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Simulation and visualization of attosecond stimulated x-ray Raman
spectroscopy signals in trans-N-methylacetamide at the nitrogen
and oxygen K-edges
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The stimulated Raman component of the pump-probe spectrum of trans-N-methylacetamide ob-
tained in response to two soft x-ray pulses is calculated by treating the core excitations at the
Hartree–Fock static-exchange level. The signal reveals the dynamics of valence-electron wave pack-
ets prepared and detected in the vicinity of a selected atom (either nitrogen or oxygen). The evolving
electronic charge density as well as electronic coherence of the doorway and the window created by
the two pulses are visualized using a time-dependent basis set of natural orbitals, which reveals that
the wave packets consist of several entangled valence particle–hole pairs. © 2011 American Institute
of Physics. [doi:10.1063/1.3557057]

I. INTRODUCTION

The development of bright attosecond soft and hard
x-ray pulses, both x-ray lasers and table top high harmonic
generation sources, has triggered considerable interest in all-
x-ray nonlinear spectroscopy measurements.1–10 Resonant in-
teraction with x-ray pulses causes multiple excitation and
de-excitation events involving core electrons, which are ac-
companied by valence electronic excitations. X-ray tech-
niques offer a high temporal resolution and a bird-eye view
of many-body valence electronic excitations covered by the
broad bandwidth (18 eV for a 100 as pulse). Resonant opti-
cal spectroscopy, in contrast, looks at one electronic state at a
time and often has strict selection rules that limit the number
and type of accessible states.

In a recently proposed pump-probe experiment,11, 12 the
interaction with an attosecond x-ray pump tuned resonantly
to a specific core–hole transition launches an electronic wave
packet via a Raman process which spans valence excitations
as permitted by the finite pump bandwidth, which is then
detected by a delayed x-ray probe. The dependence of the
probe absorption on the delay time provides information on
the evolving wave packet. Since core shells are highly local-
ized, the wave packet is initially centered at the atom whose
core shell is in resonance with the pump frequency. Simi-
larly, the probe absorption reflects the unoccupied states in
the vicinity of the core shell in resonance with the probe
frequency. By tuning the pump and probe frequencies to
different core transitions, one can select where the wave
packet is created and where it is probed, thus studying the
underlying electron motions with high temporal and spatial
resolution.

In our earlier study,12 the core-excited states were calcu-
lated by the valence-excited states of the equivalent-core (or,
Z+1) molecule. Valence-excited states were represented by
determinants made of the ground-state Hartree–Fock/density
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functional Kohn–Sham orbitals of the original and equivalent-
core molecules. This equivalent-core approximation (ECA)
(Ref. 13) relies on the fact that the core and valence electron
energies are well separated, and thus weakly correlated. The
effect of the created core-hole on the valence electrons is then
reduced to that of a static Coulomb potential of a unit pos-
itive charge localized on the resonant core. This is a crude
approximation to the core-excited electronic structure, and to
the orbital relaxation effects upon electronic excitations from
core orbitals.14 In this paper, we calculate the stimulated x-ray
Raman spectroscopy (SXRS) signal of N-methylacetamide
(NMA), a small organic molecule used as a convenient model
system for the peptide bond15–17 forming the backbones of
proteins, using a higher level description of core excitations,
the static-exchange (STEX) approximation. STEX, developed
by Ågren et al.,18–21 offers a much improved description of or-
bital relaxation effects and of the virtual orbitals to which the
core electrons are excited.22

Several all-x-ray four-wave mixing techniques were re-
cently proposed by Schweigert and Mukamel.6, 12, 23 The
pump-probe technique described here is easier, since it only
requires two pulses, and the signal is independent of their
phases so that phase control is not required. The pulse in-
tensity should be sufficiently high in order for the stim-
ulated emission to compete with Auger process. Recent
experiments24, 25 have shown that hollow atoms can be created
by intense x-ray pulses. In future, sources of similar intensity
tuned to the resonant core transitions of these atoms will be
available. Ultrafast electronic dynamics following ionization
for a similar system, the small amino acid glycine, were cal-
culated in Ref. 26.

In a typical time-resolved pump-probe experiment which
employs visible pulses, a short pump impulsively prepares a
vibrational wave packet on an electronically excited potential
energy surface (PES). Each discrete electronic eigenstate
is represented as a sheet embedded in a high-dimensional
space of nuclear coordinates. In core-excitation spectroscopy,
this energy picture is extended to clumps of sheets with
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different core occupations, separated in energy by
100–1000 eV. Attosecond pulses are short enough to
impulsively excite wave packets over nuclear and valence
excited states. The Born–Oppenheimer factorization allows
the nuclear and electronic coordinates to be separated except
for specific regions, conical intersections, or seams in which
adjacent PESs cross. These surface crossings can give rise to
strong couplings between the electronic and nuclear degrees
of freedom, and the Born–Oppenheimer approximation
breaks down.27, 28 Here we solely focus on the electronic
degrees of freedom, ignoring the fast electron-nuclear dy-
namics. A single ground state minimized geometry is held
fixed during the experiment. The decay of valence excited
states induced by these nuclear motions are also neglected.

The SXRS electronic signal is expressed using closed-
time-path loop diagrams29, 30 in Sec. II. The necessary cor-
relation functions are expanded in many-electron states. The
stimulated Raman signal is recast in the doorway-window
representation,29, 31, 32 as the overlap of a doorway many-
electron wave packet created by the pump and a window wave
packet created by the probe. This representation provides an
intuitive picture of the measurement by dividing the process
into three stages: the wave packet creation, propagation, and
detection. In Sec. III, the Raman signal is recast and visu-
alized in terms of reduced particle–hole pairs in the natural
orbital representation.

In Sec. IV, we study orbital relaxation effects follow-
ing core electronic excitations by comparing the N and O
K-edge x-ray absorption near-edge structure (XANES) at the
ECA and STEX levels. In Sec. V, we present simulations
of the N and O K-edge stimulated Raman signals for the
N1s pump/N1s probe, N1s pump/O1s probe, O1s pump/N1s
probe, and O1s pump/O1s probe pulse configurations. The
particle–hole pairs that dominate the signal are described us-
ing a time-dependent basis set of natural orbital,33 and their
snapshots are interpreted in terms of a real space movie of
the electron and hole dynamics. This picture is not limited to
the time-resolved charge density as in electron diffraction, but
carries phase information (electron coherence) as well. Con-
clusions are given in Sec. VI.

II. CLOSED-TIME-PATH LOOP DIAGRAMS
FOR STIMULATED X-RAY RAMAN SIGNALS

The total Hamiltonian of a molecule interacting with x-
ray fields which is partitioned as

Htotal = Hmol + Hint. (1)

In the molecular Hamiltonian

Hmol =
∑

i

hii c
†
i ci + 1

2

∑
i jkl

〈i j |kl〉c†i c†j clck, (2)

the first term stands for the one-electron part containing the
kinetic energy and the nuclear-electron attraction, while the
second term is the electron–electron repulsion. Here, c†(c) are
Fermi creation (annihilation) operators.

The matter-field interaction in the rotating wave approxi-
mation is

Hint =
∑

n

[
E(t)V †

n + E∗(t)Vn
]
, (3)

where

V †
n =

∑
k

μknc†kcn, Vn =
∑

k

μnkckc†n (4)

are the creation and annihilation operators for core electronic
excitations. Here, μkn is the dipole matrix element between
the nth core orbital and the kth valence orbital, and E(t)
is the positive frequency part of the x-ray field. We shall
consider pulses with frequencies tuned to the resonant soft
x-ray regime, where the dipole approximation holds for core-
excitations of low-Z atoms. The core orbital size may be
larger than the wavelength of the exciting light for nonlinear
hard x-ray experiments which involve photoionization of the
core electron. This will require quadrupolar or higher multi-
pole corrections to the matter-field interaction.

