
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [University of California, Irvine]
On: 6 April 2011
Access details: Access Details: [subscription number 923037147]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Journal of Modern Optics
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713191304

Signatures of carrier multiplication in the frequency resolved fluorescence
spectra from polaritons
Oleksiy Roslyaka; Godfrey Gumbsb; Shaul Mukamela

a Chemistry Department, University of California, Irvine, CA 92697-2025, USA b Physics and
Astronomy Department, Hunter College, CUNY, NY 10065, USA

First published on: 13 September 2010

To cite this Article Roslyak, Oleksiy , Gumbs, Godfrey and Mukamel, Shaul(2010) 'Signatures of carrier multiplication in
the frequency resolved fluorescence spectra from polaritons', Journal of Modern Optics, 57: 19, 2009 — 2019, First
published on: 13 September 2010 (iFirst)
To link to this Article: DOI: 10.1080/09500340.2010.499048
URL: http://dx.doi.org/10.1080/09500340.2010.499048

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713191304
http://dx.doi.org/10.1080/09500340.2010.499048
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Journal of Modern Optics
Vol. 57, No. 19, 10 November 2010, 2009–2019

Signatures of carrier multiplication in the frequency resolved fluorescence

spectra from polaritons

Oleksiy Roslyaka*, Godfrey Gumbsb and Shaul Mukamela

aChemistry Department, University of California, Irvine, CA 92697-2025,
USA; bPhysics and Astronomy Department, Hunter College, CUNY, NY 10065, USA

(Received 8 March 2010; final version received 17 May 2010)

Using the micro-cavity coupled to weakly confined excitons in quantum dots we investigated the signatures of
carrier multiplication in the single and two-photon emitted frequency resolved fluorescence. Those are compared
to the spectra provided by the conventional multi-photon induced fluorescence. The two processes are
distinguished by the statistics of the initial polariton distribution. We argue that exciton emission spectra turned
out to be CM insensitive, while the polaritons emission demonstrates strong spectral signatures of the CM. When
the polaritonic effect dominates the confinement-boosted excitons’ nonlinearities, increasing quantum yield leads
to consecutive appearance of Rabi multiplets. The correlation spectra reveal the formation of more multiplets as
compared to the single photon emission. When the confinement increases the multiplets start to overlap and their
classification requires transient measurements of the spectral snapshots. These are based on the discrete Auger
lifetimes of the multi-excitons.
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1. Introduction

One of the most important mechanisms for producing
multiple electron-hole pairs (multiexcitons) per
absorbed photon is carrier multiplication (CM) [1–3].
In a typical transient experiment (either absorption of
photo-luminescence), a pump photon of energy well
above the excitonic threshold, e.g. �h!¼ 3Eg, creates
high energy carriers whose inelastic scattering creates
multiple electron/hole pairs (excitons), thus efficiently
harvesting the photon energy. Competition from
another ultrafast inter-band relaxation mechanism
results in a small CM efficiency in bulk semiconductors
[4,5]. For instance, the rate of impact ionization must
compete with the rate of energy relaxation by electron-
phonon scattering. Aside from this effect, the threshold
photon energy for impact ionization exceeds that
required for the conservation of energy alone because,
in addition, the crystal momentum must be conserved.
It has been shown that the rate of impact ionization
overwhelms photon scattering rate when the kinetic
energy of the pump excited electron is many times the
bandgap energy.

In contrast to the bulk, in quantum dots (QDs),
some of the processes are suppressed or enhanced due
to the discrete energy structure. The carriers’ confine-
ment eliminates the need for crystal momentum
conservation. The ‘phonon bottleneck’ effect reduces

the phonon-assisted relaxation rate and increased

electron–hole Coulomb interaction greatly enhances

the rate of Auger cooling process,1 including the

inverse Auger process2 of impact ionization. Multiple

experiments show that the later mechanism is the

primary source of CM in QDs [6]. Some other

mechanism of CM, such as coherent superposition

and direct photoionization had been also proposed (see

[7] and references therein).
TA measurements capitalize on the pump-induced

absorption changes in the probe, which are primarily

attributed to the Coulomb interactions [4,8]. The

average exciton multiplicity produced by CM is usually

followed by the Auger recombination of the multi-

excitons manifold. The measure of impact ionization

induced CM is quantum yield (QY), which shows how

many electron–hole pairs can be harvested from a

pump photon of given energy. For TA experiments the

CM-induced changes in the probe absorption suggest

that a single photon could generate up to seven e� h

pairs (OY¼ 700%) in PbSe and that CM is similarly

efficient in visible-emitting CdSe nanocrystals [1,6].

