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We study the effects of correlated molecular transition energy fluctuations in molecular aggregates
on the density matrix dynamics, and their signatures in the optical response. Correlated fluctua-
tions do not affect single-exciton dynamics and can be described as a nonlocal contribution to the
spectral broadening, which appears as a multiplicative factor in the time-domain response function.
Intraband coherences are damped only by uncorrelated transition energy fluctuations. The signal can
then be expressed as a spectral convolution of a local contribution of the uncorrelated fluctuations
and the nonlocal contribution of the correlated fluctuations. © 2011 American Institute of Physics.
[doi:10.1063/1.3579455]

I. INTRODUCTION

Molecular aggregates constitute the core building blocks
of the photosynthetic solar-to-electric energy conversion ap-
paratus, which is made of photon harvesting antennae and
chemical energy generators—the reaction centers.1–4 The ul-
trafast primary photon energy capture and its transport into
the energy conversion unit in the form of delocalized molec-
ular excitations must compete with nonradiative energy dis-
sipation processes. Photosynthetic exciton transport is very
efficient and spans tens or several hundreds of molecules.2, 5, 6

Understanding the underlying mechanisms of collective quan-
tum dynamics could help improve the efficiency of man-made
devices such as organic light-emitting diodes and solar cells.

Energy transport depends on the interplay of quantum dy-
namics of delocalized molecular excited states and the sur-
rounding protein units.7, 8 The environment-induced fluctua-
tions of molecular transition energies cause the irreversibility
and, thus, directionality of exciton thermalization, appearing
as energy transport. Adopting the density matrix represen-
tation, the fluctuations induce dephasing of the off-diagonal
matrix elements (coherences) and redistributions of the di-
agonal density matrix elements (populations).9 Multivariate
environment fluctuations at room temperature may be char-
acterized by a set of correlation functions of chromophore
transition energies.10 The fastest fluctuations, which may be
attributed to water molecules, induce decay of the correlation
functions on the tens of femtoseconds time scale. Slow protein
and their side chain motions may induce slow fluctuations. In
the static limit, such fluctuations appear as a static disorder.
Some charged protein groups may induce long-range corre-
lated site energy fluctuations.

The effects of fluctuation dynamics have drawn consid-
erable interest since they can be probed by two-dimensional
(2D) photon-echo (PE) spectroscopy experiments.11–14

Measurements of Engel,15 Fleming,16 Scholes,17 and Kauff-
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mann18 groups imply some long-living modes (up to 1 ps)
of density matrix coherences, which indicate weak exciton
intraband dephasing. Since spectral line width of exciton ab-
sorption peaks is of the order of 12–15 meV (90–120 cm−1),
the dephasing times, τ = γ −1, may be expected to be of the
order of 50–100 fs. This 1 order of magnitude discrepancy
points to some other mechanism, which maintains coherent
dynamics but does not show up in absorption.

Long-range correlated chromophore transition energy
fluctuations are one such possible mechanism as suggested by
Lee et al.19 Assuming that energy levels of all chromophores
fluctuate in-phase, the exciton wavefunctions are not affected
by this motion—the entire exciton band energy is modulated
together.

In this paper we include uncorrelated and correlated fluc-
tuations into our theory of exciton dynamics and we study
their signatures in two-dimensional optical spectroscopy
of photosynthetic complexes.14 Numerical simulations with
intermediate-type correlations are performed for Fenna–
Matthews–Olson (FMO) complex.20

II. FRENKEL EXCITON HAMILTONIAN FOR
ELECTRONIC EXCITATIONS

Collective excitation dynamics in chromophore ag-
gregates is commonly described by the Frenkel exciton
model.4, 9, 14, 21 Each chromophore is modeled as a two-level
system, whose transition frequency is large compared to the
exciton couplings so that only the optical field can change the
number of excitons. The chromophores are electrically neu-
tral and interact via the dipole–dipole Coulomb interactions.
The electronic charge densities of different chromophores do
not overlap so that electron exchange is negligible. In the
molecular basis set the Frenkel exciton Hamiltonian reads

ĤS =
∑

m

εm B̂†
m B̂m +

m �=n∑
m,n

Jmn B̂†
m B̂n, (1)
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where B̂†
m(B̂m) are excitation creation (annihilation) operators

for chromophore m. These excitations are hard-core bosons
with the Pauli commutation rules:

[B̂m, B̂†
n] = δmn(1 − 2B̂†

n B̂n).

The transition energies εm are affected by other molecules in
their ground states, whereas the intermolecular dipole–dipole
couplings are given by

Jmn = 1

4πεε0

(
μm · μn

|Rmn|3 − 3
(μm · Rmn)(μn · Rmn)

|Rmn|5
)

,

(2)
where μm is the molecular transition dipole between the ex-
cited state and the ground state of molecule m and Rmn is the
vector connecting molecular charge centers.