We subject the system to two attosecond x-ray pulses sep-
arated by a delay time τ

E(t) = E1(t)ei k1 r + E2(t − τ )ei k2 r

E j (t) = E j (t)e
−iω j t (5)

where E1(t), k1, and ω1 are, respectively, the complex enve-
lope, the wave vector, and the carrier frequency of the pump
and E2(t), k2, ω2 are those of the probe.

The pump-probe signal, defined as the difference in the
absorption of the probe, with and without the pump, gen-
erally has three contributions known as excited state stim-
ulated emission (ESE), excited-state absorption (ESA), and
ground-state bleaching (GSB).6 In the ESE and ESA, the
molecule is prepared by the pump in the core-excited states,
whose lifetime (τc ∼ 5 − 10 fs for first-row atoms) is much
shorter than that of valence-excited states (>1 ps). For de-
lay times τ > τc, these contributions vanish and the signal is
dominated by the GSB, which is a Raman-type SXRS con-
tribution. The present study will focus on this regime. Fol-
lowing two interactions with the pump, a valence electronic
wave packet (with no core-hole) is created, which spans the
valence electronic states covered by the pump pulse band-
width. Figure 1 depicts the level diagram for the SXRS

FIG. 1. The level scheme used in the present simulations. |g〉 is the ground
state of the molecule and |g′〉 are the valence-excited states (with no core-
hole). | f 〉 are the valence-excited state manifolds with one core-hole lo-
calized on the nitrogen or oxygen atom selected by the pump or the
probe.
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FIG. 2. The two closed-time-path loop diagrams that contribute to the stimulated Raman signal. (For rules see Refs. 6, 12, and 29.) The levels |g〉, |g′〉 and | f 〉
are defined in Fig. 1.

experiment. |g〉 is the ground state of the molecule. |g′〉 are
valence-excited states with no core-hole, | f1〉(| f2〉) are core-
excited states where an electron from core orbitals localized
the atom resonant with pulse 1(2) is promoted to the valence
orbital space. The signal can be interpreted in terms of the
evolving valence electronic wave packet created upon core
electronic excitation by using closed-time-path loop diagrams
for the wave function shown in Fig. 2. This is more compact
representation than the density matrix representation for the
Liouville pathways.12

These diagrams give the following correlation function
expression for the stimulated Raman signal:

SSXRS(τ )=2Re
∫ ∞

−∞
dt
∫ t

−∞
dt3 E2(t − τ )E∗

2 (t3−τ )E∗
1 (t2)E1(t1)

×
[ ∫ ∞

−∞
dt2

∫ t2

−∞
dt1
〈
V (t3)V †(t)V (t2)V †(t1)

〉

+
∫ ∞

−∞
dt1

∫ t1

−∞
dt2
〈
V (t2)V †(t1)V (t3)V †(t)

〉]
.

(6)

All operators are in the interaction picture V (t)
= exp(i Hmolt)V exp(−i Hmolt). The dipole correlation
functions can be expanded in the many-electron molecular
states,〈

V (τ4)V †(τ3)V (τ2)V †(τ1)
〉

=
∑

g′, f1, f2

Vg f2 V †
f2g′ Vg′ f1 V †

f1g

× exp[−iω f2gτ4 − iωg′ f2τ3 − iω f1gτ2 − iωg f1τ1]

(7)

Substituting Eq. (7) in Eq. (6), we obtain

SSXRS(τ ) = 2Re
∑
g′ �=g

∑
f1, f2

Vg f2 V f2g′ Vg′ f1 V f1ge−iωg′gτ−�g′ τ

×
∫

dω2

2π
E∗

2 (ω2)E2(ω2 − ωg′g)

× Im
1

ω2 − ωg′g − ω f2g − i� f2

×
∫

dω1

2π
E∗

1 (ω1)E1(ω1 − ωg′g)

× 1

ω1 − ωg′g − ω f1g + i� f1

, (8)

where ωg′g = εg′ − εg is the transition frequency between
valence-excited states and the ground state. �i is the decay
rate (inverse lifetime) of the state i , which was added here
phenomenologically,

E j (ω) = 1

2π

∫
e−iωt E j (t)d t, (9)

are the j th pulse envelop in the frequency domain. Hereafter,
we shall assume Gaussian envelopes with bandwidth σ j ,

E j (t) = e−t2σ 2
j /2, (10)

E j (ω) = 1√
2π · σ j

exp
[−(ω − ω j )

2/2σ 2
j

]
. (11)

Equation (8) may be recast as the overlap of a doorway
with a window many-electron functions,12, 31

SSX RS (τ ) = 2Re 〈W |D(τ )〉, (12)
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where the doorway state evolves during the delay τ

|D(τ )〉 =
∑

g′
Dg′e−iωg′gτ−�g′ τ |g′〉, (13a)

with (see Appendix B)

Dg′ =
∑

f1

Vg′ f1 V f1g

∫
dω1

2π
× E∗

1 (ω1)E1(ω1 − ωg′g)

ω1 − ωg′g − ω f1g + i� f1

=
∑

f1

Vg′ f1 V f1gI1

[
ωg′g, ω f1g + ωg′g

2
+ i� f1

]
(13b)

I j

[
ωg′g, ω f j g + ωg′g

2
+ i� f j

]
= −√

2

σ 2
j

× exp

[−ω2
g′g

4σ 2
j

]
�
[(

ω f j g + ωg′g

2
− ω j + i� f j

)
/σ j

]

�(z) = e−z2

(
Erf(i z)

i
− i

)
, (13c)

where { f j } is the excited state manifold accessible by the j th
pulse. The lineshape function I j [. . .] (Ref. 12) is given in
Appendix B [Eq. (B12)] and is shown in Fig. 10. The window
state is

|W 〉 =
∑

g′
Wg′ |g′〉, (14a)

with

Wg′ =
∑

f2

Vg f2 V f2g′

∫
dω2

2π
× E2(ω2)E∗

2 (ω2 − ωg′g)

× Im
1

ω2 − ωg′g − ω f2g + i� f2

=
∑

f2

Vg f2 V f2g′Im I2

[
ωg′g, ω f2g + ωg′g

2
+ i� f2

]
.

(14b)

Substituting Eqs. (13) and (14) in Eq. (12) gives

SSXRS (τ ) =
∑
g′ �=g

Dg′ W ∗
g′e−iωg′gτ e−�g′ τ . + c.c. (15)

We shall display the signal in the frequency domain
by performing a Fourier transform with respect to the
delay

SSXRS(ω) ≡ Re
∫ ∞

0
dτe−iωτ SSR(τ )

=
∑

g′

W ∗
g′ Dg′�g′

(ω − ωg′g)2 + �2
g′

. (16)

III. NATURAL ORBITAL REPRESENTATION
OF PARTICLE–HOLE WAVE PACKETS

The expansion of the signal in the many-electron states
|g〉, |g′〉, and | f 〉 [Eq. (7)] is formally exact. Experimental
visualization of the single-particle wave functions (e.g., by
using Dyson orbitals) in attosecond high harmonic genera-
tion has been reported.34–36 Below we show how the many-
electron wave packet may be represented in real space. We
emphasize that this visualization is not directly obtained from
experimental data but is derived from simulations and should
help the interpretation of experiments. We shall adopt an ap-
proximate electronic structure theory in which each state of
the valence-excited state manifold with all core orbitals dou-
bly occupied and each state of the core-excited state man-
ifold with a localized core-hole are represented by a sin-
gle Slater determinant made of ground-state HF orbitals and
relaxed orbitals with HF–STEX approximation of the same
molecular configuration, respectively. In the STEX compu-
tational protocol of the core-excited states | f 〉 described in
Appendix C, electronic excitations are treated with respect to
different reference states. The more crude ECA simply re-
places the atom whose K-edge is resonant with the applied
x-ray fields by an atom with the next highest atomic number.
The core hole is represented approximately by an extra atomic
charge. The STEX model treats the core-excited molecule as
a Slater determinant, solved self-consistently with a singly oc-
cupied core. Valence excited states from both reference wave-
functions are generated using an independent particle model.
This approximation neglects the interaction between the ex-
cited electron and its hole, as well as all other electron cor-
relation. The Hamiltonian is taken to be diagonal within the
block of singly excited Slater determinants〈

	b
j

∣∣Ĥ ∣∣ a
i 	
〉 = δabδi jωai . (17)

Within this single-determinant approximation, the reduced
doorway-window representation carries the same information
as the full many-electron wave packets of the signal, provided
the signal is dominated by single-particle excitations
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|g′〉 = c†aci |g〉, (18)

where i(a) are occupied(unoccupied) valence molecular or-
bitals and the excitation energy is ωg′g = ωai = εa − εi .

