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Ultrafast double-quantum-coherence spectroscopy of excitons with entangled photons
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We calculate the four-wave-mixing signal of excitons generated at k4 = k1 + k2 − k3 by two pulsed entangled
photon pairs (k1, k2) and (k3, k4), where all four modes are chronologically ordered. Entangled photons offer an
unusual combination of bandwidths and temporal resolution not possible by classical beams. Contributions from
different resonances can be selected by varying the parameters of the photon wave function. The signal scales
linearly rather than quadratically with the laser field intensity, which allows performance of the measurements at
low powers.
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I. INTRODUCTION

Since the introduction of entangled photon sources [1,2],
they have become an important tool in imaging and fabrication
of masks for semiconductors, where higher spatial resolutions
using multiphoton absorption can be achieved at lower laser
intensities [3,4]. The properties of entangled light sources
of different types have been extensively studied. There are
different types of entanglement [5–10]: two photons can
be entangled by their polarization or by their correlations
between different modes (often denoted frequency or temporal
entanglement). Most effort so far has focused on the properties
of the light [5,7,11–14]. In [4] and [15–17] entangled photons
were used for spectroscopy and showed to reveal more
information about the system than with similar setups which
use classical beams.

An important aspect is the scaling of the signal with light
intensities; classical χ (3) signals scale quadratically with the
intensity and, therefore, require a high intensity to be visible
against lower order linear-scaling processes. χ (3) signals with
entangled photons scale linearly with the intensity [18,19].
These allow the use of low power for microscopy [3] and
lithography [20] applications.

Time-domain two-dimensional (2D) spectroscopic tech-
niques [21] provide a versatile tool for exploring the properties
of excitonic systems such as photosynthetic aggregates [22,23]
or coupled (hybrid) nanostructures to semiconductor quantum
wells [24–27]. These techniques use short coherent pulses in
comparison to the dephasing times of the system.

The wave function of entangled photons offers additional
control parameters to the optical signals compared with
classical fields. Two-photon absorption and its variation with
the entanglement time were analyzed theoretically [28] and
experimentally [4]. Additionally, it was theoretically shown
that spectroscopic methods using entangled photons can show
a high resolution along certain frequency axes [15,17], despite
the broad frequency band caused by the intrinsic time ordering
and time correlation of the entangled light source. These hybrid
characteristics of frequency- and time-domain techniques
are not possible with classical beams. Here we consider
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resonant pulsed measurements. An off-resonant configuration
was theoretically studied in [17].

In this paper we focus on the double-quantum-coherence
technique [29–32], which makes the energies of single and
biexciton energies accessible and reveals the correlations
between single and biexcitonic states. We show how pulsed
entangled photons affect the two-photon resonances. Some
bandwidth limitations of classical beams are removed and
selectivity of quantum pathways is possible.

The paper is structured as follows: First, we introduce the
model Hamiltonian for the excitonic system, then we present
the general formula for two-photon absorption signals using
closed time-loop diagrams. Then the pulse configuration used
for the entangled photon coherence is introduced and the signal
is calculated. Finally, the signal and possible ways of tuning
the double-quantum-coherence spectra are discussed.

II. THE EXCITON MODEL

We consider a system described by the Frenkel exciton
Hamiltonian:

H = H0 + H ′, (1)

H0 = h̄
∑

i

εiB
†
i Bi + h̄

∑
i �=j

JijB
†
i Bj + h̄

∑
i

�i

2
B

†
i B

†
i BiBi,

(2)
H ′ = Ê(t,r)V † + Ê†(t,r)V, (3)

V =
∑

i

V
†
i B

†
i , (4)

E = 1√
2

∑
kj

eω(kj )a
†
j (kj )e−ıωt ,

eω = (h̄ω/ε0VQ)1/2. (5)

H0 is the excitonic part and H ′ is the dipole interaction
with the optical field in the rotating wave approximation. Bi

is a bosonic excitonic operator at site i; this could be, for
example, a pigment or a quantum dot, as in [33]. a

†
j and

aj are photon creation and annihilation operators, Ê is the
electric field operator, and VQ is the quantization volume. To
describe two-level sites which cannot be doubly excited, we
set �i → ∞.
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FIG. 1. (a) Level scheme of the excitonic model system made of
three coupled two-level systems. (b) Absorption spectrum. The model
parameters are ε1 = 1.518 eV, ε2 = 1.530 eV, and ε3 = 1.526 eV,
J12 = 10 meV, J13 = 2 meV, and J23 = 3 meV, and V1 = V2 = V3.