Three bands of states are relevant for the linear and third-
order nonlinear optical signals:22 |0〉 is the ground state of the
aggregate, B̂†

n|0〉 denotes the state where the nth molecule is
excited, and B̂†

m B̂†
n|0〉 is a state where a pair of molecules is

excited. A complete set of double-exciton states is obtained
by restricting pairs of excited chromophores to the triangle
m > n. An aggregate made of N chromophores has a sin-
gle ground state, N singly-excited states, and N (N − 1)/2
doubly-excited states. The exciton eigenstates are obtained
by diagonalizing the Schrödinger equation, which is block-
diagonal in this basis. The ground state is not affected by J .
The N single-excitons |e〉 are related to the molecular excita-
tions B̂†

m |0〉 by the unitary transformation matrix ψme, made
of eigenfunctions:

|e〉 =
N∑
m

ψme B̂†
m |0〉. (3)

The single-exciton energies (eigenvalues) εe form a diagonal
matrix obtained by transforming h(1) = Jnm + δmnεm :

ε(e) = ψ†h(1)ψ.

The double-exciton Hamiltonian block is h(2)
mn,kl = δmkh(1)

nl

+ δnlh
(1)
mk and m > n , k > l. The two-exciton eigenstates | f 〉

are then

| f 〉 =
m>n∑
m,n

	(mn), f B̂†
m B̂†

n|0〉, (4)

where 	 is a two-exciton matrix of eigenvectors. The matrix
of two-exciton energies is then given by

ε( f ) = 	†h(2)	. (5)

The molecular aggregate is coupled to a harmonic envi-
ronment characterized by a Hamiltonian

ĤB =
∑

α

wα

(
b̂†

α b̂α + 1

2

)
, (6)

where wα is the frequency of phonon mode α, and b̂†
α (b̂α) are

boson operators, [b̂α, b̂†
α′ ] = δαα′ . We assume that the molec-

ular transition energies are linearly coupled to the bath

ĤSB =
∑

α

∑
m

dα,m B̂†
m B̂m(b̂†

α + b̂α). (7)

All bath-induced properties are then determined by the fol-
lowing matrix of correlation functions at finite temperature
(kB T ≡ ¯β−1):

Cmn(t) =
∑

α

dα,mdα,nZ(β, wα, t), (8)

Z(β, ω, t) ≡ cos(ωt) coth

(
βω

2

)
− i sin(ωt), (9)

or temperature-independent spectral densities:10

C ′′
mn(ω) = π

∑
α

dα,mdα,n[δ(ω − wα) − δ(ω + wα)].

(10)
These are connected by

C ′′
mn(ω) = i

∫
eiωt I m[Cmn(t)]. (11)

C ′′
mn(ω) = −Im

∫
dt sin(ωt)Cmn(t). (12)

It follows from Eq. (10) that

C ′′
mn(ω) = C ′′

nm(ω) = −C ′′
mn(−ω). (13)

The statistical properties of single-exciton fluctuations
are sufficient to describe the fluctuations of all manifolds of
states as will be shown below. The spectral density can repre-
sent several independent groups of bath modes:

C ′′
mn(ω) =

∑
λ

C (λ)
mn(ω). (14)

Relaxation and dephasing rates are then given by sums over
these modes.

III. CORRELATED AND UNCORRELATED
SINGLE-EXCITON FLUCTUATIONS

In general the spectral density of site energy fluctuations
is the matrix C ′′

mn(ω), which describes how fluctuation of en-
ergy of molecule m is connected to fluctuations of molecule n.
The transformation of spectral densities between the molecu-
lar and the exciton basis is then given by

C ′′
e4e3,e2e1

(ω) =
∑
mn

C ′′
mn(ω)ψme4ψ

∗
me3

ψ∗
ne2

ψne1 . (15)

We first assume that the transition energy fluctuations of
all chromophores are uncorrelated:

C ′′
mn(ω) = δmnC ′′

u (ω).

The dynamical properties of excitons depend on fluctuations
in the exciton basis set, e. We thus transform the spectral den-
sity to that basis:

C ′′
e4e3,e2e1

(ω)=C ′′
u (ω)

∑
m

ψme4ψ
∗
me3

ψ∗
me2

ψme1 ≡ξe4e3,e2e1C ′′
u (ω),

(16)
where ξe4e3,e2e1 is the exciton overlap matrix. Since in general
ξe4e3,e2e1 is finite for all combinations of exciton indices, we
find that uncorrelated fluctuations contribute to both exciton
transport (via off-diagonal fluctuations, C ′′

ee′,e′e,) and pure de-
phasing (via diagonal fluctuations, C ′′

ee,ee).
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We describe the exciton dephasing and transport in the
system eigenstate basis using the secular Redfield theory.9, 23

The single-exciton density matrix is described by two differ-
ential equations. The coherences satisfy

ρ̇e2e1 = −iωe2e1ρe2e1 − γe2e1ρe2e1 . (17)

Here

γe2e1 =
∑

e′

[
M̄u

(
ωe2e′

)
ξe2e′,e′e2 + M̄∗

u

(
ωe1e′

)
ξe1e′,e′e1

]

−M̄u (0) ξe2e2,e1e1 − M̄∗
u (0) ξe1e1,e2e2 , (18)

is the intraband dephasing rate, and we have defined14

M̄u(ω) =
∫ ∞

0
dτeiωτ

∫
dω′

2π
C ′′

u (ω′)Z(β, ω′, τ ). (19)

Exciton populations satisfy the equation

ρ̇e1e1 =
e2 �=e1∑

e2

Ke1e2ρe2e2 −
e2 �=e1∑

e2

Ke2e1ρe1e1 , (20)

where ωe2e1 = εe2 − εe1 , and Ke2e1 is the population transport
rate:

Ke1e2 = 2ξe1e2,e2e1�M̄u(ωe1e2 )

= ξe1e2,e2e1C ′′
u (ωe2e1 )

[
coth

(
βωe2e1

2

)
+ 1

]
. (21)

In Sec. V we examine the signatures of the fluctuations
on spectral line shapes. To that end we introduce the dimen-
sionless line shape function characterizing energy-gap fluctu-
ations. From the spectral density [Eq. (16)] we have22

ge2e1 (t) = ξe2e2,e1e1 hu(t), (22)

where

hu(t) =
∫ t

0
dτ

∫ τ

0
dτ ′

∫
dω

2π
C ′′

u (ω)Z(β, ω, τ ′). (23)

The opposite extreme case is when the transition energy
fluctuations of all chromophores are fully positively corre-
lated. We then have C ′′

mn(ω) = C ′′
c (ω). In the eigenstate basis

the spectral density assumes the form

C ′′
e4e3,e2e1

(ω) = δe4e3δe2e1C ′′
c (ω). (24)

Correlated fluctuations of molecular transition energies thus
lead to correlated diagonal fluctuations of exciton transition
energies, which cause pure dephasing in the secular Redfield
theory. Off-diagonal fluctuations of excitons, which could
lead to exciton transport, are absent and the population trans-
port rate vanishes. Note that the finite dephasing of exciton
coherences, which can be calculated from the Redfield theory,
is the result of second-order perturbation theory for system–
bath coupling. If the diagonal fluctuations are included via
the cumulant expansion technique (see Sec. V), the single-
exciton intraband coherences become independent of the di-
agonal fluctuations. Thus, the fully correlated fluctuations do
not affect intraband exciton properties.

Using Eq. (24) we define the line shape function for
correlated fluctuations which now does not involve exciton
overlaps:

ge2e1 (t) = hc(t), (25)

where hc(t) and C ′′
c (ω) are related by the same type of integral

as in Eq. (23).

IV. FLUCTUATIONS OF TWO-EXCITON STATES

To describe two-exciton fluctuations we need the fol-
lowing spectral densities: C ′′

f1 f2, f3 f4
and C ′′

f1 f2,e1e2
. Note that

C ′′
e1e2, f1 f2

= C ′′
f1 f2,e1e2

. Note also that energy of double excita-
tion (mn) is εm + εn . Since we consider only molecular transi-
tion energy fluctuations, the double-exciton fluctuation spec-
tral densities are in general given by

C ′′
f1 f2, f3 f4

=
m>n∑
mn

k>l∑
kl

	(mn) f1	
∗
(mn) f2

[C ′′
mk(ω) + C ′′

ml(ω)

+C ′′
nk(ω) + C ′′

nl(ω)]	∗
(kl) f3

	(kl) f4 (26)

and

C ′′
f1 f2,e1e2

=
m>n∑
mn

∑
k

	(mn) f1	
∗
(mn) f2

[C ′′
mk(ω) + C ′′

nk(ω)]ψ∗
ke1

ψke2 .

(27)
For uncorrelated molecular fluctuations we have

C ′′
f1 f2, f3 f4

= C ′′
u (ω)

m �=n,k∑
mnk

	(mn) f1	
∗
(mn) f2

	∗
(mk) f3

	(mk) f4

≡ C ′′
u (ω)� f1 f2, f3 f4 , (28)

C ′′
f1 f2,e1e2

= C ′′
u (ω)

m �=n∑
mn

	(mn) f1	
∗
(mn) f2

ψ∗
me1

ψme2

≡ C ′′
u (ω)�′

f1 f2,e1e2
. (29)

Here � and �′ denote overlaps of single and two-exciton
states.

In the case of correlated molecular fluctuations we have

C ′′
f1 f2, f3 f4

= 4C ′′
c (ω)δ f1 f2δ f3 f4 , (30)

C ′′
f1 f2,e1e2

= 2C ′′
c (ω)δ f1 f2δe1e2 . (31)

Here, only energy fluctuations of two-excitons are possible,
and these fluctuations are fully correlated.

We ignore double-exciton coherences and population re-
laxations, which do not affect the third-order signals. How-
ever, two-exciton lifetime broadening does affect the excited
state absorption (ESA). The inverse lifetime of state f is given
by

τ−1
f =

f1 �= f∑
f1

� f1 f, f f1C ′′
c (ω f f1 )

[
coth

(
βω f f1

2

)
+ 1

]
. (32)

This quantity is finite only for uncorrelated fluctuations since
correlated fluctuations do not cause off-diagonal fluctuations
and yield τ−1

f = 0.
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V. OPTICAL SIGNALS

In the molecular representation the system-field dipole
interaction is

HSF =
∑

m

μ∗
m B̂m + h.c., (33)

where μm is the transition dipole of molecule m, and h.c. de-
notes the Hermitian conjugate. The optical field can only in-
duce transitions between adjacent manifolds, g ↔ e, e ↔ f .
The transition dipole matrix elements in this basis are24

μeg =
∑

m

μmψme, (34)

μ f e =
m �=n∑
mn

μmψne	(mn), f . (35)

The optical signals depend on density matrix evolution in the
accessible exciton manifolds.22 The evolution is damped by
the bath, causing broadening of the optical transitions.

