we found that this idea overestimates the possibilities of field control by shaping
pulses via the used genetic algorithm and to design the pulses.

In randomly arranged geometries like that in Fig.1 we see that always some quantum dots are placed in a
more preferential position, e.g. they are closer at metal structures with high field amplifications. It turns out
that localization of the electric field has a bad quality for quantum dots at disadvantaged positions (e. g. if the
quantum dot is not close enough to a metal structure). To illustrate the principle of localized spectroscopy, we
will concentrate on symmetric arrangements in the following.
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Figure 2: (a) A setup of three silver triangles and a silver cylinder on a glass layer (without quantum dots) serves
to present polarization effects. The polarization direction of the incoming plane wave can be regulated. (b) The
field distribution of the layout depends on the incoming polarization direction. On the left we use s-polarized,
on the right p-polarized light.

2.2.2 Antenna-like geometries

This kind of geometry affords a good study of polarization shaping effects because of the different orientations
of the antennas. The first simple setup is shown in Fig. 2a. We use again only one polarization shaped incoming
pulse that incides perpendicular from above. In general we can say that the largest field enhancements occur
always on those boundaries of metal structures, which lie in the direction of the polarization vector. This effect
is transferred to the triangles given in Fig. 2b. On the right of this picture we see the field distributions for two
perpendicular polarization directions: on the left hand side the s- and on the right hand side the p-polarization.
Placing the quantum dots between the tip and the center circle, we can excite two of three quantum dots
simultaneously. However, the calculations show, that the ratio between the excitation strength of the two
quantum dots and the excitation of the weak excited quantum dot is not high enough for our purpose.

We tried to reach a better ratio by implementing each triangle with different size to have different resonance
frequencies. We also deformed the triangles, rounded the vertices or replaced them by rods to change the optical
properties of the nanoparticles.5,13 So far these ideas provide some enhancement, but during our attempts, we
did not achieve sufficient localization for this structures. Displacing them to an antisymmetric setup like in
Fig. 3a led to the same problems as discussed in Sec. 2.2.1: only for spatially advantaged dots a localization is
possible.

2.2.3 Waveguide-like geometries

The layout that satisfies our requirements best is shown in Fig. 3b. A metal structure similar to a waveguide
inspired by nanoantennas, that can guide electric field strength into the nanostructures. This setup is discussed
in the following section.

2.3 Simulations

For a theoretical simulation of the field localization we use the time harmonic results from the Maxwell solver of
JCMsuite.14 Maxwell’s equations are solved in frequency domain using finite elements.

We evaluate the electric fields Eγ
ν(ω, r) at the center of the quantum dots for all incoming directions γ and

the polarization directions ν = p, s. For controlling the field distributions in time domain, we apply a Fourier
transformation:

E(t, r) =
1√
2π

∫ ∞

−∞
dω eiωt gγν (ω)E

γ
ν(ω, r), (1)
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Figure 3: (a) The geometry of an 3d asymmetric ray-like layout with InAs quantum dots and silver rods and
disks (top view) shows different optimization qualities depending on which quantum dot is excited. (b) This
three-armed waveguide-like setup satisfies our requirements. The three InAs quantum dots on a GaAs layer have
a radius of 10 nm and a distance of about 40 nm and they are surrounded by three silver polygons with 250 nm for
the longest edge. They were illuminated by three individual polarization shaped pulses with incoming directions
parallel to the waveguide arms. The field strength is measured in the center of the quantum dots (white crosses).
(c) The absolute value of the electric field strength in time domain is measured at the three quantum dots in
Fig. 3b. It shows the optimized distribution for exciting only quantum dot 1.

where g is a weighting function, that enables us to shape the incoming pulses. The function g represents a
Fourier transformed composition of n Gaussian shaped pulses (similar to Ref. 7):

gγν (ω) =
∑
n

fν(ϑ
γ
n)

Aγ
n√
2π

e−(ηγ
n−ω)2σγ

n
2/2 eiωτγ

n eiϕ
γ
n , (2)

with fp = cos and fs = sin. Thus it is possible to simulate the incoming electric field with a fixed amplitude
and to weight each frequency individually only by changing the parameters of g: the polarization angle ϑ, the
amplitudes Aγ

n, the center times τγn , inner frequencies ηγn, widths σγ
n and the phases ϕγ

n. A number of n = 20
pulses is enough to form the pulses sufficiently.