Substituting Eq. (18) in Eqs. (13) and (14), in the molec-
ular orbital basis, the doorway wave packet is given by

|D(τ )〉 =
occ∑

i

unocc∑
a

Diae−iωai τ−�ai τ c†aci |g〉, (19)

and the window wave packet is similarly given by

|W 〉 =
occ∑

i

unocc∑
a

Wiac†aci |g〉, (20)

Dia and Wia are the expansion coefficients of the particle–
hole in these wave packets. Substituting Eqs. (19) and (20)
in Eq. (12) gives the SXRS signal in the molecular orbital
representation,

SSXRS(τ ) =
occ∑

i

unocc∑
a

Wia Diae−iωai τ e−�ai τ + c.c. (21)

A more compact representation and visualization of the
doorway wave packet is obtained by using a particle–hole
time-dependent basis of natural orbitals (Appendix A). The
doorway operator creates a wave packet of valence excita-
tions. The natural orbitals, obtained through a singular value
decomposition of the matrix representing this operator, are the
most compact representation of the wave packet in terms of
single particle → hole excitations. Each particle–hole natural
orbital pair has a corresponding positive weight indicating its
contribution to the doorway. In this basis the doorway wave
packet assumes the form [Eq. (A18)],

|D(τ )〉 =
∑

ξ

dξ (τ ) · c†ξ,p(τ )cξ,h(τ )|g〉, (22)

where

c†ξ,p(τ ) =
∑

a

e−iεaτ c†aχ
p

aξ ,

(23)
cξ,h(τ ) =

∑
i

χh
ξ i ci e

iεi τ ,

are the creation and annihilation operators for the time-
dependent natural orbitals [see Eq. (A17)]. The coefficients
χ

p
aξ (χh

ξ i ) are obtained from the particle (hole) parts of the
singular value decomposition of the doorway operator at τ

= 0.[Eqs. (A12) and (A13)]. The signal is given by the over-
lap of this wave packet and the window, and is derived in
Appendix A [Eq. (A21)]

S(τ ) =
∑

ξ

wξ (τ )dξ (τ ) + c.c.,

wξ (τ ) =
∑

ai

χh
ξ i W

∗
iae−iωai τ−�ai τ χ

p
aξ ,

dξ (τ ) =
∑

ai

χ
p∗

aξ Daiχ
h∗
ξ i e−�ai τ . (24)

The double sum in Eq. (21) is now replaced by a single
sum over orbital pairs. We can visualize the signal by dis-

playing the natural orbitals and the time-dependent product
dξ (τ )wξ (τ ). When the electronic lifetimes are long compared
to the experimental delay time between pulses (1/�ai � τ ),
the doorway coefficients become time independent, dξ (τ ) ≡
dξ .

The natural orbital basis places the doorway in the
Schmidt representation,37 and partitions the time evolution in
the system so that dξ (τ ) is controlled by the lifetimes, and
wξ (τ ) contains the valence excitation frequencies in the re-
sponse. Graphing the time-dependent signal as the product of
these two functions will allow us to dissect it in terms of these
separate contributions.

IV. XANES SPECTRA OF NMA: ORBITAL
RELAXATION AT THE ECA AND STEX LEVELS

The geometry of trans-NMA (C3H6NHO, see Fig. 3)
was optimized using density functional theory and the GAUS-
SIAN03 (Ref. 38) code at the B3LYP/6-311G** level. The
ECA calculations were carried on using GAUSSIAN03, while
the STEX calculations were implemented using PSI3.39 All
transition frequencies and dipole moments were calculated
at the HF/6-311G** level. The ECA and STEX frontier or-
bital energies are compared in Table I (Table II) for core
electronic excitation from N1s(O1s) orbital. In ECA, the
core-excited state is calculated using an additional electron
in the valence band. For NMA, the STEX procedure re-
sults in a LUMO where this extra electron is bound (orbital
with negative energy); all other virtual orbitals have pos-
itive energies. STEX predicts additional bound virtual or-
bitals (i.e., LUMO+0, 1, 2 for N K-edge and LUMO+0,+1
for the O K-edge), due to the improved description of or-
bital relaxation in the core-hole field. Glycine is the amino-
acid which most resembles trans-NMA. The low-temperature
experimental XANES spectra for a crystal of glycine (Fig.
3, bottom, see Ref. 40) contain features within 3–5 eV of
the core absorption edge, as seen in our STEX simulations.

FIG. 3. XANES N1s spectra [Eq. (25)] computed at the ECA and STEX
levels. The stick spectra were convoluted with a Lorentzian, with a constant
linewidth (fwhm) of 0.4 until 408 eV. It was then increased linearly to 1.5 eV
between 408 and 415 eV, and held constant at this value for higher energies.
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TABLE I. Energies (in hartree) of the frontier molecular orbitals upon N1s
core electronic excitation.

Orbital εHF
gs εECA

ex εSTEX
ex

HOMO-3 −0.54280 −0.53851 0.76604
HOMO-2 −0.50228 −0.52685 −0.76183
HOMO-1 −0.41550 −0.48208 −0.69517
HOMO −0.38687 −0.37305 0.67413
LUMO 0.14066 −0.17241 −0.07778
LUMO+1 0.16963 0.08626 −0.04795
LUMO+2 0.18882 0.14036 −0.00561
LUMO+3 0.19405 0.18858 0.02078

The energy difference between the highest occupied molecu-
lar orbital (HOMO) and LUMO orbitals in trans-NMA are
5.45 eV, a similar bandgap exists in core-excited glycine.
The decreased energy separation of the STEX orbitals allows
core-excited spectra to be described as single excitations in
a one-particle picture, and match peaks near the absorption
edge.

We start with the simulated XANES spectra

SXANES(ω) = 1

π

∑
f

|μ f g|2� f

(ω − ω f g)2 + �2
f

, (25)

where μ f g is the transition dipole between the ground state g
and core-excited states f . For the lifetime broadening, due to
autoionization lifetimes from valence-excited states we used
the following values: � fN = 0.4 eV for energies up to 408 eV
for N1s and linearly ramped to 1.5 eV at 415 eV and held
constant, and � fO = 0.4 eV at 537 eV and ramped to 1.5
eV at 544 eV for O1s core-excited states. The first XANES
transition was set to 401.7 eV for nitrogen and 532.0 eV for
oxygen to match experiment.41 Atomic x-ray photoemission
linewidths for nitrogen (0.09 eV) and oxygen (0.133 eV) im-
ply a core-hole lifetime of 7.3 and 4.9 fs respectively. Both
linewidths are taken from LLNL EADL library for atomic
cross-sections.42 Molecular NEXAFS and XANES linewidths
will likely be larger, each molecule will have a slightly differ-
ent environment local to the core. These widths will not reflect
a core-hole decay time, which is a single molecule property,
but an inhomogeneous distribution of transition frequencies,

TABLE II. Energies (in hartree) of the frontier molecular orbitals upon O1s
core electronic excitation.