The eigenstates of Eq. (2) form separated exciton bands.
For our applications we need the lowest three: the ground state
g, single-exciton states e, and double-exciton states f . The
diagonalized Hamiltonian then assumes the form

H0 = Eg|g〉〈g| +
∑

e

Ee|e〉〈e| +
∑
f

Ef |f 〉〈f |, (6)

V † =
∑

e

V ∗
ge|e〉〈g| +

∑
ef

V ∗
ef |f 〉〈e|. (7)

The level scheme of the model of three coupled two-level
systems used in our simulations together with a absorption
spectrum is depicted in Fig. 1.

FIG. 2. Pulse configuration for the double-quantum-coherence
signal.

III. THE DOUBLE-QUANTUM-COHERENCE SIGNAL

We assume four beams of two entangled photon pairs
(k1,k2) and (k3,k4) with k4 = k1 + k2 − k3 (Fig. 2). The
signal is defined as the change in the transmitted intensity
in mode k4:

S =
∫

d

dt
〈Ê†

4(t)Ê4(t)〉 dt. (8)

The two entangled photon pairs are temporally well separated
and (k1,k2) comes before (k3,k4). In addition, the two photons
in each pair are time ordered; k1 comes before k2, and
k3 before k4. We thus have a similar configuration to an
impulsive experiment with four short, well-separated classical
fields, we have a delay τ12 between the photons in the
entangled pair k1 and k2 (τ34 for k3 and k4) and a delay
T12/2 + τd + T34/2 between the two photon pairs. The two
entanglement times need to be included in this delay time
to guarantee that k1 and k2 come before k3 and k4 for
all τd > 0.

The two contributions to the signal are depicted as closed
time-loop diagrams in Fig. 3. The signal is given by

S(�) = − 1

h̄3 Re
∫ ∞

0
ds1

∫ ∞

0
ds2

∫ ∞

0
ds3

∫ ∞

0
ds4[−〈�|Ê†

3(s1 + s2 + s3 − s4)Ê†
4(s1 + s2 + s3)Ê2(s1 + s2)Ê1(s1)|�〉

×〈V †(s1 + s2 + s3 − s4)V †(s1 + s2 + s3)V (s1 + s2)V (s1)〉
+ 〈�|Ê†

4(s1 + s2 + s3 + s4)Ê†
3(s1 + s2 + s3)Ê2(s1 + s2)Ê1(s1)|�〉

×〈V †(s1 + s2 + s3 + s4)V †(s1 + s2 + s3)V (s1 + s2)V (s1)〉]. (9)

It may be depicted by its variation with various parameters
of the field wave function. These are denoted collectively as
�. Various choices of � lead to different types of 2D signals.
These are specified in the following sections [see Eqs. (25)
and (26)].

Before inserting Eq. (19) into Eq. (9), we change the
integration variables to τ1 = s2, t2 = s1 + s2, τ3 = s4, and
t = s1 + s2 + s3 for (i) or t = s1 + s2 + s3 + s4 for (ii) (see
Fig. 3). This transforms the times along the loop in Fig. 3 to
real times in the pulse configuration (Fig. 2). Here s and t are
interaction times of the second photon in the first or the second
pair, respectively; τ1 and τ3 are the time differences between
the interaction of the first and that of the second photon in the

FIG. 3. Pathways contributing to the double-quantum-coherence
signal at k4 = k1 + k2 − k3 (for diagram rules, see [34] and [35]). si

are the time intervals along the loop, whereas t , t2, t − τ3, and t2 − τ1

are real physical time variables.
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first or second pair, respectively. The photon configuration is
depicted in Fig. 2. τ12, τ34, and T are positive. Making use of
the factorization |�〉 = |�12〉|�34〉, we get

S(�) = Si(�) + Sii(�), (10)

Si(�) = 1

h̄3 Re
∫ ∞

−∞
dt

∫ ∞

0
dτ3

∫ ∞

−∞
dt2

∫ ∞

0
dτ1

×
∑
ee′f

Ve′f Vge′V ∗
ef V ∗

gee
−ıξf e′ τ3−ıξfg (t−τ3−t2)−ıξegτ1

×〈�12|Ê1(t2 − τ1)Ê2(t2)|�12〉
× 〈�34|Ê†

3(t − τ3)Ê†
4(t)|�34〉, (11)