Composing the electric fields in this way reduces considerably the computational costs since all fields have
to be simulated only once. In contrast to a time domain solver, in frequency domain there is no new simulation
needed for altered incoming pulses.

In order to obtain the shaped pulses that satisfy our requested field distribution we use a genetic algorithm1,7, 8

that optimizes the six parameters of the weighting function g. Three incoming directions and twenty composed
Gaussian pulses results in 6 · 3 · 20 = 360 parameters to be optimized simultaneously. The algorithm is explained
in more detail in the appendix.

In less than 10000 generations it is possible to see if the chosen geometry provides a highly localized excitation.
In the geometry described in Sec. 2.2.3 we achieve the localization of the electronic excitation in time domain
shown in Fig. 3c.

3. 2D SPECTROSCOPY

We will present a special kind of coherent spectroscopy, the double quantum coherence9 (DQC). This third-order
nonlinear optical experiment uses a pulse sequence that is shown in Fig. 4a. Three time-ordered pulses with
variable time delays t1, t2, and t3 create a signal in the sample. This signal is mixed with a fourth pulse, the so
called local oscillator. This is called heterodyne detection.9

Since the dimensions of the structures which are small compared to the wavelength of the pulses used, all the
incoming pulses come from the same spatial direction. This disadvantage in signal selectivity can be compensated
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Figure 4: (a) All pulses have the same direction but different phases to use the phase cycling technique. Only
the phase ϕ1 + ϕ2 − ϕ3 is detected. (b) The two-sided Feynman diagram shows the possible Liouville pathways
of the DQC method.

by different phases for the pulses.11 To separate the pulses, we make use of the phase cycling technique.15 Here,
the experiment is repeated several times with varied phases ϕ1, ϕ2, and ϕ3, while a phase ϕIII = ϕ1 + ϕ2 − ϕ3

is extracted from the signal.

The first pulse of the sequence creates a single exciton (single quantum coherence), the second creates a
double excitonic state (double quantum coherence) and the third one again a single excitonic state. The possible
pathways of excitation are represented by double-sided Feynman diagrams (cf. Fig. 4b).16

In a two dimensional spectrum not only energies of single and biexcitons but also the correlations between
their states become visible. A 2d spectrum is obtained by Fourier transforming the signal S(t1, t2, t3) with
respect to the time differences t1 and t2 at a fixed time difference t3. Thus the signal S(Ω1,Ω2) now depends on
the single and biexcitonic frequencies Ω1 and Ω2, respectively. The standard DQC signal SkIII

= Si + Sii for a
heterodyne detection reads:9

Si(Ω1,Ω2, t3) =
1

h̄3

∑
ee′f

μe′fE
∗
4 (ωfe′)μge′E

∗
3 (ωe′g)μ

∗
efE2(ωfe)μ

∗
geE1(ωeg)

e−iξfe′ t3

(Ω2 − ξfg)(Ω1 − ξeg)
(3)

and

Sii(Ω1,Ω2, t3) = − 1

h̄3

∑
e′fj

μge′E
∗
4 (ωe′g)μe′fE

∗
3 (ωfe′)μ

∗
efE2(ωfe)μ

∗
geE1(ωeg)

e−iξe′gt3

(Ω2 − ξfg)(Ω1 − ξeg)
, (4)

with the Fourier transformation of the electric field envelopes Ei(ω) for the pulses i = 1, 2, 3, 4, the dipole matrix
element μij for the transitions from exciton state j to i, the frequencies ωij = ωi − ωj , ωi the exciton energy,
and ξij = ωij + iγij with the damping γij . A corresponding spectrum is shown in Fig. 5b. The frequencies are
detuned around the single and double gap frequency, respectively.

4. LOCALIZED SPECTROSCOPY

We demonstrate the localized spectroscopy method for three two-level quantum dots. A local basis consists of the
states |i〉l for each quantum dot i. Placing the dots close to each other yields new states. These delocalized states
are caused by electronic coupling between quantum dots due to Coulomb effects like Förster coupling.17–19 Note,
that coupled excitations are possible even if we assume that the wave function do not overlap. By diagonalizing
the pure electronic part of the Hamiltonian we get the new states:20,21 a ground state g, three single excitonic
states e and three biexcitonic states f (shown in Fig. 5a). The delocalized basis, consisting of the states g, e,
and f , can be written as a composition of the local basis.

