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Coherent anti-Stokes Raman spectroscopy (CARS) uses vibrational
resonances to study nuclear wavepacket motions and is widely
used in cell imaging and other applications. The resonances usually
lie on top of a parametric component that involves no change in
the molecular state and creates an undesirable background which
reduces the sensitivity of the technique. Here, by examining the
process from the perspective of the molecule, rather than the field,
we are able to separate the two components and recast each
resonance as a modulus square of a transition amplitude which
contains an interference between two Stokes pathways, each in-
volving a different pair of field modes. We further propose that
dissipative signals obtained by measuring the total absorption
of all field modes in a convenient collinear pulse geometry can
eliminate the parametric component and retain the purely reso-
nant contributions. Specific vibrational resonances may then be
readily detected using pulse shapers through derivatives with re-
spect to pulse parameters.

CARS microscopy ∣ pulse shaping ∣ ultrafast spectroscpy

Coherent Raman spectroscopy is a powerful nonlinear optical
tool widely used in the study of molecular vibrational wave-

packet motions and their relaxation and dephasing (1, 2). Broad-
band femtosecond lasers have been used to stimulate gain and loss
signals (3, 4). Common applications include imaging (5–8), single
molecule spectroscopy (7), and remote sensing (9, 10). Thedesired
molecular resonances are usually accompanied by large para-
metric, off-resonant, solvent contributions which limit the sensitiv-
ity and selectivity of CARS spectroscopy and microscopy (11, 12).
Several approaches have been employed to suppress the para-
metric signal. Detection of the signal at long delays, when the fast
background signal has decayed (13) was found to be effective, as
was the use of chirped (5, 6, 14) or coherently shaped pulses in a
collinear geometry (10, 15–18). Developing new approaches,
which may be advantageous for specific applications, is of great
interest.

In this paper we examine what happens to the matter, rather
than to the radiation field, in a stimulated (i.e. heterodyne-
detected) CARS set up. The probabilities of transitions between
molecular states are described naturally in terms of modulus
squares of transition amplitudes, as is commonly done in photon
counting (19) and in the Kramers Heisenberg description of
spontaneous and stimulated Raman scattering (2). In contrast,
coherent wave-mixing optical signals such as CARS are com-
monly expressed in terms of nonlinear susceptibilities (2, 20)
which connect the induced polarization in matter to the driving
fields. We show that CARS resonances may be expressed in terms
of transition amplitudes. We then demonstrate that the para-
metric processes are eliminated by measuring the total energy
exchanged between all modes of the field and the molecule,
resulting in a purely dissipative signal which clearly reveals the
desired resonances. Since it requires subtracting the energy
contained in the incoming fields from the transmitted energy,
the dissipative signal is not “background-free.” Nevertheless,

specific vibrational resonances can be readily detected by varying
the pulse envelope parameters.

Discussion
Material Perspective of Wave-Mixing ProcessesWe consider a mate-
rial system coupled to an optical field EðτÞ and described by the
Hamiltonian

H¼H0þH0ðτÞ¼H0−EðτÞV̂ ; [1]

where H0 ¼ ∑bεbjbihbj represents the pure matter, while
V̂ ¼ ∑a;bμabjaihbj is the dipole operator which couples the field
and matter.

In a time-domain nonlinear wave-mixing measurement such as
CARS, the optical field interacts with the molecule for a finite
time [EðτÞ is finite only for t > τ > t0]. Optical signals ultimately
measure the absorption and emission of photons. Many material
processes generally contribute to a given optical signal and it is
not obvious how to tell them apart. From the material perspec-
tive, the quantity of interest is the probability to find the system at
a final state c given that it was initially in state a

Pa→c¼jhcðtÞjÛðt;t0Þjaðt0Þij2; [2]

where Ûðt; t0Þ ¼ expþ½− i
ℏ ∫

t
t0
dτH0

IðτÞ� is the time evolution op-
erator in the interaction picture with respect to H0, H0

IðτÞ ¼
U†

0ðτ; t0ÞH0ðτÞU0ðτ; t0Þ. U0 is the evolution operator of the non-
interacting field and matter, while jaðtÞi≡U†

0ðt; t0Þjai. The time
ordered exponential is defined in the usual way, see e.g. ref. 2.