For diagonal fluctuations the response function can
be calculated exactly using the second-order cumulant
expansion.25 We divide the spectral density of molecular tran-
sition energy fluctuations into uncorrelated and correlated
parts:

C ′′
mn(ω) = δmnC ′′

u (ω) + C ′′
c (ω). (36)

The absorption spectrum is obtained from the linear re-
sponse function and is conveniently expanded in the exciton
basis:

κA(ω) = 1

3

∑
e

|μeg|2�
∫ ∞

0
dteiωt · exp (−iεet − gee(t)) .

(37)
The factor 1/3 comes from orientational averaging.26 The line
shape function gee(t) contains contributions of uncorrelated
and correlated fluctuations:

gee(t) = ξee,eehu(t) + hc(t). (38)

The latter does not depend on exciton state e and can be rep-
resented by the function:

�(ω) ≡
∫

dt exp (iωt − hc(t)) ; (39)

note that h(−t) = h∗(t), so �(ω) is a real function. For the
uncorrelated fluctuations we define the bare (local) absorption
spectrum

κ
(0)
A (ω) =

∑
e

|μe|2�
∫ ∞

0
dteiωt · exp

(−iεet − ξee,eehu(t)
)
.

(40)
The line shape is finally given by the convolution

κA(ω) =
∫

dω′

2π
�(ω′)κ (0)

A (ω − ω′). (41)

The 2D PE spectrum has been described in several re-
view articles.13, 14, 27, 28 The 2D PE signal is obtained by the
two-dimensional Fourier transformation of the time-domain
third-order response function for the phase-matched wavevec-
tor kS = −k1 + k2 + k3. This is a time-domain experiment,

FIG. 1. Left: Chlorophyll chromophore geometry in the FMO complex.
1–7 label different chromophores. Right: Feynman diagrams for the two-
dimensional photon echo signal.

where three delay times are controlled. t1 stands for the sep-
aration of two initial pulses and reflects the propagation of
system density matrix coherence ρge. t2 is the waiting time
after the second of the two initial pulses and the third pulse;
t2 depends on density matrix coherence in the single-exciton
manifold and tracks population transport and coherence beats.
The third time delay t3 shows the induced third-order polar-
ization. 2D Fourier transform t1 → �1 and t3 → �3 gives 2D
spectrum (in practice t3 → �3 is performed by a spectrometer
and t3 need not be scanned). Excited state dynamics is moni-
tored during t2, which serves as a parameter.

The 2D signal has three types of terms:14 excited state
absorption (ESA), excited state emission (ESE), and ground
state bleach (GSB), as shown in Fig. 1. The ESA (and ESE)
can be additionally partitioned into two terms: one is for den-
sity matrix coherences during t2 (off-diagonal elements) and
the other is for populations (diagonal part), which has energy
transport. Signal expressions for such partitioning are given
in the Appendix.

Similar to the absorption we find that the line shape
of correlated fluctuations is independent of the exciton state
and can be factorized out. We then obtain the bare signal
which solely depends on the uncorrelated part of the fluc-
tuations [see expressions in the Appendix; when we fac-
torize correlated fluctuations out, the phase functions in
Eqs. (A1)–(A5) include only the uncorrelated part of the line
shape function, gee′(t) = hu(t)ξee,e′e′ , g f f (t) = hu(t)� f f, f f ,
and g f e(t) = hu(t)�′

f f,ee]. We denote various contributions as

follows. S(u)
E P is the ESE contribution induced by density ma-

trix populations during t2 and includes only uncorrelated fluc-
tuations, S(u)

EC , induced by coherences; S(u)
B denotes the corre-

sponding bleach contribution, and S(u)
AP and S(u)

AC the ESA pop-
ulation and coherence parts with uncorrelated fluctuations, re-
spectively.

The corresponding total signals, which include both cor-
related and uncorrelated fluctuations, are denoted by SE P ,
SEC , SB , SAP , and SAC . From the Appendix we write the total
signal as

SE P (t3, t2, t1) = S(u)
E P (t3, t2, t1) exp

(
φ

(c)
E (t3, t2, t1)

)
, (42)

SEC (t3, t2, t1) = S(u)
EC (t3, t2, t1) exp

(
φ

(c)
E (t3, t2, t1)

)
, (43)

SB(t3, t2, t1) = S(u)
B (t3, t2, t1) exp

(
φ

(c)
B (t3, t2, t1)

)
, (44)

SAP (t3, t2, t1) = S(u)
AP (t3, t2, t1) exp

(
φ

(c)
A (t3, t2, t1)

)
, (45)
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SAC (t3, t2, t1) = S(u)
AC (t3, t2, t1) exp

(
φ

(c)
A (t3, t2, t1)

)
, (46)

where we have obtained the three auxiliary functions charac-
terizing the net effect of the correlated fluctuations:

φ
(c)
B (t3, t2, t1) = −h∗

c (t1) + h∗
c (t2) − hc(t3)

−h∗
c (t1 + t2) + h∗

c (t1 + t2 + t3) − h∗
c (t2 + t3),

(47)

φ
(c)
E (t3, t2, t1) = −h∗

c (t1) + hc(t2) − h∗
c (t3)

−h∗
c (t1 + t2) + h∗

c (t1 + t2 + t3) − hc(t2 + t3),

(48)

φ
(c)
A (t3, t2, t1) = −h∗

c (t1) + hc(t2) − hc(t3)

−h∗
c (t1 + t2) + h∗

c (t1 + t2 + t3) − hc(t2 + t3).