Orbital εHF
gs εECA

ex εSTEX
ex

HOMO-3 −0.54280 −0.55594 −0.78115
HOMO-2 −0.50228 −0.54143 −0.76318
HOMO-1 −0.41550 −0.50446 −0.75076
HOMO −0.38687 −0.45016 −0.65531
LUMO 0.14066 −0.21724 −0.09095
LUMO+1 0.16963 0.14950 −0.03607
LUMO+2 0.18882 0.17435 0.00986
LUMO+3 0.19405 0.20133 0.02272

FIG. 4. XANES O1s spectra [Eq. (25)] computed at the ECA and STEX
levels. The stick spectra were convoluted with a Lorentzian, with a constant
linewidth of 0.4 eV until 537 eV, and then increased linearly to 1.5 eV from
537 to 544 eV, and held constant at this value for higher energies.

a property of the sampled ensemble. We do not address any
averaging over nuclear configurations or environments in our
simulations. We include these effects approximately by us-
ing a linewidth which was used to match the experimental
XANES of small organic molecules in previous studies.12, 23

The increased linewidth represents bound resonances coupled
to a continuum of photoelectron states; since our focus is
on Raman-type inelastic scattering processes occurring on a
short time scale, and since our pulse bandwidth extends only
weakly into this region of the core-excited density of states,
a higher level simulation strategy of ionized states was not
adopted.

The fluorescence yield for both the oxygen and nitrogen
core-holes is below 1%.43 For soft x-ray core-excitations in
the light elements, the frequency difference between the K
and L x-ray edges is much larger than between the 2s orbital
and the ionization potential. Conservation of energy leads
to a dominant Auger shake-off rather than shake-up spectra.
Therefore, the initial pump excitation may create an ionized
state during the delay period, formed by Auger decay. An im-
plicit assumption made in the present work is that the probe
core–hole transitions for the ionized molecule are detuned
from the neutral transitions by much larger energies than the
probing pulse bandwidth, making the SXRS technique selec-
tive for neutral molecules evolution during the delay τ . The
difference between the first and second ionization energies
is usually ∼100 eV, but the core edge for differently ionized
species may not be shifted by a similar amount. If this con-
dition does not hold, then ionized species could contribute to
the response and must be included.

The XANES spectra obtained using the ECA and STEX
levels of core excitations are shown in Fig. 3 for the N K-
edge and Fig. 4 for the O K-edge excitations. STEX reveals
additional low-energy peaks adjacent to the core edge in both
figures, reflecting the relaxation effect of the occupied orbitals
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FIG. 5. Stimulated Raman spectra [Eq. (16)] for the four possible pump/probe pulse configurations [Eq. (15)], for peak assignment, see Table III and Fig. 6.
Signal intensities S(τ ) are convoluted with Lorentzians with � = 0.05 eV.(0.10 eV fwhm) (�g′ = �ai = 0.05 eV.)

and its improved description of the virtual orbitals. The first
XANES peak corresponds to an x-ray transition between the
ground and core-excited reference states (no valence exci-
tation). The ECA N K-edge XANES energy difference be-
tween the initial core edge at 401.7 eV and the next peak
at 408.7 eV is ∼ 7.0 eV. STEX predicts a much smaller 0.8
eV peak splitting. The reason for this additional low energy
structure is the improved description of the low-lying virtual
orbitals in the STEX technique. The HOMO–LUMO splitting
is 0.25867 hartrees ∼ 7.0 eV as shown in Table I. Whereas the
ECA model used here is essentially a Hartree–Fock calcula-
tion with modified nuclear and electronic configurations, and
typically overestimates the energy gap between HOMO and
LUMO. Similar trends are seen in the XANES spectra for the
O K-edge excitation, shown in Fig. 4.

V. SXRS SIGNALS OF NMA

We have assumed Gaussian pulses in Eq. (5) with σ j

= 77 as. Since the pulse central frequency is tuned to the
core edge, only half of the 20.13 eV bandwidth (∝ 1/σ j )
is available for an x-ray Raman process; giving an effective
10.07 eV pulse bandwidth. The core-hole linewidths used for
Eq. (8) are � fN = 0.085 eV for N1s and � fO = 0.10 eV for
O1s, and the linewidth of valence-excited states is �g′ = 0.05
eV. The frequency domain SXRS signal was calculated by
taking the Fourier transform of Eq. (21)

SSXRS(ω) = 1

π

occ∑
i

unocc∑
a

Wai Dai�ai

(ω ± ωai )2 + �2
ai

. (26)

The signal at ωg′g is proportional to W ∗
g′ Dg′ . Figure 5 shows

the stimulated Raman signals for N1s pump/N1s probe (ω1

= ω2 = ωN ), N1s pump/O1s probe(ω1 = ωN , ω2 = ωO ),
O1s pump/N1s probe(ω1 = ωO , ω2 = ωN ), and O1s
pump/O1s probe(ω1 = ω2 = ωO ). The large HOMO–LUMO
splitting in the ground state pushes the lowest energy single

excitations into higher energies. The small 0.05 eV broaden-
ing for the valence excited states may not apply if the inverse
of the autoionization rate for an electron excited to a state
competes with the delay time between pulses. Additional
work is needed to quantify the interaction between these
processes.

The O1s/O1s (oxygen pump/ oxygen probe) signal
shows a strong negative transition(a) near 15.13 eV corre-
sponding to an excitation from an orbital with π character
on the oxygen to a σ ∗ state on the non-adjacent methane
(Fig. 6). Neither orbital is localized on the nitrogen, and nei-
ther of the nitrogen doorway or window operators have a sig-
nificant dipole matrix element for this transition. The N1s/O1s
spectrum has a transition in the same frequency range, which
is a combination of the (a) transition, and another π to σ ∗

transition to the methyl-group adjacent to the oxygen. The

FIG. 6. Peak assignment for SXRS transitions (see Table III).
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transition (b) at 15.81 eV makes significant contribution to all
four signals. In comparison with transition (a), (b) comes from
an excitation from an occupied π orbital delocalized over ni-
trogen and oxygen to the σ ∗ orbital on nitrogen’s adjacent
methyl group. For the techniques with a nitrogen window, (b′)
also contributes. The three states (c) at 16.59 eV, (d) at 16.92
eV, and (e) at 17.50 eV contribute positive peaks to the nitro-
gen probe spectra, and negative absorptive peaks to the oxy-
gen SXRS signal. The absorptive peaks are due to the sign
of the doorway and window operators for the nitrogen, which
are the same for this particular transition.

The time-resolved SXRS signal is shown in Fig. 7. Since
the splitting between the states comprising the electronic
wave packet is small compared to their mean frequency,
they do not evolve much phase in approximately one period.
The signal will be analyzed using the doorway natural or-
bitals. We choose a real basis of molecular orbitals, and for τ

= 0, the natural orbitals which are linear combinations of
these are also real (see Appendix A). In Figs. 8 and 9 we
display the doorway natural orbitals at τ = 0 for a pulse
tuned to the nitrogen and oxygen 1s core transitions, re-
spectively. The weights d1...5(τ ) [Eq. (A18)] are shown in
the left column of the same figure. These represent the

FIG. 7. Time-dependent SXRS signal for NMA for different pump/probe
configurations, as indicated.

strengths of the contribution of each particle-hole pair to the
doorway.

Displaying the natural orbitals as a function of the delay
time τ provides a real space movie of the evolving the wave

TABLE III. SXRS signal decomposition for each excitation. Column (a) is the excitation number: excitation #1 corresponds to Raleigh scattering of the pump
pulse and contributes a time-independent, DC contribution to the signal as a function of pulse delay which is neglected. Columns (b) and (c) represent the
orbitals contributing to the excitation, with a frequency given in Column (d). Columns (e–h) are the doorway and window amplitudes for pulses tuned to the
nitrogen and oxygen core edges, and Columns (i–l) are the signals calculated using these amplitudes, at the frequencies ωai .