Û satisfies an integral equation

Ûðt;t0Þ¼1−
i
ℏ

Z
t

t0

dτH0
IðτÞÛðτ;t0Þ; [3]

which allows recasting the matrix elements in the form

hcðtÞjÛðt;t0Þjaðt0Þi¼δcae−
i
ℏεaðt−t0Þ−

i
ℏ
e−

i
ℏðεct−εat0ÞTcaðωcaÞ; [4]

where ℏωca ¼ εc − εa, and

TcaðωÞ¼
Z

dteiωτTcaðτÞ; [5]

where

TcaðτÞ≡hcðτÞjH0
IðτÞexpþ

�
−
i
ℏ

Z
τ

t0

dτ0H0
Iðτ0Þ

�
jaðt0Þiei

ℏεaðτ−t0Þ [6]

Author contributions: S.R. and S.M. designed research, performed research, and wrote
the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence should be addressed. E-mail: smukamel@uci.edu.

www.pnas.org/cgi/doi/10.1073/pnas.0910120107 PNAS ∣ March 16, 2010 ∣ vol. 107 ∣ no. 11 ∣ 4825–4829

CH
EM

IS
TR

Y



is the transition amplitude. Note that since TcaðτÞ ¼ 0 for τ < t0
and τ > t the integration limits can be extended to infinity. The
frequency argument ωca comes from a combination of the explicit
phase in 6 and a phase coming from the difference between jcðtÞi
in Eq. 4 and jcðτÞi in 6. The first term in Eq. 4 represents the
amplitude that no interaction between the field and matter
has occurred. Note that transitions of any order in the interaction
are lumped into T.

Conservation of probability implies

∑
c

jhcðtÞjÛðt;t0Þjaðt0Þij2¼1. [7]

By substituting Eq. 4 in 7 and making use of the unitarity of Û, we
find that TcaðωcaÞ satisfies an optical theorem

ℑTaaðωaa¼0Þ¼−
1

2ℏ∑
c

jTcaðωcaÞj2: [8]

[ℑ (ℜ) denotes the imaginary (real) part]. This is a natural ex-
tension of the standard stationary optical theorem of scattering
theory to driven systems. Note that the sum over c in Eqs. 7 and 8
is unrestricted (i.e. includes c ¼ a).

By expanding TcaðωÞ in the field-matter interaction we obtain

TcaðωcaÞ¼Tð1Þ
ca ðωcaÞþTð2Þ

ca ðωcaÞþTð3Þ
ca ðωcaÞþ⋯

¼−μcaEðωcaÞþ
1

2πℏ

Z
dω1dω2∑

ν

μcνμνa
ω1−ωνaþ iη

×Eðω1ÞEðω2Þδðωca−ω1−ω2Þ−
1

4π2ℏ2

Z
dω1dω2dω3

×∑
ν1 ;ν2

μcν2μν2ν1μν1aEðω1ÞEðω2ÞEðω3Þ
ðω1þω2−ων2aþ iηÞðω1−ων1aþ iηÞ

×δðωca−ω1−ω2−ω3Þþ⋯; [9]

where η is a small positive infinitesimal and EðωÞ denotes the
Fourier transform of EðtÞ. The probability to make a transition
is given by Pa→c ¼ ℏ−2jTcaðωcaÞj for c ≠ a. Eq. 9 reveals that this
transition probability includes interferences of contributions of
different order in the matter-field interaction (19), with all
possible combinations of field modes.