Sii(�) = − 1

h̄3 Re
∫ ∞

−∞
dt

∫ ∞

0
dτ3

∫ ∞

−∞
dt2

∫ ∞

0
dτ1

×
∑
ee′f

Vge′Ve′f V ∗
ef V ∗

gee
−ıξe′gτ3−ıξfg (t−τ3−t2)−ıξegτ1

×〈�12|Ê1(t2 − τ1)Ê2(t2)|�12〉
× 〈�34|Ê†

3(t − τ3)Ê†
4(t)|�34〉. (12)

We have introduced the complex frequency variables ξij =
ωij + ıγij , where ωij = εi − εj are the transition frequencies
and γij are the dephasing rates. In our calculations we set
γij = γ = 1 meV.

IV. THE FIELD CORRELATION FUNCTION
FOR ENTANGLED PHOTON PAIRS

We assume the following wave function for the entangled
photon pair i and j [5]:

|�(τ )〉 = |0〉 +
∑
ki ,kj

f (ki ,kj )a†
i (ki)a

†
j (kj )|0〉 (13)

where |0〉 is the vacuum state of the radiation field. The
photons generated by a pump pulse are emitted in two
different directions and polarizations in type II parametric
downconversion, where one photon is generated in H and
one in V polarization. Furthermore, we assume an entangled
photon pair generated with a phase-matching condition as
described in Ref. [5]. Then f (ki ,kj ) has the form

f (ki ,kj ) = gû((ω(kj ) − ω(ki))/2)e−ı[ω(ki )+ω(kj )]τ̂ij

× e−ı[ω(kj )]τij EP (ω(ki) + ω(kj ) − �P ), (14)

û(ω) = eıTij ω/2sinc(Tijω/2), (15)

where EP (· · ·) is the envelope, and �p the central frequency
of the pump pulse used to generate the pairs.

The entanglement times Tij characterize the temporal
correlation of the entangled photons. They are determined by
the generating crystal length. The correlation functions of the
entangled fields read [5]

〈�|Ê1(t1)Ê2(t2)|�〉 = V 12
0 e−i

�p

2 (t1+t2−τ12)u12(t2 − t1 − τ12)

×Ep

(
t1 + t2 − τ12

2

)
, (16)

〈�|Ê†
3(t3)Ê†

4(t4)|�〉=V 34
0 e−i

�p

2 (t3+t4−τ34−2�t34)u34(t4−t3−τ34)

×E∗
p

(
t3 + t4 − τ34

2
− �t34

)
, (17)

�t34 = τ12 + T12/2 + τd + T34/2, (18)

uij (t) =
{ 1

Tij
, 0 < t < Tij ,

0, otherwise,

Ep(t) = exp[−t2/(2σ 2)]. (19)

Ep(t) is the temporal envelope function of the pump pulse
which generates the entangled photon pair. The correlation
function Eq. (16) is depicted in Fig. 4(a); it is finite only above
the diagonal line at t2 = t1 + τ , reflecting the time ordering
between k1 and k2 and between k3 and k4. The product
E1(t1)E2(t2) for the classical field is shown for comparison
in Fig. 4(b). A variation in the delay time τ12 will shift
the entire correlation function of photons k1 and k2 along
the τ12 axis. The correlation function is determined along the
diagonal axis by the envelope Ep and on the perpendicular
axis by u12. In the frequency domain [Fig. 4(c)], temporal
entanglement is shown by the diagonal shape of the correlation
function.

V. SIMULATED TWO-DIMENSIONAL SIGNALS

By inserting Eq. (19) into Eq. (9) and carrying out all
integrations, assuming that γ σ 	 1, we arrive at the final
expression for the two contributions to the signal:

Si(�) = 1

h̄3 Re
∑
ee′f

Ve′f Vge′V ∗
ef V ∗

geV
12

0 V 34
0 |Ep(ωfg − �p)|2

× e−ıξegτ12e−ıξf e′ τ34e−ıξfgτd

× [eı(ωfg/2−ξeg )T12 − 1]e−ıξfgT12/2

ı(ωfg/2 − ξeg)T12

× [eı(ωfg/2−ξf e′ )T34 − 1]e−ıξfgT34/2

ı(ωfg/2 − ξf e′ )T34
, (20)