The QY linearly depends on the pump photon energy

(after a certain energy threshold).
However, the formation of more complicated e� h

complexes such as unstable bi-exciton may drastically

change the Auger rate. The QD environment and
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growth methods may produce strong quenching effect
on the QY [9]. The quenching mechanism is unclear
so far. Moreover, some recent transient photo-lumi-
nescence (TP) spectroscopy experiments performed on
CdSe and CdTe nano-crystals showed no CM, and no
bi-exciton and exciton signatures in TP decays were
reported [8,9]. TP is especially sensitive to the compet-
ing relaxation mechanisms since it utilizes one of them
(exciton radiative recombination) as the measurement.
Nevertheless, the most straightforward explanation of
both types of the transient signals is based on the
deviation of the multi-exciton statistics in the QDs
from the Poisson distribution characteristic to the
multi-photon induced photoluminescence [1,10].
Alternatively, a model based on the exciton spectral
density was proposed in [11]. An even more sophisti-
cated explanation of CM dynamics based on a series
of odd-ordered inter-band scattering events was
developed in [7].

To clarify this discrepancy between the TA and TP
results, and the large variation of the reported QY, it
would be useful to identify additional techniques that
may reveal signatures of CM-induced multiexcitons in
QDs. The most straightforward method would be to
try to look at the frequency resolved photolumines-
cence spectra [12–15]. However, such a schematic
suffers from the fact that the biexciton effect is
masked by the various dephasing and relaxation
mechanisms. Additional observed resonances are
attributed to the high exciton manifolds once the
saturation of the lowest manifold is reached. This
requires a high pump flux, which is usually not the case
in the solar cells since the pump there is continuous
rather than the pulses. Some important semiconduc-
tors, such as lead salts, even have large saturation
limits due to the specifics of their electronic structure.
Moreover, as we demonstrate in this paper, even if one
would be able to significantly lower the dephasing so
that it becomes possible to observe multiexcitons of the
same kind (1S), the resulting spectra would not be
sensitive to the CM mechanism of the multiexciton
formation. That is, the same time of the spectra would
be produced by conventional multi-photon induced
photoluminescence. Recall that the latter relies on the
probability of the QD simultaneously absorbing more
the one photon.

Here, we propose to look at the CM fluorescence3

from the QD placed into a microcavity [16–18]. It
might seem that introduction of the microcavity and
the polaritonic effect may be an overhead for even as
such complicated theory. However, we shall show that
this makes the spectra sensitive not only to the number
of the particles but also to the specifics of the
mechanism the particles had been formed. We demon-
strate this by comparing the multi-photon and

CM-induced fluorescence from the lowest (1S) excitons

coupled to a microcavity. Analogously to the photo-

luminescence spectra from the multi-excitons (1S-1S,

1P-1P) [14] the polariton spectra are defined by various

levels (angular momentum) and sub-levels (projection
of the angular momentum) [19], but the resonances are

highly sensitive to the QY. Even more sensitivity to

CM demonstrates two-photon correlation fluorescence

spectra (in the sense of Glauber two-photon counting)
[20]. The paper is organized as follows. The next

section introduces the model of bosonized QD excitons

coupled to the microcavity. The resultant polaritonic

states in the angular momentum representation are

calculated using first-order perturbation with respect
to the Coulomb and phase-filling nonlinearities. The

third section treats the coupling to the free (measured)

field perturbatively in the light-matter interaction, thus

defining single and two-photon fluorescence. The
specifics of the initial state of the system is also

discussed there. The final section presents some

numerical simulations and discussion.