We consider the three-level model system shown in Fig. 1(i). In
stimulated CARS the field is made of four narrow band pulses,
centered around frequencies ωi, i ¼ 1, 2, 3, 4,

EðωÞ¼2π∑
4

i¼1

½EiδΔðω−ωiÞþE�
i δΔðωþωiÞ�: [10]

δΔ is a slightly broadened delta function, of width Δ, describing
the (normalized) narrow band shape of the pulses. We assume
that all frequencies are tuned off resonance from the electronic
excited state b so that the only possible resonances are of the
Raman type ω4 − ω3 ≃ ωca and ω1 − ω2 ≃ ωca, as depicted in
Fig. 1. The transition probability Pa→c is given, to leading order,
by the square of the second order term in Eq. 9

Pa→c¼
1

4π2ℏ4
jμcbj2jμbaj2

����
Z

dω
EðωÞEðωca−ωÞ
ω−ωbaþ iη

����
2

: [11]

By substituting Eq. 10 and using the dipole transitions of Fig. 1
we find that the integral has only two contributions from
ω≃ ω1;ω4,

Pa→c≃
4π2

ℏ4
jμcbj2jμbaj2

���� E1E�
2

ω1−ωbaþ iη
δΔ0 ðω1−ω2−ωcaÞ

þ E4E�
3

ω4−ωbaþ iη
δΔ0 ðω4−ω3−ωcaÞ

����
2

: [12]

The functions δΔ0 in expression 12 result from an integrated
product of two of the band shapes δΔ. While the width and shape
of the δΔ0 in expression 12 are different from those appearing in
Eq. 10, these are still narrow δ-like shapes.

Expression 12 has a typical form of a double-slit measurement:
Two interfering pathways contribute to the resonant Stokes
Raman a → c amplitude. By opening the brackets we find

Pa→c¼P12
a→cþP34

a→cþP1234
a→c

≃4π2

ℏ4
jμcbj2jμbaj2

����� E1E�
2

ω1−ωbaþ iη

����
2

δ2Δ0 ðω1−ω2−ωcaÞ

þ
���� E4E�

3

ω4−ωbaþ iη

����
2

δ2Δ0 ðω4−ω3−ωcaÞ

þ2ℜ

�
E1E�

2E3E�
4

ðω1−ωbaþ iηÞðω4−ωba− iηÞ
�

×δΔ0 ðω1−ω2−ωcaÞδΔ0 ðω4−ω3−ωcaÞ
�
: [13]

Here P12
a→c (P34

a→c) represents a pump-probe process involving only
modes 1 and 2 (3 and 4).* P1234

a→c describes the interference of these
two pump-probe pathways. The double-slit picture has long been
established for two-photon absorption and photo-electron detec-
tion (19). Eq. 13 extends it to Raman processes. In the next sec-
tion we show that the resonant component of the stimulated
CARS signal is given by P1234

a→c .

Stimulated Cars: A Double-Slit Measurement We shall now reexa-
mine the setup of Fig. 1, but this time from the more traditional
field perspective. Heterodyne four-wave mixing signals are usual-
ly calculated using the semiclassical approach, where a classical
field interacts with a quantum material system (2). In that picture

ω4ω4ω3
ω3ω2ω2 ω1

ω1

|c>

|a>

|b>

(i) (ii)

Fig. 1. The stimulated CARS measurement in a three-level system interact-
ing with four field modes. a and c are vibronic states belonging to the ground
electronic state, whereas b are electronically excited states. Modes 1, 4 drive
transitions between states a and bwhilemodes 2, 3 drive transitions between
states c and b. Modes 1 and 2 are spectrally well separated from 3 and 4 so
that only the shown resonances are possible. The signal can be interpreted in
two ways: (i) In terms of a single amplitude which suggests that this is an
anti-Stokes process. This process is described by ℑT ð4Þ

aa , a fourth order process
starting and ending state a. (ii) The resonant part of the signal is an inter-
ference between two Stokes processes, one involving the modes 1 and 2,
while the other involves modes 3 and 4. The dashed lines denote the complex
conjugate of the transition amplitude of the Stokes process, leading to the
product ℜT ð2Þ

ca ð−ω2;ω1ÞT ð2Þ�
ca ð−ω3;ω4Þ.