From To
Ex. # orb. (i) orb (a) ωai (/eV) DN

ia W N
ia DO

ia W O
ia SN N (ωai ) SN O (ωai ) SO N (ωai ) SO O (ωai )

1 0 0 0.00000 −3.158 11.020 −1.838 1.714 − − − −
2 20 21 14.35505 0.002 −0.008 −0.066 −0.006 −1.742e-05 −1.334e-05 5.241e-04 4.014e-04
3(a) 19 21 15.13399 −0.046 −0.018 −0.501 0.612 8.538e-04 −2.833e-02 9.235e-03 −3.064e-01
4(a′) 20 22 15.14331 −0.154 −0.087 −0.141 0.186 1.347e-02 −2.870e-02 1.235e-02 −2.632e-02
5 20 23 15.66540 −0.300 −0.126 −0.215 −0.023 3.796e-02 6.934e-03 2.723e-02 4.974e-03
6(b) 20 24 15.80789 −0.413 0.448 −0.375 0.450 −1.852e-01 −1.857e-01 −1.682e-01 −1.687e-01
7(b′) 19 22 15.92226 −0.305 0.714 −0.164 −0.018 −2.181e-01 5.371e-03 −1.169e-01 2.879e-03
8 19 23 16.44434 −0.000 0.001 −0.001 0.001 −6.531e-07 −6.107e-07 −1.572e-06 −1.471e-06
9 19 24 16.58683 −0.032 −0.013 −0.000 −0.000 4.197e-04 2.032e-06 5.918e-07 2.865e-09
10(c) 20 25 16.59096 −0.266 −0.112 −0.001 0.001 2.987e-02 −3.796e-04 8.140e-05 −1.034e-06
11(d) 20 26 16.91952 −0.323 −0.157 −0.408 0.476 5.058e-02 −1.536e-01 6.387e-02 −1.939e-01
12 19 25 17.36990 −0.000 0.001 0.001 −0.002 −5.809e-08 1.870e-07 5.983e-07 −1.926e-06
13 20 27 17.44763 0.000 0.000 −0.000 0.000 5.177e-09 4.818e-10 −3.340e-09 −3.108e-10
14(e) 18 21 17.49549 −0.304 −0.150 −0.159 −0.017 4.576e-02 5.234e-03 2.387e-02 2.731e-03
15 20 28 17.57582 −0.066 −0.044 −0.072 0.044 2.877e-03 -2.866e-03 3.153e-03 −3.141e-03
16 19 26 17.69846 −0.055 −0.025 −0.074 −0.008 1.398e-03 4.506e-04 1.874e-03 6.038e-04
17 19 27 18.22658 0.002 −0.008 0.002 −0.002 −1.457e-05 −3.115e-06 −1.207e-05 −2.581e-06
18 18 22 18.28376 −0.155 −0.076 −0.077 −0.009 1.176e-02 1.463e-03 5.866e-03 7.298e-04
19 19 28 18.35476 0.000 0.000 −0.045 −0.005 6.213e-08 −1.789e-06 −7.700e-06 2.217e-04
20 17 21 18.59790 −0.431 0.222 −0.036 0.037 −9.553e-02 −1.579e-02 −7.871e-03 −1.301e-03
21 18 23 18.80584 −0.080 −0.035 −0.043 0.043 2.824e-03 -3.450e-03 1.517e-03 −1.853e-03
22 16 21 18.85959 −0.034 −0.015 −0.349 0.252 5.010e-04 −8.481e-03 5.202e-03 −8.806e-02
23 18 24 18.94833 −0.249 0.358 −0.175 −0.019 −8.927e-02 4.616e-03 −6.279e-02 3.247e-03
24 17 22 19.38616 −0.139 0.074 −0.323 0.255 −1.030e-02 −3.556e-02 −2.388e-02 −8.242e-02
25 15 21 19.58259 −0.025 0.032 −0.025 −0.003 −7.955e-04 6.963e-05 −7.934e-04 6.945e-05
26 20 29 19.62674 −0.033 0.045 −0.183 0.165 −1.465e-03 −5.418e-03 −8.124e-03 −3.005e-02
27 16 22 19.64785 −0.095 0.039 −0.025 −0.003 −3.735e-03 2.958e-04 −9.736e-04 7.711e-05
28 18 25 19.73140 −0.048 −0.016 −0.078 −0.008 7.404e-04 3.750e-04 1.209e-03 6.126e-04
29 14 21 19.73546 −0.180 −0.088 −0.009 −0.001 1.586e-02 9.297e-05 7.717e-04 4.524e-06
30 17 23 19.90824 0.001 0.000 0.001 −0.000 2.170e-07 −2.358e-07 2.144e-07 −2.330e-07
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FIG. 8. Time-dependent SXRS signal for NMA for a pump tuned to the nitrogen K-edge, decomposed into contributions from: (first col) the time-dependent
doorway weight for each natural orbital, (second col) the projection of the window operator onto each doorway natural orbital, and (third col) the contribution to
the signal for each product: Sξ = 2Re dξ (τ )wξ (τ ). The dashed black line is the total signal Stot(τ ) =∑ξ Sξ (τ ). (Right) Nitrogen 1s doorway operator natural
orbitals at τ = 0.

function created by the pump. Since natural orbitals are lin-
ear combinations of delocalized molecular orbitals, it is not
easy to correlate the signal with charge migration between
the atoms resonant with each pulse, particularly for a small
molecule such as NMA.

To trace the origin of the signal, we have dissected it into
individual doorway natural orbital contributions. The four
possible pump/probe signals (N1s/O1s, N1s/N1s, O1s/N1s
and O1s/O1s) for the time-interval τ between 0 to 200 as are
shown in Figs. 8 and 9, along with their decomposition in

terms of dξ (τ ) and wξ (τ ). In the N1s/N1s spectra, the first and
the third doorway natural orbitals contribute most strongly to
the response. Both have π hole character local to the nitrogen
atom, and particle orbitals localized on one of the two methyl
groups. In the N1s/O1s spectra, the second and the third nat-
ural orbital contributions are out of phase, and nearly cancel.
The signal is mainly due to the first natural orbital. The three
peaks have diffuse particle states, and hole states delocalized
over the nitrogen and oxygen atoms. Similar trends are ob-
served for the O1s/N1s and O1s/O1s spectra.

FIG. 9. Time-dependent SXRS signal for NMA for a pump tuned to the oxygen K-edge, decomposed into contributions from: (first col) the time-dependent
doorway weight for each natural orbital, (second col) the projection of the window operator onto each doorway natural orbital, and (third col) the contribution to
the signal for each product: Sξ = 2Re dξ (τ )wξ (τ ). The dashed black line is the total signal Stot(τ ) =∑ξ Sξ (τ ). (Right) Nitrogen 1s doorway operator natural
orbitals at τ = 0.



124101-10 Healion, Wang, and Mukamel J. Chem. Phys. 134, 124101 (2011)

FIG. 10. Top: Real (red) and imaginary (blue) parts of the function �(z)
[Eq. (B7)], shaded by |�(z)|. Bottom: a slice through �(x) for real argument
x(solid), �(x + 0.1i) (dashed) compared to the real (orange) and imaginary
(cyan) parts of the function 1/(x + i).

VI. CONCLUSIONS

There are three time scales governing the evolution of
a core-excited system, the nuclear motion, and the valence
and core electronic degrees of freedom. We have performed a
qualitative simulation neglecting nuclear motion and includ-
ing the core-hole valence electron coupling through the STEX
approximation. Excitations within the valence band were de-
scribed in a simple one-particle scheme, neglecting the influ-
ence of the hole on an excited particle. More sophisticated
methods exist for treating electron correlation, including the
Bethe–Salpeter,44 algebraic diagrammatic construction,45 CI,
and coupled-cluster methods46 for calculating excited valence
eigenstates. Many improvements in the level of theory used to
treat nuclear motion, electron correlation in excited states, and
the core–hole/valence coupling will be needed to accurately
simulate core-excited nuclear and electronic dynamics.

We have simulated the SXRS spectra of the nitrogen
and oxygen K-edges in trans-NMA by treating the core-
excitations at the Hartree–Fock static-exchange level. Com-
pared with the equivalent-core approximation, in which the
core-hole potential is described as a positive charge, STEX
predicts the correct spin symmetry of the excited states and

FIG. 11. vc(r) (red-solid, see Eq. (D3)) and vECA(r) (blue, −1/r ) as a func-
tion of radial distance from the resonant core-atom. All values in atomic units,
with α = 1.

provides an improved description for both the occupied and
virtual orbitals. The STEX N1s and O1s XANES spectra
shows additional peaks that are missed by the ECA calcula-
tions. The SXRS signal was expressed as an overlap between
the doorway and window wave packets. The valence electron-
hole dynamics is followed by monitoring the changes in the
particle–hole orbital pairs, using a compact natural orbital
representation.
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APPENDIX A: THE TIME-DEPENDENT NATURAL
ORBITAL BASIS SET

The signal [Eq. (21)] can be recast in terms of the product
of two block off-diagonal matrices in the electron and hole
blocks,

S(τ ) = Re Tr
[
WTD(τ )

]
, (A1)

D(τ ) =

⎡
⎢⎢⎢⎣

0 0
Dl1e−iωl1τ−�l1τ . . . Dlhe−iωlhτ−�lhτ

...
. . .