2. Model

In this article we propose the following experimental
setup to observe some signatures of the carrier multi-

plication. A collection of N identical noninteracting

semiconducting QDs are dissolved into a layer of

transparent polymer host [16]. Each QD is assumed to
be large enough to assume weak electron/hole con-

finement. The QD-confining potential effectively

restrains the motion of the exciton center of mass as

well as the boosted Coulomb interaction due to

reduced carrier screening. That is, the electron/hole
wavefunctions spill out of QD to the host material

with, usually, a much smaller dielectric constant. QD

must be able to accommodate at least four lowest

excitons of the same kind. This will allow us to neglect
possible saturation effects and the signatures of multi-

excitons formed by various types of excitons.
Lead salts (PbS, PbSe and PbTe) quantum dots [21]

of radius more than 10 nm are good candidates for our

model. These have direct band gaps (for PbSe,
Eg¼ 0.28 eV) at four equivalent L points in the

Brillouin zone. The bottom of the conduction band

has L�6 symmetry in the double group notation, and the

top of the valence band has Lþ6 symmetry [22].
Spatially, the valence band-edge Bloch functions are

s–like, while the conduction band-edge Bloch functions

are ph111i�like, where h111i denotes the direction in the

cubic lattice. Therefore, the transitions are optically

active and may be described by the transition dipole
moment �cv.

2010 O. Roslyak et al.
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Excitons in quantum dots are assumed to be

strongly coupled to the cavity central mode, thus

forming polaritons. The microcavity is made either of

Bragg stacked mirrors [16] or a recently proposed

photonic crystal nano-cavity [18,17]. The polaritons, in

turn, are weakly coupled to the free field modes via

their excitonic part. Initially, the polaritons as well as

free optical field modes are in the vacuum state. The

system (microcavity þ quantum dots) is then illumi-

nated with strong laser pump pulses of central

frequency �h!p43Eg. Such a way of polariton popula-

tion is going to is usually referred to as transient setup.

The time separation between the consequent pulses is

much large than the exciton lifetime. Due to weak

interaction between the polaritons and the free fields,

the latter photon population changes. The change can

be homodyne detected via single- and two-photon

fluorescence techniques as shown in Figure 1.
The detectors are equipped with the gates allowing

us to measure the spectral snapshot of the transient

signal. The gates are turned on at time t0 for a few

periods of the measured mode, thus allowing us to

measure the time integrated frequency resolved spectra.
One way to calculate the fluorescence signals is

using the sum over states mode [20]. It requires

mapping from the polaritons to excitations of a

collection of N artificial atoms, whose energy levels

and transition selection rules are known. Such map-

ping will be our first step. At any initial time t0 the

system of QD weakly interacting excitons strongly

coupled with microcavity field and weakly coupled

to the free field modes is assumed to be in

(a)

(c)

(b)

Figure 1. Transient single and two-photon florescence from the polariton states populated by CM. (a) Relative contribution of
the multi-polariton states to the fluorescence signal at t0¼ 0 for various values of the CM defining phenomenological parameter
�. (b) Frequency integrated single photon transient fluorescence spectra. The arrows indicate the spectral snapshots when the
discrete Auger process reduces the contribution from multi-polariton states to the signal. These are used for classifying the
spectral resonances in case of large nonlinearities. (c) Schematics of the proposed experiment. (The color version of this figure is
included in the online version of the journal.)
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quasi-equilibrium and its evolution can be described by

the following Hamiltonian [23–33]:

H ¼ Hsys þHintðt� t0Þ

Hsys ¼ �h!Ca
yaþ �h!1SB

yBþ �hG ayBþ Bya
� �

þ �hgByByBB

HintðtÞ ¼ ��1S

X
i

EiðtÞB
y þ Eyi ðtÞB

h i
: ð1Þ

Here !C is the central frequency of the microcavity

mode; ay(a) are the creation (annihilation) operators

for the cavity photons, which obey bosonic commuta-

tion relation [a, ay]¼ 1; �h!1S is the lowest exciton

energy. We define QD excitons by means of its creation

operator [26]:

Byn ¼
1ffiffiffiffi
V
p

X
k, �

�?nðMkÞeyk, �h
y

�k, � 0 ð2Þ

where we have confined ourselves to the case of zero

exciton momentum; M ¼ ðm?
h �m?

eÞ=ðm
?
h þm?

eÞ with

m?
eðm

?
hÞ being the effective mass of electron (hole);

ey(hy) is the electron (hole) creation operators; �n(Mk)

is their relative motion envelop function in the

momentum space; �(�0) span the quantum numbers

related to the confinement as well as spin variables;

V is the quantum dot volume. We shall consider the

lowest (n¼ 1S) excitons, thus omitting the subscript

for the creation operator (2). In this case the envelop

function has the simplified form: �1SðMkÞ ¼

8ð�a31SÞ
1=2=ð1þM2k2a21SÞ, where a1S is the exciton

radius.
The interaction between the cavity and the exciton

is given by the factor:

�hG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��h!c

�C

s
�1S ð3Þ

where we introduced the exciton transition dipole

moment �1S ¼ V�1=2�cv

P
k �1SðMkÞ.