*One may be worried by the appearance of the factor of δ2Δ0 in those terms as the limit of
narrow band shape is taken, but this is just an artifact resulting from the fact that
these pump-probe processes are naturally described in terms of the rate of transitions
while here we are studying the overall probability. Indeed, δ2Δ0 ðxÞ ∼ δΔ0 ðxÞ∕Δ0 and 1∕Δ0

is proportional to the overall time where the pulses are turned on.
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the detected ðω4Þ and the driving ðω1;ω2;ω3Þ modes play differ-
ent roles: The third order polarization due to the three driving
modes is calculated first, and then interferes with a fourth local
oscillator field ω4 to generate the signal. We shall adopt instead a
quantum description of the field that treats all four modes on
equal footing. The resulting signal is identical to that derived
from the semiclassical theory; however, by not singling out one
mode as the “local oscillator” from the outset, we simplify the
description of the process and can readily describe all possible
stimulated and spontaneous measurements where different
modes are detected. This approach will prove most natural for
deriving the purely dissipative signal in the next section where
all modes are detected.

Using the quantum description of all field modes, the signal is
defined as (21)

S4≡
Z

dt
d
dt

�
∑
s

â†s âs

�
; [14]

where âs (â†s ) is an annihilation (creation) operator for a field
mode s, and the sum runs over all relevant modes of pulse 4
(which is being detected). The expectation value h⋯i is with re-
spect to the joint density matrix of the interacting matter and field
degrees of freedom.

By assuming that all field modes are in a coherent state, we
expand the signal [14] to first order in the amplitudes of the four
modes and obtain the CARS signal where all frequencies within
the bandwidth of mode 4 are detected (21, 22)

S4¼−
4π

ℏ
ℑ½E1E�

2E3E�
4χ

ð3Þð−ω4;ω3;−ω2;ω1Þ�δðω1−ω2þω3−ω4Þ;
[15]

with

χð3Þð−ω4;ω3;−ω2;ω1Þ

¼−ℏ−3 jμbaj2jμcbj2
ðω1−ω2þω3−ωbaþ iηÞðω1−ω2−ωcaþ iηÞðω1−ωbaþ iηÞ:

[16]

Since all electronic transitions are off-resonant, the denomina-
tions involving ωba in Eq. 16 are real. Eq. 15 can be separated into
two parts,

S4¼−
1

2
P1234
a→c þSpar4 : [17]

The P1234
a→c contribution, which is associated withℑχð3Þ in Eq. 15, is

clearly related to resonant transitions between states a and c. The
−1∕2 factor may be easily rationalized: the overall sign differs
since the a → c transition, described in Eq. 13, involves an absorp-
tion of a photon in mode 4, rather than emission. The factor of
1∕2 arises since only one of the interfering processes in P1234

a→c
affects the number of photons in mode 4.

The second term in Eq. 17, associated with ℜχð3Þ in Eq. 15,
describes an off-resonant parametric contribution where photons
are exchanged between field modes, but the molecule eventually
returns to its initial state,

Spar4 ¼4π

ℏ4

ℑ½E1E�
2E3E�

4�jμbaj2jμcbj2
ðω1−ω2þω3−ωbaÞðω1−ωbaÞ

×ℜ
1

ω1−ω2−ωcaþ iη
δðω1−ω2þω3−ω4Þ: [18]

Two processes of this type are possible for our model. One where
ω1 and ω3 are absorbed while ω2 and ω4 are emitted, and the
other where the roles of the modes, or equivalently their time

ordering, are reversed. Spar4 , which gives the net change in mode
4 intensity, results from the difference between the rates of these
processes. A general diagrammatic approach based on transition
amplitudes was used in ref. 22 to dissect electronically resonant
CARS signals into its parametric and dissipative contributions.
These are not generally given by simply taking the real and
imaginary parts of χð3Þ in Eq. 15 (23), as was done here for
the off-resonant case.

The following physical picture emerges from the above discus-
sion. The resonant processes in S4 correspond to the a → c tran-
sition. Because of the condition ω1 − ω2 þ ω3 − ω4 ¼ 0, this
transition can take two pathways involving different combinations
of field modes. For our model if ω1 − ω2 ¼ ωca, then ω4 − ω3 ¼
ωca as well. The resonant part of the signal comes from the inter-
ference between these pathways. CARS is, in this sense, a double-
slit experiment.