(49)

If hc(t) is real, φ
(c)
A = φ

(c)
B = φ

(c)
E ; thus, the correlated fluctu-

ations induce a different Stokes shift in GSB, ESE, and ESA
contributions.

For fast correlated fluctuations we can set hc(t) = γ t and
find

φ
(c)
B (t3, t2, t1) = φ

(c)
E (t3, t2, t1) = φ

(c)
A (t3, t2, t1) = −γ (t1 + t3).

(50)
The total response function (and correspondingly the density
matrix coherences) is not damped during the delay time t2.
For static correlated fluctuations (correlated diagonal disor-
der) hc(t) = σ 2t2/2. We then obtain

φ
(c)
B (t3, t2, t1)=φ

(c)
E (t3, t2, t1)=φ

(c)
A (t3, t2, t1)=−σ 2(t1 − t3)2

2
.

(51)
The response function (and correspondingly the coherences)
is not damped during the delay time t2 by the correlated fluc-
tuations in this case as well. Additionally, here the times enter
only through the combination t1 − t3, so that for t1 = t3 the
damping due to the slow correlated fluctuations cancels out.
This is known as the photon echo.29

When the partitioning of fluctuations into fully correlated
and uncorrelated parts is not obvious, the spectral density
should be transformed according to Eqs. (15), (26), (27), and
line shape functions of the Appendix must include all fluctu-
ations.

VI. APPLICATION TO THE FMO AGGREGATE

We have simulated the effects of the correlated fluctu-
ations in the FMO aggregate (Fig. 1). This is one of the
mostly studied biological pigment-protein complex, where
seven chlorophyll-a molecules are packed inside protein ma-
trix (for recent review we refer to Ref. 20). Due to protein
environment, each molecule has a different electronic transi-
tion energy in the 850 nm wavelength region, which provides
good fit with absorption spectrum.

Current two-dimensional spectroscopy experiments
show long-lived spectral oscillations, implying that coher-
ent quantum motion survives the coupling with protein

environment.15–17 It has been suggested that this may be
due to correlated chromophore transition energy fluctuations
caused by protein thermal motion.30 We apply our expres-
sions, derived above, to calculate the FMO spectroscopic
signals and check their sensitivity to the spatial correlation of
energy fluctuations.

We describe the FMO aggregate by the fluctuating
Frenkel exciton Hamiltonian in the molecular basis. Since the
same protein modes affect all chromophores, we expect cor-
related fluctuations of chromophore transition energies. The
autocorrelation function of transition energy fluctuations of
nth chromophore is Cnn(t). Statistical properties of these fluc-
tuations are assumed to be site independent, i.e., Cnn = C .
The interchromophore correlation function is Cmn(t). We
study three models for interchromophore correlations. Model
(i) neglects all correlations so that Cmn(t) = 0 (m �= n).
Model (ii) assumes exponentially decaying interchromophore
correlations

C (i i)
mn (t) = e−|rm−rn |/ lC(t), (52)

where l is the spatial correlation distance. We denote this the
exponential model. Model (iii) assumes a sharp cutoff with
the distance, i.e.,

C (i i i)
mn (t) = θ

( |rm − rn|
l

− 1

)
C(t), (53)

where θ (x) is the step function: the correlation vanishes when
the distance between chromophores is larger than the correla-
tion distance l. Note that l = 0 gives C (i i)

mn (t) = C (i i i)
mn (t)

= δmnC(t), the model (i) of independent chro-
mophores. l = ∞ gives fully correlated case C (i i)

mn (t)
= C (i i i)

mn (t) = C(t). That case is not considered since it has no
population transfer as shown in Sec. III. The strength of the
intermediate correlations was chosen as follows. The FMO
active region size (largest distance between central Mg atoms
of chromophores in FMO) is ∼27 Å; thus, we take l = 30 Å,
which gives a ∼ e−1 drop of correlation strength across the
aggregate for the exponential model. For model (iii) l = 12
Å leads to C34 and C56 correlations.

The calculated population transport rates are given in
Table I. Rates that lie within 10% of the strongest depopu-
lation rate in each matrix are highlighted by bold font. The
first and most important point is that any type of correlation
slows down the population transport as evident from the diag-
onal values in the matrices (the depopulation rates). Second,
exponential correlations reduce the transport rates for all ex-
citons by a factor of 2.5–3. Third, the model (iii) affects dif-
ferent excitons in a different way: some depopulation rates are
not affected (exciton 7), while others are dramatically reduced
(exciton 1).

Previously, using the uncorrelated fluctuation model for
population transport rates, the exciton dynamics has been di-
vided into two pathways (this partitioning depends on the as-
sumed bath spectral density).31 We note that, for our model,
rates from exciton state 5 to 4 and 2 only differ by 4% (ex-
citons are numbered in increasing energy order). We thus
draw three pathways A, B, and C for this model as shown in
Fig. 2. Model (iii) leads to 2.7 times smaller rates and reduc-
tion of the C pathway. The A and B pathways are conserved,
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TABLE I. Calculated exciton transport rates (ps−1): (a) model (i), (b) model (ii), (c) model (iii).