Sii(�) = 1

h̄3 Re
∑
ee′f

Vge′Ve′f V ∗
ef V ∗

geV
12

0 V 34
0 |Ep(ωfg − �p)|2

× e−ıξegτ12e−ıξe′gτ34e−ıξfgτd

× [eı(ωfg/2−ξeg ]T12 − 1]e−ıξfgT12/2

ı(ωfg/2 − ξeg)T12

× [eı(ωfg/2−ξe′g ]T34 − 1]e−ıξfgT34/2

ı(ωfg/2 − ξe′g)T34
, (21)

|Ep(ω)|2 = exp(−σ 2ω2/2). (22)

The parameter � now includes the delay times τ12, τ34, and τd

and the entanglement times T12 and T34.
For comparison, we present the same signal obtained with

four impulsive classical pulses with envelopes Ej (ω), j =
1, . . . , 4 and carrier frequency �0

p [33]:

S
(3)
i = 1

h̄3 Re
∑
ee′f

Ve′f Vge′V ∗
ef V ∗

geE
4∗(ωf e′ − �0

p

)

×E3∗(ωe′g − �0
p

)
E2(ωf e − �0

p

)
E1(ωeg − �0

p

)
× e−ıξegτ12e−ıξf e′ τ34e−ıξfgτd , (23)
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FIG. 4. (a) Entangled photon correlation function 〈E1(t1)E(t2)〉 for a pulsed entangled photon pair, Eq. (19) (τ12 = 0, T12 = 40 fs, σ =
20 fs). (b) Analog plot for two classical impulsive pulses. (c) Fourier transform of (a).

S
(3)
ii = 1

h̄3 Re
∑
ee′f

Vge′Ve′f V ∗
ef V ∗

geE
4∗(ωe′g − �0

p

)

×E3∗(ωf e′ − �0
p

)
E2

(
ωf e − �0

p

)
E1

(
ωeg − �0

p

)
× e−ıξegτ12e−ıξe′gτ34e−ıξfgτd . (24)

With Eqs. (20) and (21), we can compare the entangled and
classical double-quantum-coherence signals. We first note that
Eq. (20) scales linearly with the pump intensity, in contrast to
quadratic scaling for the classical case, Eq. (23). In the classical
case the signal is limited by the bandwidths of the four pulses
[cf. Eqs. (23) and (24)], which control the four transitions
(ωeg , ωf e, ωe′g , ωf e′ ) in the two photon transitions inside
the pulse bandwidth [33]. In Eq. (20) bandwidth limitations
of the envelopes are only imposed through the bandwidth of
entangled photon pair Ep(·), and the limitation is only imposed
on the two-photon transition ωfg , leading to a much broader
bandwidth for the ωeg and ωf e transitions, provided the ωfg

transition is within the generating pump-pulse bandwidth.
We illustrate this effect in Fig. 5 for the following

2D signal:

S(�12,�34) =
∫ ∞

0
dτ12

∫ ∞

0
dτ34S(τ12,τ34)e−ıτ12�12−ıτ34�34 ,

(25)
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FIG. 5. Two-dimensional signal, Eq. (25) (absolute value), show-
ing correlation plots for T12 = T34 = 20 fs, �P = 3.0621 eV, with
different pump durations σ as indicated. The bottom plot is multiplied
by a factor of 6.
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ωeg resonances are seen along �12, and ωeg and ωf e along
the �34 axis. As the bandwidth is reduced in Fig. 5(b), we
only get contributions from the biexciton resonant with the
generating pump. This results in four identical patterns along
the �12 axis. All peaks are connected to the same biexciton
states. More precisely we get four contributions along the �12

axis connected to the transitions ωf3e1 , ωf3e2 , overlapping with
ωe3g , ωe2g , overlapping with ωf3e3 and ωe1g . The remaining
transitions are not affected by the reduced pump bandwidth.
Here the pump-pulse narrow bandwidth can be used to select
contributions in the spectra connected to a specific biexciton
state.

In Fig. 6 we display a different signal:

S(�12,�d ) =
∫ ∞

0
dτ12

∫ ∞

0
dτdS(τ12,τd )e−ıτ12�12−ıτd�d . (26)

This shows ωeg resonances along �12, and ωfg on �d . It is
similar to Fig. 5 except that here we see the single excitonic
contributions ωe1g , ωe2g , and ωe3g to the selected biexciton f3

along one row.
Bandwidth limitations on the single excitonic transitions

ωeg and ωf e are only imposed indirectly by the factors in
Eqs. (20) and (21) which depend on the entanglement times
T12 and T34. These become largest for ωfg = 2ωf e.