In Fig. 5b we show the imaginary part of a calculated spectrum of three coupled quantum dots. For the
eigenenergies and the coupling strengths typical values for self-organized Ga/InAs quantum dots17 are chosen
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Figure 5: (a) Three single two-level quantum dots form delocalized states if their distance is small enough.
(b) Two-dimensional spectrum of the coupled quantum dots are shown here: the complete absolute value of
the DQC signal, (c) the same spectrum for the case that the first pulse of the sequence excites perfect just one
quantum dot. The frequencies are given as detuning relative to the single and double gap frequency.

(for geometries presented in Fig. 3b). For a given resonance, we can read the single exciton state e1, e2, and e3
on the Ω1-axis and the two exciton energy for states f1, f2, and f3 on the Ω2-axis. Each resonance shows the
correlation between the single and two exciton states. The strongest resonances occur at e2 with f2 and at e2
with f3. Also a strong coupling between e1 and f3 is seen.

While in Fig. 5b all pulses of the sequence excite all three quantum dots simultaneously, in Fig. 5c the first
pulse of the sequence only excites quantum dot 1. This field design is possible with help of the techniques
discussed in the previous sections. Here, we choose the first pulse to be localized since the first pulse creates a
single excitonic state after starting from ground state in the Liouville pathway (cf. Fig. 4b).

We see that the localized spectrum is different from that without localization. The strong resonances for the
transitions from e2 to f2 and to f3 also appear, but there is no peak at e1 to f3. The energy axis Ω1 is connected
to the energy difference of the ground to single exciton coherence after the first pulse. So we conclude that the
third peak does not arise from a transition at quantum dot one during the first pulse. Which quantum dot is
responsible for the e1 to f1 peak becomes visible by looking at the other localized spectra (not shown here). We
find that this resonance arises from pathways localized at step 1 at quantum dot 3.

Obviously localized, coherent spectra provide new information. With their help we are able to connect each
resonance to a specific quantum dot. We will use this information for more detailed spectroscopy of nanoscale
coupling between individual emitters in the future.

APPENDIX A. GENETIC ALGORITHM

A set of n optimization parameters can be expressed as a n-dimensional vector a. In every generation 300
mutated copies achild of the parent pulse aparent are created by adding the parameter dependent mutation step
size Δa multiplied with a Gaussian distributed random number χ for every of the 360 variation parameters a:

achild = aparent + χ ·Δa (5)

Next, the best child is selected. This is done by evaluating a scalar cost function for every child and selecting
the one with the smallest cost value. We choose a cost function that compares the electric field distribution in
the center of the excited quantum dot caused by the pulse with a target distribution.

We have one condition for each quantum dot. While the electric field distribution at position r1 should match
with a Gaussian shaped excitation, the field distribution at positions r2 and r3 should be minimal.

The requested time dependence of the absolute value of this electric field distribution at the excited dot at
r1 is given by a target function

tar(t) = B e−(t−T )2/ε2 (6)
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that exhibits a Gaussian shaped excitation with an amplitude B that depends on the chosen geometry, a time
T at which the excitation is centered, and an excitation width ε. Since the other quantum dots should not be
excited the target function for positions r2 and r3 is identically zero.

To account larger deviations stronger than smaller ones we calculate the square of the absolute value of the
difference between the target and the actual distribution. Afterwards we integrate over all times so that a higher
integration result means a overall worse matching.

We tested different ways of combining all three conditions to obtain one value that represents the quality of
the field distributions at all positions. It turned out that all conditions are fulfilled most uniform if we minimize
a cost function given by:

cost(child) = max

(∫ ∞

−∞
|Echild(t, r1)− tar(t)|2dt,

∫ ∞

−∞
|Echild(t, r2)|2dt,

∫ ∞

−∞
|Echild(t, r3)|2dt

)
!
= min. (7)

The child with the lowest value of the cost function acts as parent pulse for the next generation.

We use an adaptive mutation step size Δa that varies depending on the average of the step sizes of the
previous 100 children.8 Thus we quickly approach the minimum of the cost function and reach the lowest values
with finer steps.
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