(a) Model i (uncorrelated)
1 2 3 4 5 6 7

1 −0.120 2.460 0.137 0.347 0.158 0.109 0.049
2 0.117 −2.895 0.121 4.301 1.736 1.352 0.027
3 0.001 0.025 −0.349 0.029 0.188 0.186 4.404
4 0.001 0.332 0.011 −5.806 1.799 2.369 0.043
5 0.000 0.069 0.037 0.928 −5.242 8.220 0.290
6 0.000 0.009 0.006 0.201 1.349 −12.370 0.512
7 0.000 0.000 0.037 0.001 0.012 0.133 −5.326

(b) Model ii (exponential correlations)
1 2 3 4 5 6 7

1 −0.040 0.809 0.077 0.120 0.041 0.038 0.017
2 0.038 −0.981 0.088 1.579 0.743 0.440 0.009
3 0.001 0.018 −0.209 0.013 0.124 0.072 1.563
4 0.000 0.122 0.005 −2.042 0.468 1.036 0.017
5 0.000 0.030 0.024 0.241 −1.860 2.917 0.122
6 0.000 0.003 0.002 0.088 0.479 −4.576 0.279
7 0.000 0.000 0.013 0.000 0.005 0.073 −2.007

(c) Model iii (cut-off correlations)
1 2 3 4 5 6 7

1 −0.002 0.011 0.128 0.013 0.011 0.069 0.048
2 0.001 −0.494 0.135 4.662 2.209 1.201 0.027
3 0.001 0.028 −0.365 0.019 0.269 0.134 4.404
4 0.000 0.360 0.007 −5.204 0.417 3.475 0.053
5 0.000 0.088 0.053 0.215 −2.953 0.226 0.218
6 0.000 0.008 0.004 0.294 0.037 −5.262 0.599
7 0.000 0.000 0.037 0.001 0.009 0.156 −5.348

while the relative amplitudes of pathway C become slightly
smaller. Thus, the picture of pathways of the uncorrelated
model and the exponential correlation model is the same. We
thus do not show the pathways for model (ii) separately in
Fig. 2. Model (iii) affects two pairs of chromophores. Exci-
tons, which have contributions from those correlations (chro-
mophores 3 and 4 mostly contribute to excitons 1 and 2, and
chromophores 5 and 6 to excitons 5 and 6) become longer-
lived. The pathways change accordingly (see Fig. 2). We can
still draw three pathways A′, B′ and C′; however, A′ does not

FIG. 2. Population relaxation pathways in FMO for two models of chro-
mophore energy fluctuations. Left: model (i) — uncorrelated fluctuations.
Right: model (iii) — chromophore 3 is correlated with 4 and chromophore
5 with 6. The pathways are deduced from the population rate matrix given
in Table I. Numbers on the left label exciton eigenstates, while numbers on
the right show molecules, which contribute mostly to a specific exciton (in
parentheses we show weaker contributing molecules.

visit exciton 5 and exciton 2 is long-lived in all pathways.
Thus, the lowest-energy exciton 1 is not reached as fast as in
model (i).

Figure 3 depicts the exciton population evolution for the
initial condition where all excitons are equally populated (this
is usually the case in broadband 2D spectroscopy). In model
(i) [Fig. 3(a)] excitons 4–7 decay on approximately the same
time scale. Exciton 3 is then excited and eventually decays to
exciton 1. Thermal equilibrium is reached within ∼10 ps. The
same type of relaxation is observed for model (ii), but the dy-
namics is slightly slower. Different type of relaxation appears
for model (iii) [Fig. 3(b)]: excitons 6, 7 and 4, 5 first equili-
brate with excitons 3 and 2 within 1 ps, which later decay into
the exciton 1. Thus, specific site-dependent correlations affect
the exciton relaxation pattern.

We next discuss how the exciton dynamics described
above shows up in spectroscopic signals. The absorption spec-
trum, shown in Fig. 4, reflects exciton interband coherences
between the ground state and the single excitons. The differ-
ent types of correlations affect the line broadening (the os-
cillator strength is controlled by the transition dipoles which
do not depend on bath). Different correlation models affect
mostly the 12 200 and 12 400 cm−1 regions. Interband coher-
ences involving excitons 2–6 are thus most strongly affected
by correlations. However, the exciton transitions extensively
overlap and the absorption is not sensitive enough to correla-
tions of fluctuations.

The single-exciton dynamics of Fig. 3 is directly mapped
by 2D spectroscopy. Since we plot the rephasing signals, on
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FIG. 3. Exciton eigenstate populations calculated with the initial condition ρee = 1 for models (i) and (iii) as indicated.

the diagonal we solely have contributions from exciton popu-
lations during the t2 interval.32 On the off-diagonal region the
peaks belong to populations and coherences at t2. The 2D pho-
ton echo spectra shown in Fig. 5 for the three fluctuation mod-
els at t2 =0 are very similar on the diagonal region, but show
large differences in the off-diagonal area below the diagonal.
At t2 = 0 populations of all models are identical, only spec-
tral broadening along �1 and �3 axes are affected by correla-
tions. The interference pattern of these cross-peaks reshapes
the spectrum. The positive (green–yellow) peaks indicate the
ESA pathways and those become very strong for correlated
exponential fluctuations. This shows that correlated fluctua-
tions are responsible for larger shifts between ESA and ESE
pathways, which do not cancel.