The CARS acronym, historically coined for homodyne signals,
originated from the field perspective: since ω4 > ω3 and since ω4

is detected this appears as an anti-Stokes process. It is ironic that
the physical process underlying (the resonant part of) the stimu-
lated anti-Stokes Raman scattering is in fact an interference of
two Stokes processes.

The anti-Stokes signal (neglected here) arises from processes
where the molecule is initially in state c. The sign of the resonant
CARS signal, which can be controlled by varying the relative
phases of the pulses, depends on whether the interference
between the two pathways is constructive or destructive, thus
increasing or decreasing the rate of the a → c transition with re-
spect to the sum of the two possible pump-probe processes, which
serves as a reference.

The CARS signal where ω4 is detected is commonly illustrated
by Fig. 1(i) which suggests that this is indeed an anti-Stokes pro-
cess, since ω3 is absorbed, ω4 is emitted, and ω4 > ω3. However,
this is not actually what happens. Stimulated CARS resonances
originate from the dissipative past of the process which is better
described by Fig. 1(ii). The time order of the ω3 andω4 transitions is
thus reversed: ω4 is absorbed and ω3 is emitted making it a Stokes
process. The above discussion can be generalized to include elec-
tronically resonant transitions. In that case the stimulated CARS
signals from the electronic transitions can arise from interference
between a one photon and three photon transitions connecting
states a and b (22).

Dissipative, Purely Resonant, Signals The previous discussion sug-
gests that by measuring material transitions it is possible to elim-
inate the parametric background. Below we show that such purely
resonant signals are feasible. The following derivation is not
limited to CARS and applies to arbitrary nonlinear wave-mixing
optical signals. We shall consider an arbitrary multilevel molecule
which interacts with many modes ωj of the radiation field. We
now introduce the dissipative signal defined as the total energy
absorbed by the matter from all modes of the field

D¼ℏ−1
∑
f g

PðgÞ
Z

dωωjTfgðωÞj2δðω−ωf gÞ; [19]

where the transition amplitudes were defined in Eq. 6.
As shown earlier, conventional signals such as S4, which only

detect a single mode, may not be expressed in the dissipative form
of Eq. 19 since they contain dispersive parametric contributions
where photons are exchanged between field modes leaving the
matter intact (it remains in state g at the end of the process).
Parametric processes affect individual modes but not the total energy
of the field and thus do not contribute to the dissipative signal. The
D signal is an experimental observable obtained by measuring
the total transmitted intensity in all modes, it requires no phase
matching, and can be measured in a simple collinear beam

Rahav and Mukamel PNAS ∣ March 16, 2010 ∣ vol. 107 ∣ no. 11 ∣ 4827

CH
EM

IS
TR

Y



geometry, making it particularly suitable for single molecule spec-
troscopy, imaging, and remote sensing applications.

It follows from Eq. 9 that the dissipative signal D naturally
groups the terms by their corresponding material transition
(a → c etc.) but mixes terms with different orders in the various
fields. Nonlinear susceptibilities, in contrast, do the bookkeeping
the other way around; they keep track of specific orders in the
various fields but mix resonances of different type. D may be ex-
pressed in terms of a specific combination of different suscept-
ibilities. However, this will not be necessary; the expressions
given in terms of transition amplitudes are much simpler to inter-
pret and implement numerically, since amplitudes are more in-
tuitive and are lower order in the fields than susceptibilities.

As an example the signal S1 obtained by detecting mode ω1 is
given by Eq. 17 with the sign of Spar4 reversed. We then get
S1 þ S4 ¼ −P1234

a→c , and the dissipative signal D is proportional
to S1 þ S4 − P12

a→c − P34
a→c.