... 0
Dn1e−iωn1τ−�n1τ . . . Dnhe−iωnhτ−�nhτ

⎤
⎥⎥⎥⎦

(A2)

W =

⎡
⎢⎢⎢⎣

0 0
Wl1 . . . Wlh
...

. . .
... 0

Wn1 . . . Wnh

⎤
⎥⎥⎥⎦,

where Dlh(Wlh) is the doorway (window) weight correspond-
ing to the HOMO → LUMO transition and n is the total
number of orbitals. The doorway and window wave pack-
ets will be represented using the basis set of the natural
orbitals.12, 33, 47 This is a more compact representation than the
molecular orbitals since only a few natural orbital pairs are
typically required. The matrices in Eq. (A2) do not commute
with their adjoints and cannot be diagonalized. However, they
can be transformed using the single value decomposition al-
gorithm. Any matrix (not necessarily square) can be recast in
the form,48

D = Xp�Xh †,
(A3)

Dai =
∑

ξ

χ
p

aξ dξχ
h
ξ i ,

where Xp and Xh are unitary matrices with elements

(Xp)aξ = χ
p

aξ , (A4)

(Xh †)ξ i = χh
ξ i , (A5)

and � is a diagonal matrix with real, positive matrix elements
dξ . If the diagonal elements of � are sorted in a fixed order,
the decomposition in Eq. (A3) is unique, up to a unitary com-
plex factor eiθξ for each of the rows of Xp and Xh .
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The rows of the matrix Xp and the columns of Xh † are
the particle and hole natural orbitals corresponding to the
doorway operator. The operator can be written in a diagonal
form

� = Xp †DXh (A6)

with

dξ =
∑

ai

χ
p∗

aξ Daiχ
h
ξ i . (A7)

One important consequence of the uniqueness of the singu-
lar value decomposition is that � is invariant under a uni-
tary transformation of D. Let O be a unitary matrix. Since the
product of two unitary matrices is unitary,

ODO† = OXp�Xh †O†

= X̃p�X̃h †, (A8)

where

X̃p = OXp, X̃h = OXh . (A9)

We assume that the electronic lifetime �−1
ai in Eq. (19) is long

compared to the delay between the x-ray pulses making the
time evolution of the doorway operator unitary on the exper-
imental time scale. Then the time evolution of the doorway
operator is a unitary transformation,

D(τ ) � e−iHτ D(0)eiHτ , (A10)

where the matrix,

Hrs = δrsεr , (A11)

represents the single particle Hartree–Fock Hamiltonian. Us-
ing the natural orbitals of the doorway operator as a basis set,
the time dependent singular value decomposition [using O
= e−iHτ in Eq. (A9)] is

(Xp(τ ))aξ = χ
p

aξ e−iεaτ , (A12)

(Xh †(τ ))ξ i = χh
ξ i e

iεi τ . (A13)

Inserting factors of XpXp † and XhXh † into Eq. (A1), the sig-
nal S(τ ) can be written in this representation,

S(τ ) = 2Re Tr[WTD(τ )]

= 2Re Tr[WTXp(τ )Xp †(τ )DXh(τ )Xh †(τ )] (A14)

= 2Re
∑

ξ

wξ (τ )dξ (τ ), (A15)

where the diagonal part of the window operator,

wξ (τ ) = 〈c†ξ (τ )cξ (τ )|W 〉 = (Xh †(τ )W†Xp(τ ))ξ,ξ

=
∑

ai

χh∗
ξ i W ∗

aiχ
p

aξ e−iωai τ , (A16)

where wξ ≡ wξξ (τ ) is the diagonal part of the window
operator in the doorway natural orbital representation.
Equation (A14) can be derived using an operator formalism.
The time-dependent creation and annihilation operators for

the doorway particle and hole orbitals are defined as

c†ξp(τ ) =
∑

a

e−iεaτ c†aχ
p

aξ ,

(A17)
cξh(τ ) =

∑
i

χh
ξ i e

iεi τ ci ,

to make the doorway and window wave packets in the new
basis

|D(τ )〉 =
∑

ξ

dξ (τ )c†ξ,p(τ )cξ,h(τ )|g〉,

|W 〉 =
∑
ξ ′,ξ ′′

wξ ′,ξ ′′ (τ )c†ξ ′,p(τ )cξ ′′,h(τ )|g〉,

dξ (τ ) =
∑

ai

χ
p∗

aξ Daiχ
h
ξ i e

−�ai τ ,

wξ ′ξ ′′ (τ ) =
∑

ai

χh∗
ξ ′i W ∗

aiχ
p

aξ ′′e−iωai τ ,

(A18)

match their original definitions

|D(τ )〉 =
∑

ai

Diae−iωai τ−�ai τ c†aci |g〉,
(A19)

|W 〉 =
∑

ai

Wiac†aci |g〉.

The signal is recast as the time-dependent overlap between
these two wave packets. In the independent particle approxi-
mation presented in Appendix C, particles and holes are not
coupled to each other, the electron and hole natural orbitals of
the doorway remain linear combinations of virtual and occu-
pied orbitals, and the operators in Eq. (A14) can be factored
into separate contributions. When the ground state is written
as an outer product of a set of occupied orbitals and a vacuum
of unoccupied orbital states,

|g〉 = |1occ〉 ⊗ |0unocc〉, (A20)

the creation and annihilation operators defined in Eq. (A17)
only act on one of the subspaces, and the signal can be fac-
tored

S(τ ) = 〈W |D(τ )〉, (A21)

S(τ ) =
∑
ξ,ξ ′ξ ′′

w∗
ξ ′ξ ′′ (τ )dξ (τ )〈g|c†ξ ′′h(τ )cξ ′ p(τ )c†ξ (τ )cξ (τ )|g〉

=
∑
ξ,ξ ′ξ ′′

w∗
ξ ′ξ ′′ (τ )dξ (τ )〈1occ|c†ξ ′′h(τ )cξh(τ )|1occ〉 〈0unocc|cξ ′ p(τ )c†ξp(τ )|0unocc〉,
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〈1occ|c†ξ ′′h(τ )cξh(τ )|1occ〉 =
∑

i j

χh
ξ jχ

h∗
ξ ′′i 〈1occ|c†i c j |1occ〉e−iωi j τ =

∑
i j

χh
ξ jχ

h∗
ξ ′′iδi j e

−iωi j τ =
∑

i

χh
ξ iχ

h∗
ξ ′′i = δξ ′′ξ , (A22)

〈0unocc|cξ ′ p(τ )c†ξp(τ )|0unocc〉 =
∑
ab

χ
p∗
ξ ′aχ

p
ξb〈0unocc|cac†b|0unocc〉e−iωbaτ =

∑
ab

χ
p∗
ξ ′aχ

p
ξbδabe−iωbaτ =

∑
a

χ
p∗
ξ ′aχ

p
ξa = δξ ′ξ ,

(A23)

where the orthonormality of the natural orbitals (unitary Xp,h)
has been used. The final expression for the signal is

S(τ ) = 2Re
∑
ξξ ′ξ ′′

wξ ′ξ ′′ (τ )dξ (τ )δξ ′′ξ δξ ′ξ = 2Re
∑

ξ

wξ (τ )dξ (τ ),

wξ (τ ) =
∑

ai

χh
ξ i W

∗
iae−ωai τ χ

p
aξ , (A24)

dξ (τ ) =
∑

ai

χ
p∗

aξ Daiχ
h∗
ξ i e−�ai τ .