Parameter g represents an effective interaction

between excitons and depends on the confinement

degree. For the given Coulomb interaction between the

confined electron and hole V(q)¼ 4�e2/(�0q
2), with �0

being the static dielectric constant, the interaction

between the excitons in the quantum dot has the form:

�hg ¼ �
2

V3

X
k,k 0

V Mðk� k 0Þð Þ �1S Mkð Þ
�� ��2

� �1S Mk 0ð Þ
�� ��2��1S Mkð Þ�?1S Mk 0ð Þ

h i
: ð4Þ

Here we assume that the interaction is a positive real

number, which means that the multi-exciton complexes

are not stable.

The last term in Equation (1) is written in the
interaction picture with respect to the free field
Hamiltonian [27]. It is determined by the electric field
annihilation operator for the ith free field mode
EiðtÞ ¼

ffiffiffiffiffiffiffiffiffi
2��h!i

�i

q
ai expð�i!itÞ, where ai annihilates a

photon in the mode; �i is the mode quantization
volume; !i is its frequency.

Owing to the non-bosonic nature of the exciton
operator (2) the system Hamiltonian in its current form
is not well suited for our discussion. To deal with that
problem we represent the system Hamiltonian in terms
of effective bosonic operators. One of the bosonization
procedures has been proposed by Usui [28]:

By ¼ by � �bybyb, b, by
� �

¼ 1: ð5Þ

Here, we introduced the phase-space filling factor [26]:

� ¼
1

V

P
k �1S Mkð Þ
�� ��2�1S Mkð ÞP

k �1S Mkð Þ
: ð6Þ

The merit of Usui transformation is that the trans-
formed Hamiltonian may be split into an ideal bosonic
part H0 and the part H1 describing their weak
interaction:

Hsys ¼ H0 þH1

H0 ¼ �h!ca
yaþ �h!1Sb

ybþ �hG aybþ bya
� �

H1 ¼ �hgbybybb� �h�G aybybbþ bybyab
� �

: ð7Þ

The first term in H1 deals with the deviation of the
excitons from ideal bosons, thus correcting for the
excitonic density effects. The second term describes an
additional nonlinear interaction via the cavity mode.

Now let us turn to the problem of finding eigen-
vectors and eigenvalues of the system Hamiltonian (7).
It is convenient to give the solution of the non-
perturbed Hamiltonian H0 using Schwinger’s angular
momentum representation of bosonic operators [19,29].
The angular momentum operators are defined as:

2Ĵx ¼ aybþ bya, 2iĴy ¼ ayb� bya ð8Þ

2Ĵz ¼ aya� byb, Ĵ2 ¼
N̂

2

N̂

2
þ 1

 !
ð9Þ

where N̂ ¼ ayaþ byb is the total number of particles
operator.

The Hamiltonian can now be written in terms of
SO(3) rotations

H0 ¼ �h�N̂þ �hAe�i	Ĵy Ĵze
i	Ĵy : ð10Þ

Here we have introduced some auxiliary quantities

� ¼
1

2
!C þ !1Sð Þ D ¼ !C � !1S ð11Þ

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2
þ 4G2

� �q
tan 	 ¼

2G

D
: ð12Þ
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For fixed number of polaritons N, the eigenvectors and

eigenvalues of the above Hamiltonian are dressed

exciton states:

 0ð Þ
j,m

��� E
¼ exp �i	Ĵy

� 	
j,m
�� 


ð13Þ

E
0ð Þ
j,m ¼ �h N�þmAð Þ ð14Þ

a j,m
�� 


¼
ffiffiffiffiffiffiffiffiffiffiffi
jþm

p
j� 1=2,m� 1=2
�� 


ð15Þ

b j,m
�� 


¼
ffiffiffiffiffiffiffiffiffiffiffi
j�m

p
j� 1=2,mþ 1=2
�� 


: ð16Þ

Here, the common eigenstates of Ĵ2 and Ĵz are the Fock

states with jþm photons in the cavity and j�m

excitons in the quantum dot, respectively:

j,m
�� 


¼
ay
� �jþm

by
� �j�mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jþmð Þ! j�mð Þ!
p 0j i ð17Þ

with j¼N/2, and m¼N/2, . . . ,�N/2. Using the Baker–

Hausdorff identity we obtain the matrix elements of

the cavity photon and exciton in the polaritonic basis:

a?j,m;j 0,m 0 ¼ h 
ð0Þ
jm ja

yj ð0Þj 0m 0 i

¼ 
j 0, j�1
2

m 0,m�1

2

ffiffiffiffiffiffiffiffiffiffiffi
jþm

p
cos

	

2

�

� 
m 0,mþ1
2

ffiffiffiffiffiffiffiffiffiffiffi
j�m

p
sin

	

2

�
b?j,m;j 0,m 0 ¼ h 

ð0Þ
jm jb

yj ð0Þj 0m 0 i

¼ 
j 0, j�1
2

m 0,mþ1

2

ffiffiffiffiffiffiffiffiffiffiffi
j�m

p
cos

	

2

�

þ 
m 0,m�1
2

ffiffiffiffiffiffiffiffiffiffiffi
jþm

p
sin

	

2

�
aj,m;j 0,m 0 ¼ h 

ð0Þ
jm jaj 

ð0Þ
j 0m 0 i

¼ a?j 0,m 0;j,m

bj,m;j 0,m 0 ¼ h 
ð0Þ
jm jbj 

ð0Þ
j 0m 0 i ¼ b?j 0,m 0;j,m: ð18Þ

Using Equation (18) we can calculate perturbative part

of the system Hamiltonian in the polariton basis:

h ð0Þjm jH1j 
ð0Þ
j 0m 0 i

¼
Xj 0�1=2

m1¼�j 0þ1=2

Xj 0�1
m2¼�j 0þ1

Xj 0�1=2
m3¼�j 0þ1=2

�
�hgb?j,m;j 0�1=2,m3

�b?j 0�1=2,m3;j 0�1,m2bj 0�1,m2;j 0�1=2,m1bj 0�1=2,m1;j 0,m 0

� �h�Ga?j,m;j 0�1=2,m3b
?
j 0�1=2,m3;j 0�1,m2

�bj 0�1,m2;j 0�1=2,m1bj 0�1=2,m1;j 0,m 0

� �h�Gb?j,m;j 0�1=2,m3b
?
j 0�1=2,m3;j 0�1,m2

�aj 0�1,m2;j 0�1=2,m1bj 0�1=2,m1;j 0,m 0
�
: ð19Þ

The perturbed Hamiltonians (7) are given by:

Ej,m ¼ E
ð0Þ
j,m þ h 

ð0Þ
j,mjH1j 

ð0Þ
j,mi

¼ �h�Nþ �hAmþ
1

4
�hgð5j2 � 3jþm2Þ

�
1

4
ð j2 þ j� 3m2Þð�hg cos 2	 þ �h� sin 2	Þ

�mð2j� 1Þð�hg cos 	 � �h� sin 	Þ: ð20Þ

The corresponding eigenvectors have the form:

j j,mi ¼ j 
ð0Þ
j,mi þ

X
m1 6¼m

h ð0Þj,mjH1j 
ð0Þ
j,m1i

E
ð0Þ
j,m � E

ð0Þ
j,m1

j ð0Þj,m1i: ð21Þ

Utilizing Equations (19) and (21) we can calculate the
transition selection rules to the first order in para-
meters g and �, obtaining:

�?j,m;j,m 0 ¼ �1Sh j,mjB
yj j 0,m 0 i

¼ �1Sh 
ð0Þ
j,mjB

yj ð0Þj 0,m 0 i

þ �1S

X
m1 6¼m 0

h ð0Þj 0,m1jH1j 
ð0Þ
j 0,m 0 i

E
ð0Þ
j 0,m 0 � E

ð0Þ
j 0,m1

b?j,m;j 0,m1: ð22Þ

Here the unperturbed transition matrix element has
the form:

h ð0Þj,mjB
yj ð0Þj 0,m 0 i

¼ b?j,m;j 0,m 0 � �h�
Xj 0

m2¼�j 0

Xj 0�1=2
m1¼�j 0þ1=2

b?j,m;j 0,m2

�b?j 0,m2;j 0�1=2,m1bj 0�1=2,m1;j 0,m 0 : ð23Þ

Aside from the specifics of the dephasing mechanism,
the polariton eigenvalues (20) and transition dipole
moments (22) are the only necessary ingredients for
calculating the fluorescence signals with sum-over-
states formalism. This is the subject of the next section.

3. Fluorescence from CM versus photoinduced

polaritons

In the following approach, developed in [27,30] we
assume that each of our two photon detectors can mea-
sure the rate of change of the number of photons in the
given free field4 mode !1 within a time frame (t� t0):

S1ðt, t0Þ ¼

ðt
t0

d

d�
hay1a1it0d�: ð24Þ

In the beginning of the measurement t0, the free field is
assumed to be in its vacuum state, thus making our
experiment setup equivalent to those of Glauber
photon counting. Notation h� � �it0 means averaging
over the initial state of the system (polaritons þ
free field). The signal can be calculated perturbatively

Journal of Modern Optics 2013

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
I
r
v
i
n
e
]
 
A
t
:
 
1
7
:
4
0
 
6
 
A
p
r
i
l
 
2
0
1
1



to desired order. CTPL diagrams provide a convenient

framework for such expansion. Single photon counting

can be described by the CTPL diagram shown in

Figure 2(a).
Using the loop diagram rules in [27,30] the single-

photon fluorescence can be written as:

S ð1Þð!1Þ ¼ N
2��h!1

�
Im

X
j0,m0

jh ðt0Þj j0,m0ij
2

�
i

�h
h j0,m0jB

yGf j0,m0gð!1ÞBj j 0,m0i

� �
: ð25Þ

Here, j (t0)i is the initial state of the system,and

G(!) (Gy(!)) is the retarded (advanced) propagator

given by:

Gfj0,m0gð!Þ! ¼ i�h
X
jm

j j,mih j,mj

�h!þ Ej0,m0 � Ej,m þ i�h� ð26Þ

where � is the dephasing rate of the corresponding

transition. Here we assume that it is mostly defined by

the quality of the cavity Q¼EC/�h�.
Using the transition selection rules in Equation

(22), the single-photon fluorescence can be written as:

S ð1Þð!1Þ ¼ N
2��h!1

�1
Im

X
j0

Xj0
m0¼�j0

Xj0�1=2
m1¼�j0þ1=2

Pð j0,m0Þ

� j�j0,m0;j0�1=2,m1j
2G?j0,m0;j0�1=2,m1ð!1Þ:

ð27Þ

Here, Green’s functions are the matrix elements of the
propagator in the polariton basis:

Gj0,m0;j0�1=2,m1ð!Þ ¼
�h

i�h!� ðEfj0,m0g �Efj0�1=2,m1gÞ þ i�h�
:

ð28Þ

The probability of a single quantum dot having state
j j0,m0i initially populated has been denoted as:

Pð j0,m0; t0Þ ¼ jh ðt0Þj j0,m0ij
2: ð29Þ

This probability once combined with the transition
dipole moment Pð j0,m0; t0Þj�

?
j0,m0;j,m1j

2 determines the
intensity of the spectral lines. According to Equation
(22) after some straightforward algebra the levels
selection rule can be written as j0� j¼ 1/2. This
simply signifies that a single photon emitted from the
micro cavity reduces the number of polaritons by one.
Similarly, projection of the angular momentum pro-
vides sub-level part of the transition rule. The linear
part of the Hamiltonian, Equation (10), results in
m�m0¼�1/2 transitions, while its nonlinear part,
Equation (19), is a source of additional transition rules:
m�m0¼�3/2, �5/2.