Pulse shapers (24–26) decompose the complex field envelope
into an amplitude and a phase EðωÞ ¼ AðωÞeiϕðωÞ. Variation of D
with various field parameters should allow to resolve the different
molecular resonances. In the following we shall vary the field am-
plitude AðωÞ. We first consider the contributions due to linear
absorption

D≃ℏ−1
Z

dω∑
b

ωjμbaj2A2ðωÞδðω−ωbaÞ: [20]

Variation of the field amplitude gives

σðωÞ¼ δD
δA2ðωÞ¼∑

b

ωbajμbaj2δðω−ωbaÞ; [21]

which is the linear absorption.
We now turn to electronically off-resonant pulses where D is

dominated by Raman transitions. The stimulated Raman and
heterodyne CARS signals are obtained from the second order
transition amplitudes. The dissipative signal is then

DCARS¼
1

4π2ℏ3∑
c

ωcajμcbj2jμbaj2
����
Z

dω
EðωÞEðωca−ωÞ
ω−ωbaþ iη

����
2

: [22]

(The optical pulse band shape covers the frequency regime
jωj ≫ ωca, since ωca is a vibrational transition frequency.) Raman
resonances may be obtained by taking a second order variation
δ2D∕δAðω1ÞδAðω2Þ. However, these lie on the top of a smooth
background resulting from the term where each of the integrals
in Eq. 22 is varied once.

Instead, we shall consider a two-pulse configuration which in-
cludes one broadband and one strong narrow band pulse (Fig. 2)
(3, 4, 22)

EðωÞ≃2πE0δðω−ω0Þþ2πE�
0δðωþω0Þþ ~EðωÞ: [23]

Specific resonances may now be resolved using variation of the
signal which interacts twice with the narrow band pulse at neigh-
boring frequencies, which are spectrally separated from the nar-
row ω0 beam. The integral in Eq. 22 in the rotating wave
approximation can now be approximated by

Z
dω

EðωÞEðωca−ωÞ
ω−ωbaþ iη

≃2πE0Eðωca−ω0Þ
1

ω0−ωbaþ iη

þ2πE�
0Eðωcaþω0Þ

1

ω0−ωbcþ iη
: [24]

Variation with respect to the amplitude of the broadband
pulse, AðωÞ, gives

δDCARS

δAðωÞ ≃ 1

πℏ3
ωcajμcbj2jμbaj2

×ℜ
��

E�
0Eðω0−ωcaÞ
ω0−ωba− iη

þE0E�ðω0þωcaÞ
ω0−ωbc− iη

�

×
�
E0e−iϕðω0−ωcaÞ

ω0−ωbaþ iη
½δðω−ω0þωcaÞþδðωþω0−ωcaÞ�

þE�
0e

iϕðω0þωcaÞ

ω0−ωbcþ iη
½δðω−ω0−ωcaÞþδðωþω0þωcaÞ�

�	
: [25]

The right-hand side of expression 25 shows background-free Ra-
man resonances at ω ¼ �ω0 � ωca. (The resonances at negative
and positive frequencies are mirror images of each other.) A plot
of 25 at positive frequencies would show sharp positive peaks
corresponding to the various vibrational modes. While the peak
locations are arranged symmetrically around ω0, their magni-
tudes are not. By selecting the signal that scales as jE2

0j we elim-
inate the background from the outset. This demonstrates one way
of separating molecular transitions contributing to D by a varia-
tion of the pulse shape. Other protocols are possible. For exam-
ple, substitution of 24 in 22 shows that the signal which involves
two interactions with the intense narrow band pulse has the form

DCARS¼D1jE0j2jEðω0−ωcaÞj2þD2jE0j2jEðω0þωcaÞj2
þD3ℜðE2

0E
�ðω0−ωcaÞE�ðω0þωcaÞÞ: [26]

The first two terms represent pump-probe processes involving E0

and one mode from the broad pulse (ω0 − ωca or ω0 þ ωca), while
the third is a CARS process involving all three modes. Variation
of parameters which keep two of the field factors in Eq. 26 fixed,
but vary the remaining one, should allow not only the separation
of different vibrational transitions, but also the different pump-
probe and CARS processes contributing to each transition.

In summary, the dissipative signal proposed here arises natu-
rally by examining the optical process from the material perspec-
tive and connecting it to the field observables. It detects the entire
transmitted field without separating it into modes and can be
readily measured by a simple collinear pulse configuration (no
phase matching is required). Parametric contributions which
cause the background, and reduce the signal to noise ratio, are
eliminated. Information about specific modes may be retrieved
through the variation of the signal with field parameters.
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