Only the diagonal part of the transformed window operator in
the doorway natural orbital representation contributes to the
SXRS signal.

APPENDIX B: THE DOORWAY AND THE WINDOW
WAVE PACKETS FOR GAUSSIAN PULSES

The integral describing how the pump-probe pulse shapes
weight material transition frequencies is a convolution of
the field over the response function. It is a sum over |e〉 of
terms

∫ ∞

−∞

d ω

2π

E∗
j (ω)E j (ω − ω f g)

ω − ω f g − ωe − γei
. (B1)

We assume a Gaussian electric field profile,

E j (t) = e−t2σ 2
j /2(eiω j t + e−iω j t ), (B2)

whose Fourier transform is a sum of two Gaussians (μ mean;
σ std. dev.),

G(ω; μ, σ ) = 1

σ
√

2π
e−(ω−μ)2/2σ 2

, (B3)

centered on the positive and negative central frequencies of

the pulse,

E j (ω) = 1√
2π · σ j

[e−(ω−ω j )2/2σ 2
j + e−(ω+ω j )2/2σ 2

j ]

= G(ω; ω j , σ j ) + G(ω; −ω j , σ j ). (B4)

Since the product of two Gaussian functions is itself a Gaus-
sian function multiplied by a scaling factor,

G(ω; μ1, σ1)G(ω; μ2, σ2)

= 1√
2π

1√
σ 2

1 σ 2
2

exp

[
−(μ1−μ2)2

2
(
σ 2

1 +σ 2
2

)
]

× G

⎛
⎝ω;

μ1σ
2
2 + μ2σ

2
1

σ 2
1 + σ 2

2

,
σ1σ2√
σ 2

1 + σ 2
2

⎞
⎠. (B5)

The integral in Eq. (B1) can be broken down into a sum over
integrals of the following form:∫ ∞

−∞
d ω

G(ω; μ, σ )

ω − z
= −1

σ

√
π

2
�(z/σ

√
2), (B6)

where z ∈ C; Im(z) > 0. These are calculated using the pro-
gram MATHEMATICA. The lineshape function �(z) is

�(z) = e−z2

(
Erf(i z)

i
− i

)
. (B7)

Expanding the electric field product from Eq. (B1) in
terms of Gaussian functions

E∗
j (ω)E j (ω − ω f g) = G(ω; ω j , σ j )G(ω; ω j + ω f g, σ j ) + G(ω; −ω j , σ j )G(ω; ω j + ω f g, σ j )

+ G(ω; ω j , σ j )G(ω; ω f g − ω j , σ j ) + G(ω; −ω j , σ j )G(ω; ω f g − ω j , σ j ), (B8)

and using the Gaussian product expansion in Eq. (B5)

E∗
j (ω)E j (ω − ω f g) = 1

σ j

√
2π

×
{

exp

[−ω2
f g

4σ 2
j

]
G

(
ω; ω j + ω f g

2
,

σ j√
2

)
+ exp

[
−(2ω j + ω f g)2

4σ 2
j

]
G

(
ω;

ω f g

2
,

σ j√
2

)

+ exp

[
−(2ω j − ω f g)2

4σ 2
j

]
G

(
ω;

ω f g

2
,

σ j√
2

)
+ exp

[−ω2
f g

4σ 2
j

]
G

(
ω;

ω f g

2
− ω j ,

σ j√
2

)}
, (B9)
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the integral given in Eq. (B6) can be applied to each term in Eq. (B9)

∫ ∞

−∞

d ω

2π

E∗
j (ω)E j (ω − ω f g)

ω − ω f g − ωe − γei
=
(

−1

σ 2
j

√
2

)
×
{

exp

[−ω2
f g

4σ 2
j

]
�

[(
ωe + ω f g

2
− ω j + iγe

)/
σ j

]

+ exp

[
−(2ω j + ω f g)2

4σ 2
j

]
· �

[(
ωe + ω f g

2
− ω j + iγe

)/
σ j

]

(B10)

+ exp

[
−(2ω j − ω f g)2

4σ 2
j

]
· �

[(
ωe + ω f g

2
− ω j + iγe

)/
σ j

]

+ exp

[−ω2
f g

4σ 2
j

]
· �

[(
ωe + ω f g

2
− ω j + iγe

)/
σ j

]}
.

The second and third terms in Eq. (B10) will be negligibly
small if ω j (∼ 2473eV) � 1/σ j (10 eV), leaving

∫ ∞

−∞

d ω

2π

E∗
j (ω)E j (ω − ω f g)

ω − ω f g − ωe − iγe
=I j

[
ω f g, ωe + ω f g

2
+ iγe

]
(B11)

with the function

I j

[
ω f g, ωe + ω f g

2
+ iγe

]

= −√
2

σ 2
j

× exp

[−ω2
f g

4σ 2
j

]

·�
[(

ωe + ω f g

2
− ω j + iγe

)/
σ j

]
.

Equation (B12) is the analytic form of the electric field
weighting function described in Ref. 12 for Gaussian pulses.

The final result is that for an x-ray experiment, the
weighting of the transition is given by the product of a Gaus-
sian and a lineshape function �(z). The real and imaginary
parts of �(z) are plotted in Fig. 10. For excited states with
a lifetime one tenth of the spectral bandwidth of the pulse,
the function 1/(z + i) is a good approximation to �(z) (see
Fig. 10, bottom). Inserting this approximation into Eq. (B12)∑

e

μ f eμegI j

[
ω f g, ωe + ω f g

2
+ iγe

]

∼
∑

e

μ f eμeg

√
2

σ j
exp

[−ω2
f g

4σ 2
j

]

ω j − ωe − ω f g

2
− (γe + σ j )i

,

a Kramers–Heisenberg expression with each dipole moment
multiplied by a factor representing the spectral strength of the
pulse at the average energy absorbed in both interactions with
the field,

μ f e,eg → μ f e,eg exp

[
−(ω f g/2)2

2σ 2
j

]
(B12)

and the lifetime of the excited state including the spectral
bandwidth of the pulse

γe → γe + σ j . (B13)

We will denote this approximation, which is useful when the
detuning is small compared to the core-hole width the mu-
tually independent decay approximation. The uncertainty in
the excited state lifetime has a contribution from the core-
hole lifetime (τe ∼ 1/γe), and the temporal width of the pulse
(τ j ∼ 1/σ j ), if the lifetimes due to these two processes are
treated as mutually independent exponential distributions,
their joint probability is the product

e−τ/τe e−τ/τ j ∝ eτ/[(τeτ j )/(τe+σ j )] (B14)

which is equivalent to the modification of the excited state
lifetime given in Eq. (B13).

APPENDIX C: THE HARTREE–FOCK
STATIC-EXCHANGE APPROXIMATION
FOR THE CORE-EXCITED STATES

Previously, we have simulated the nonlinear x-ray spec-
tra by calculating the many-electron states of the equivalent-
core molecules with N , N + 1, and N + 2 electrons in the
presence of zero, one, and two core-holes, respectively, at
the ECA level.12 The valence and core-excited states were
approximated as singly and doubly substituted Slater de-
terminants with Hartree–Fock orbitals (or Kohn–Sham or-
bitals in density functional theory). The core transitions were
described by the valence transitions of the equivalent-core
molecules, where the effect of the created core-hole on the
valence electrons is reduced to that of a static Coulomb po-
tential of a positive charge, i.e., the nuclear number is in-
creased by 1. The lowest core-excited state was described by
the ground state of the N + 1 valence electrons (the additional
electron accounts for the promoted core electron) in the field
of the core-hole. The high-lying core-excited state manifold is
then described by the excitations among the N + 1 electrons
within the valence orbital space.
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According to Koopmans’ theorem,49 the first ionization
energy of a molecule is given to a good approximation by the
negative of the orbital energy of the highest occupied molec-
ular orbital. This relation is exact when all orbitals are frozen,
i.e., do not change upon electronic excitation and provides a
qualitatively correct description for low-lying excited states
(even though electron correlation effects are neglected). For
high-lying excited states such as those involving core elec-
tronic excitations, an improved description of orbital relax-
ation effects is crucial. The ECA uses the weak electron cor-
relation due to the large separation in energy between the core
orbital space and valence orbital space, and represents the
core-hole simply as a positive charge. This can only be used
for K-edge electronic excitations where a deep core (i.e., 1s)
electron is promoted.