The factors in Eqs. (20) and (21) which depend on the
entanglement times Tij contain an interference term of the
form [eı(ω−γ )Tij − 1], where ω is a material frequency. (This
effect was described for two-photon absorption in Ref. [28].)
Some resonances will interfere destructively at certain values
of the entanglement time which matches the period of ω.
We can therefore use the entanglement times to control these
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FIG. 6. Two-dimensional signal, Eq. (26) (absolute value), show-
ing correlation plots for T12 = T34 = 20 fs, �P = 3.0621 eV, with
different pump durations σ . The bottom plot is multiplied by a factor
of 100.
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FIG. 7. Two-dimensional signal, Eq. (25) (absolute value), show-
ing correlation plots for T34 = 20 fs, �P = 3.11 eV, σ = 1/(20 fs),
and different values of T12 as indicated. Plots are multiplied by a
factor of 1 (top), 3.5 (middle), and 6.0 (bottom).

resonances. Since the frequencies ω do not match the
resonances on the plotted axis, two spectrally close features can
be separated by using shots at different entanglement times.
This holds only as long the entanglement times are shorter than
the dephasing time, since otherwise the signal will be very
weak. The frequencies ω can be ωfg/2 − ωeg or ωfg/2 − ωf e

(which differs from the first frequency only by a sign) for
different combinations of the states e, e′, and f . By varying
T12, we expect an oscillation of the magnitudes of resonances
with different frequencies. This is exactly what we see in Fig. 7.
We focus on resonances A and B. At T12 = 20 fs, peak A is
much stronger than peak B, however, as T12 increases the peak
height of A is much more similar to that of B at T12 = 200 fs,
while at T12 = 300 fs B is finally stronger than A. (Note that all
plots are normalized to the strongest resonance.) The reason
for this is that both peaks undergo a sinclike oscillation with
a different frequency, it gives us additional control over the
spectrum. This can also be true for two partially overlapping
resonances in some cases, and the entanglement time provides
a tool for dissecting them. The same effect is seen for other
resonances, which clearly show that the oscillation frequency
is characteristic for each peak. We can analyze the peak
oscillations in more detail: Peak A is connected to ωe1g on
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FIG. 8. Two-dimensional signal, Eq. (26) (absolute value), show-
ing correlation plots for T34 = 20 fs, �P = 3.11 eV, σ = 20 fs, and
T12 values as indicated. Plots are multiplied by a factor of (from top
to bottom) 1, 1.3, 2, and 3.0.

the �12 axis and ωe1g on the other axis; thus in fact all three
excitonic states contribute, and the oscillation of this peak
should be a superposition of these three contributions at three
different oscillation frequencies (ωfig/2 − ωe1g). B consists
of two peaks with ωe2g on the �12 axis and ωf1e2 or ωe1g on
the �34 axis.1 The part connected with ωe1g on �34 is similar
to A connected to all three biexciton states and has parts
oscillating at three frequencies ωfig/2 − ωe2g; the part with
ωe1g on �34 will oscillate only with ωf1g/2 − ωe2g . Note that
the e state in the oscillation frequency is determined by the
�1 axis if we vary T12; if we vary T34 instead, it is determined
by the states assigned to the transitions on the �34 axis.

For the 2D signals in Fig. 8, resonance A can be assigned
to ωe1g on the �12 axis and ωf 3g on the �d axis, whereas
resonance B is connected to ωe2g and ωf 3g . A has a strength
similar to that of B at T12 = 20 fs; at T12 = 200 fs, A is
much weaker than B, but A increases again at T12 = 300 fs.
A oscillates at a frequency of ωf3g/2 − ωe1g , and B at
ωf3g/2 − ωe2g . If T34 is varied instead of T12, the oscillation
frequency will only be connected to ωfig on the �d axis; each
peak will then be a superposition of oscillating contributions
connected to different values of ωeig . But a Fourier transform
over T34 at a given point like A will separate the different
contributions to this peak.

VI. CONCLUSION

Double-quantum-coherence 2D spectroscopy of excitons
with entangled photon pairs has been presented. Compared
to classical beams the technique offers improved intensity
scaling, relaxed laser bandwidth requirements, and additional
control parameters for the signal.
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1Actually there is a third contribution from ωf2e3 on the �34 axis,
but this has a smaller dipole moment.
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