We have selected six areas of the 2D spectrum, which
correspond to the most prominent peaks in the 2D spectrum,
and their cross-peaks to monitor their variation with the
population delay time t2. The results are shown in Fig. 6.
Diagonal peaks are A, C, and E (small oscillatory components
should be ignored—they come from partial overlap with
nearby cross-peaks). There is a clear difference between blue
line [model (iii)] and black (and red) lines in peaks A and
especially C. Population redistribution in the interval 200–
1000 fs is much weaker in cut-off model for these excitons
(1 and 2) in accord with Fig. 3. However, exciton dynamics
in peak E, which shows higher-lying excitons, is similar. The

FIG. 4. Absorption spectrum of FMO for the three models of fluctuations.

most notable difference is the highly oscillatory cross-peak
dynamics for correlated fluctuation models. Exponential
correlations mostly increase the oscillation decay time of all
B, D, and F peak oscillations compared to the uncorrelated
fluctuation model. The cut-off correlations affect the various
peaks differently: in peaks C–F the oscillations decay is
similar to the uncorrelated model, but peak B shows very
long-lived oscillations, which do not decay with the longest
time studied (1 ps).

VII. DISCUSSION

In this paper we presented theoretical analysis and nu-
merical modeling of exciton dynamics for a model with cor-
related molecular transition energy fluctuations for the FMO
complex. Fully correlated fluctuations do not affect the single-
exciton density matrix evolution and, thus, the intraband co-
herences and populations transport. An uncorrelated model
(i) allows for population transport; however, the intraband co-
herences are strongly damped. Partially correlated transition
energy fluctuations are considered numerically. Long-lived
(1 ps) coherences have been observed in several photosyn-
thetic complexes by Engel,33 Calhoun,16 and Collini.17 Our
simulations suggest that significant component of line broad-
ening in experiments may be attributed to correlated fluctua-
tions in protein environment.

We considered two types of correlated fluctuations. Ex-
ponentially decaying correlations with intermolecular dis-
tance do not introduce qualitatively new features compared
to the fully uncorrelated model since the FMO complex is
compact (close to spherical) and the distances between neigh-
boring chromophores do not differ significantly. The ∼30 Å
correlations thus result in approximately three times reduc-
tion for the rates of exciton transport. The other model of cor-
related fluctuations assumes that the following chromophores
3, 4 and 5, 6 are fully correlated. This strongly affects the
population transport pathways.

Correlations affect the absorption spectrum only weakly.
The spectrum when all chromophores are fully correlated is
similar as well (not shown). Small variations in the absorp-
tion spectrum are masked by other broadening mechanisms.
However, the different patterns of correlations strongly affect
the 2D spectrum, especially the cross-peak amplitudes. Most
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FIG. 5. 2D spectrum of FMO calculated using the three models of fluctuations for t2 = 0 as indicated. Regions A–F (each 50 × 50 cm−1) were selected for
further examination of the time t2 dependence. This is shown in Fig. 6.

simulations of FMO 2D spectra can get quite good agreement
with experiment of the diagonal peaks; however, it is very
hard to match the off-diagonal cross-peaks.13, 34–38 Our sim-
ulations show that correlations shape the cross-peak region.
This may be exploited to reveal the correlation pattern.

Correlated fluctuations control single-exciton population
and coherence dynamics, which may be observed through the
decay and oscillations of various diagonal and cross-peaks in
photon echo 2D spectrum. Fully correlated fluctuations only
cause interband spectral broadening, whereas uncorrelated
fluctuations induce intraband coherence broadening. This is
easily understood by examining how molecular energy fluc-
tuations transform into the exciton eigenstate basis. Consider
the single-exciton block of the Hamiltonian. On the diagonal
we have molecular transition energies and on the off-diagonal
part we have intermolecular couplings. Fully correlated fluc-
tuations are equivalent to adding a diagonal matrix δε I (δε is
the fluctuation magnitude and I is the unit matrix). This does
not affect the eigenstates, only the eigenenergies are shifted

by the value δε. Thus, the single-exciton energies shift up or
down: spacings of single-exciton states, which affect coher-
ences, do not change. This modulation of exciton energies,
when energy gaps are conserved, cause no intraband coher-
ence damping. The same argument may be used to show that
correlated fluctuations do not cause population transport. The
transport is induced by eigenstate dynamic couplings caused
by loss of correlations.

Our simulations demonstrate that a specific pattern of
correlations is important for small molecular aggregates.
How to measure this pattern is an open question. FMO is a
pigment-protein aggregate where the chromophore surround-
ing is made of proteins. Proteins usually have long-range
structural order (design) and have charged side-chains. These
may affect chromophore transition energies through electro-
static Stark effect. The resulting fluctuations will have both
long-range and short-range correlations. The fluctuation spec-
tral density may be described by the molecular-dynamics sim-
ulations, which is the most promising tool to reveal the corre-

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 6. Time-dependent amplitudes of the A–F regions of Fig. 5 for the three fluctuation models.
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lation pattern. Phenomenological models of correlations [e.g.,
model (ii) or (iii)] may successfully work for large molecular
aggregates such as photosystem I or whole photosystem II,
but may not be realistic for small molecular aggregates such
as FMO.