STEX is a higher-level single-particle approximation,
which offers an improved description of orbital relaxation,
not limited to deep core electronic excitations, and allows
to study various core-hole configurations including shallow
holes. STEX is justified by the large energy separation be-
tween the core and valence orbital spaces. The deeper core
orbitals are usually well localized, and correlations involving
such orbitals are weak. Electron correlation effects become
increasingly important for shallower holes.

Below we briefly summarize the HF–STEX approxima-
tion, and outline the procedure used for calculating the core-
excited states, as well as the transition frequencies and tran-
sition dipole moments between valence-excited states with
no core-hole and core-excited states with one localized core-
hole. STEX involves the following steps:20

� Compute the ground state orbitals of the neutral
molecule at the HF level.

� Use �SCF (Refs. 46 and 50) to generate the relaxed
orbitals of the ion where a selected core electron is re-
moved from the neutral molecule.

� Construct the STEX Hamiltonian based on the relaxed
orbitals obtained from the �SCF calculation and trans-
form it by projecting out the occupied orbitals of the
target ionic state obtained from the �SCF calculation.

� Generate the virtual orbitals of the core-excited state
by diagonalizing the projected STEX Hamiltonian.

The core-excited state for molecules with a closed-shell
ground state is constructed using the occupied orbitals of
target ionic state obtained from the �SCF calculation and the
virtual orbitals obtained by diagonalizing the projected STEX
Hamiltonian,

∣∣	N
j,ε

〉 = 1√
2

(
a†

εα

∣∣	N−1
jα

〉+ a†
εβ

∣∣	N−1
jβ

〉)
(C1a)

with∣∣	N−1
jα

〉 = a jα

∣∣	N
ref

〉
,
∣∣	N−1

jβ

〉 = a jβ

∣∣	N
ref

〉
, (C1b)

where the reference state |	N
ref〉 is the closed-shell Hartree–

Fock ground state of the neutral molecule and |	N−1
j 〉 is the

target ionic state with an electron removed from core orbital
ϕ j . a jα (a jβ ) annihilates an alpha (beta) electron in core orbital

ϕ j and a†
εα

(a†
εβ

) creates an alpha (beta) electron in virtual or-
bital ϕε .

The total core-excited state energy expressed in the
molecular orbital basis is

E =
occ∑

i �= j,ε

(
hii +F�SCF

i i

)+F�SCF
j j +F�SCF

εε +〈 j j |εε〉 + 〈 jε|ε j〉,

(C2)

where F�SCF is the Fock operator of the target ionic state for
the �SCF calculation.

F�SCF = h +
occ∑

i �= j,ε

(2Ji − Ki ), (C3)

where h is the one-electron operator, describing the kinetic
energy and nuclear attraction of an electron. Ji and Ki are the
closed-shell Coulomb and exchange operators. For a chosen
electron 1, the one-electron operator is

h (1) = −1

2
∇2

1 −
∑

A

Z A

r1A
, (C4)

the Coulomb operator is

Ji (1) =
∫

dr2ψ
∗
i (2) r−1

12 ψi (2), (C5)

and the exchange operator is

Ki (1) ψa (1) =
[∫

dr2ψ
∗
i (2) r−1

12 ψa(2)

]
ψi (1). (C6)

The virtual orbital ϕε is calculated variationally by the
functional derivative of the energy with respect to this or-
bital, which then gives rise to the corresponding Fock oper-
ator, known as the static-exchange Hamiltonian,

FSTEX = h +
occ∑

i �= j,ε

(2Ji − Ki ) + Jj + K j . (C7)

The eigenvalues εε of Eq. (C7) are solved by projecting
the static-exchange Hamiltonian on a basis set orthogonalized
to the occupied orbitals of the target ionic state obtained from
the �SCF calculation. The transition frequencies are then
given by E N

j,ε = E N−1
j + εε − E N

0 = I Pj + εε , where E N−1
j

is the energy of the target ionic state upon electron ionization
from the j th molecular orbital, E N

0 is energy of the neutral
molecule, and I Pj = E N−1

j − E N
0 is the ionization potential

upon electron ionization from the j th molecular orbital.
The transition dipole moments are given by μ f g′

= 〈 f |μ̂(r)|g′〉, where g′ and f are the valence-excited states
with all core orbitals doubly occupied, and the core-excited
states of the molecule with a core-hole, respectively. μ̂(r) is
the dipole operator. Two sets of orbitals are separately opti-
mized for each state. The orbitals are orthogonal within each
set, but the two sets of orbitals are nonorthogonal to each
other. To calculate the transition dipole moments between the
two states, we must compute the cofactors (electronic Franck–
Condon overlaps) as described in Ref. 51.

In summary, both ECA and STEX generate relaxed or-
bitals for core electronic excitations. STEX uses �SCF to
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obtain the relaxed orbitals for the corresponding ion by re-
moving the core electron from the neutral molecule. The
ECA uses a different nuclear charge (i.e., increase the nu-
clear number by 1) for the atom where the core-hole is lo-
calized, and consequently requires to add one electron to the
valence orbital space. An obvious limitation of the ECA is the
inherently incorrect spin symmetry. Efforts had been made
to overcome this problem in the conventional equivalent-core
approximation.14 Another drawback is its inability to describe
shallow core electronic excitations, for which the effects of
core-hole cannot be simply replaced by a static Coulomb po-
tential. STEX overcomes these limitations and can be easily
implemented to shallow holes by keeping track of which or-
bital the electron is removed from the neutral molecule, pro-
viding a straightforward way to study hole-migration effects
for shallow holes.52–56

APPENDIX D: ECA VERSUS STEX

We define a coordinate frame with the origin on the reso-
nant core-atom. (Rn ≡ 0) Vectors r and r′ have lengths r and
r ′, respectively. In the STEX approximation, the valence-core
interaction is written as an effective one-particle field,

vc(r) = −
∫ |φc(r′)|2

|r − r′| d r′. (D1)

Inserting a radially symmetric exponentially decaying func-
tion for the tightly bound 1s orbital,

φc(r) =
√

α3

π
e−αr (D2)

we get the following expression for the potential:

vc(r) =
e−2αr

(
1 + αr

r

)
− 1

r
. (D3)

This potential can be divided into two terms. vECA(r) = −1/r
is the field generated by a point charge centered on the atom.
The effect of the core-potential will depend on the shape
of the valence orbitals and is included in the term v�(r)
= e−2αr (1 − αr )/r (see Fig. 11). The spatial extent of the
core-orbital reduces the potential near the core

lim
r→0+

vc(r) = −α �= lim
r→0+

vECA(r) = −∞. (D4)

The valence orbitals will be renormalized with respect to this
“softened” potential vc(r). Non-ECA terms will be large when
the matrix element

〈φp|v�(r)|φq〉 =
∫

φ∗
p(r)

e−2αr (1 − αr )

r
φq (r)d r (D5)

is large. Expanding φp,q (r) in a Taylor series around r
= Rn = 0

φ∗
p(r) = φ∗

p(0) + r · ∇φ∗
p(0) + O(2),

(D6)
φq (r) = φq (0) + r · ∇φq (0) + O(2).

and inserting into Eq. (D5), we get

〈φp|v�(r)|φq〉 = 2π

α3
φ∗

p(0)φq (0)+ 3π

2α4
∇φ∗

p(0)∇φq (0). (D7)

If we treat the core-hole perturbation on the valence electrons
as a rank-one perturbation, and neglect off-diagonal matrix
elements in Eq. (D7), we see that the non-ECA contribution
to the valence orbital energy shifts will be greatest for orbitals
with a high amplitude or gradient in the neighborhood of the
core-hole.
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