Other mechanisms, which preserve exciton coherences,
should not be ruled out. We have recently shown that a quan-
tum transport also affects intraband single-exciton dynamics
in a way that population transport is coupled with coherences
and gets oscillatory components.32 Oscillatory populations
translate into oscillatory diagonal peaks in the rephasing part
of the 2D photon echo spectrum, which are signatures of
quantum transport. Correlated energy fluctuations, on the
contrary, do not lead to oscillations of exciton populations.
More rigorous theory of hierarchical equations of motion
developed by the groups of Tanimura and Yan include quan-
tum transport;39, 40 however, they have not included correlated
fluctuations of the bath. Quantum transport with correlated
fluctuations can be described using the theory developed in
Ref. 10, which explicitly includes collective bath modes.
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APPENDIX: EXPRESSIONS FOR THE PHOTON
ECHO SIGNAL

In this section we present closed expressions for the pho-
ton echo response function.14 There are three main contribu-
tions corresponding to a three Feynman diagrams of Fig. 1.
ESA diagram denotes the excited state absorption, where dur-
ing the t2 interval the system is in the single-exciton manifold
and during t3 absorption of additional quantum induces tran-
sition into the double-exciton manifold. ESE diagram reflects
the stimulated emission where the single-exciton (during t2)
emits photon. The third GSB diagram shows the system back
in the ground state at t2 interval and then the next transition
(absorption) appears as bleaching. The population transport
happens in ESA and ESE parts. We thus get five contribu-
tions to the response function: ESA with coherences during
t2, ESA with populations during t2, ESE with coherences,
ESE with populations, and finally GSB part. This distinction
becomes possible due secular approximation for the density
matrix propagation. The response function are obtained using
the second-order cumulant expansion of diagonal eigenenergy
fluctuations. Using the contribution labeling as in the main
text, we have

SAP (t3, t2, t1) = −i3
∑
ee′ f

μ f e′μe′ f μegμge

×Ge′e′,ee(t2) exp
[− iξ f e′ t3 − iξget1+ϕ

(AP)
f e′e

]
,

(A1)

SAC (t3, t2, t1) = −i3
e �=e′∑
ee′

μ f eμe′ f μe′gμge

× exp
[ − iξ f et3−iξe′et2−iξget1+ϕ

(AC)
f e′e

]
,

(A2)

SE P (t3, t2, t1) = i3
∑
ee′

〈μge′μe′gμegμge〉Ge′e′,ee(t2)

× exp
[ − iξe′gt3 − iξget1 + ϕ

(E P)
e′e

]
,

(A3)

SEC (t3, t2, t1) = i3
e �=e′∑
ee′

μge′μegμe′gμge

× exp
[ − iξe′gt3 − iξe′et2 − iξget1+ϕ

(EC)
e′e

]
,

(A4)

SB(t3, t2, t1) = i3
∑
ee′

μge′μe′gμegμge

× exp
[ − iξe′gt3 − iξget1 + ϕ

(B)
e′e

]
. (A5)

where ξab = ωab − i(τ−1
a + τ−1

b )/2 and τa is a lifetime of
state a. Only uncorrelated or partially correlated fluctua-
tions should be included in dephasing functions ϕ

( j)
abc [fully

correlated part should be included via convolutions of
Eqs. (42)–(49)]:

ϕE P
e′e (t3, t2, t1) = δe′eφ

∗
egeg(t1, t1 + t2 + t3, t1 + t2, 0)

+ (1 − δe′e)φ̄∗
e′ge′e(t3, t2, t1), (A6)

ϕEC
e′e (t3, t2, t1) = φ∗

e′geg(t1, t1 + t2 + t3, t1 + t2, 0), (A7)

ϕB
e′e(t3, t2, t1) = φ∗

e′geg(t1 + t2, t1 + t2 + t3, t1, 0), (A8)

ϕAC
f e′e(t3, t2, t1) = φ∗

e′ f eg(t1, t1 + t2, t1 + t2 + t3, 0), (A9)

ϕAP
f e′e(t3, t2, t1) = δe′eφ

∗
e f eg(t1, t1 + t2, t1 + t2 + t3, 0)

+(1 − δe′e)φ̄∗
f e′e′e(t3, t2, t1). (A10)

These phase functions are given by

φcbag(τ4, τ3, τ2, τ1)=−gcc(τ43)−gbb(τ32)−gaa(τ21)−gcb(τ42)

+ gcb(τ43) + gcb(τ32) − gca(τ41)

+ gca(τ42) + gca(τ31) − gca(τ32)

− gba(τ31) + gba(τ32) + gba(τ21), (A11)

φ̄cbe′e(t3, t2, t1)=−gee(t1)−gbb(t3)−gcc(t3)−gbe(t1 + t2 + t3)

+ gbe(t1 + t2) + gbe(t2 + t3) − gbe(t2)

+ gce(t1 + t2 + t3) − gce(t1 + t2)

− gce(t2 + t3) + gce(t2)

+ gcb(t3) + gbc(t3) + 2i[gce′(t2 + t3)

− gce′(t2) − gce′(t3) + gbe′ (t2)

− gbe′ (t2 + t3) + gbe′(t3)]. (A12)
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