In full analogy with the single emitted photon
fluorescence we can derive the signal for the two-photon
emitted fluorescence. Experimentally, it can be homo-
dyne detected via a two-photon counting procedure
when two detectors simultaneously detect a change in
photon population of the two given free field modes:

S1,2ðt, t0Þ ¼

ðt
t0

d

d�
hay1a1 þ ay2a2it0d�: ð30Þ

(a) (b)

(c)

Figure 2. CTPL diagrams ([30] MARX) for (a) one-photon and (b) two-photon fluorescence. (c) Level scheme of polaritons. The
arrows indicate transitions between the levels (sub-levels selection rules are not shown).
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Using CTPLs in Figure 2(c) we can rewrite the signal

above as:

S ð3Þð!1,!2; t0Þ

¼ �N
2�!1

�h�1

2�!2

�h�2
Im
X
j0

Xj0
m0¼�j0

Pð j0,m0; t0Þ

�
Xj0�1=2

m1¼�j0þ1=2

Xj0�1
m2¼�j0þ1

j�?j0,m0;j0�1=2,1�
?
j0�1=2,m1;j0�1,m2j

2

�G?j0,m0;j0�1,m2ð!1þ!2ÞjGj0,m0;j0�1=2,m1ð!1Þ

þGj0,m0;j0�1=2,m1ð!2Þj
2: ð31Þ

When the pump beam is off-resonance, the system

usually finds itself in the mixed multi-exciton, or – as it

is in our case – multi-polariton state. The specifics of of

the population mechanism are all embedded into

coefficients P( j0,m0; t0). We will compare conven-

tional multi-photon induced fluorescence with fluores-

cence generated via the CM mechanism.
Since the energy separation between polariton sub-

levels is much smaller than those between the levels, we

neglected the possible difference in population of the

polariton sub-levels: P( j0,m0; t0)!P( j0; t0). This sim-

plification allows us to use the exciton population

phenomenological theory developed in [1,10] to calcu-

late polariton population coefficients. Following their

reasoning, in the case when the pump photon energy is

much greater than the quantum dot energy gap Eg,

carrier-induced absorption saturation is insignificant.

Thus, the probability of generation of an electron/hole

pair in the quantum dot is independent of the number

of pairs already existing in it. When polariton states are

populated by a high intensity pump beam (no CM),

photoinduced-populations exhibit a Poisson distribu-

tion for which the average number of polaritons is

simply proportional to the pump fluence jp as:

hN0i¼ jp�a. Here, �a is the quantum dot absorption

cross-section. The Poisson distribution of polariton

populations may be written as:

Pð j0, hN0iÞ ¼
hN0i

2j0

2j0

exp ð�hN0iÞ

ð2j0Þ!
: ð32Þ

It represents the probability of having N polaritons in a

selected quantum dot for a given single quantum dot

for a given single exciton average population hN0i,

which is an experimentally determined parameter.
The situation changes when the CM mechanism

plays its role. The Poisson distribution is no longer

valid and with the pump energy being in the

range 3Eg5�h!p54Eg, we shall use the following

CM-induced polariton distribution [10]:

Pð j0, hN0i,�Þ ¼
X2 j0�1

n 0¼d2 j0=3e

Pðn 0, hN0iÞ

�
X2n 0

n¼2j0�1

�nð1��Þ2n
0�n ð2n 0Þ!

n!ð2n 0 � nÞ!
: ð33Þ

The phenomenological parameter � is related to the
quantum yield as: QY¼ 2�þ 1; notation d� � �e means
taking the ceiling of the inside parameter. When �¼ 0
the contribution from CM disappears and the signal is
defined by the Poisson distribution of multi-photon
induced fluorescence. Relative multi-polariton contri-
butions for various � are illustrated in Figure 1(b).

It is relatively simple to modify Equations (32) and
(33) to describe the transient fluorescence:

Pð j0; t0Þ ¼
Pð j0, hN0iÞ

Pð j0, hN0i, �Þ


 �
exp ð�t0=�j0Þ ð34Þ

where �j0 follows from the bi-exciton �1 lifetime [31] as:
�j0¼ �1/j0

2. These quantities describe Auger decay of
the polaritons via its excitonic part.

Note that P( j0; t0) could be alternatively found
using the spectral density of the multi-exciton states, as
proposed in [11]. In their model, the quantum yield has
the meaning of the average exciton multiplicity.
However, such an approach would require multiple
adjustment phenomenological parameters related to
the underling relaxation mechanisms and will be
reported elsewhere.

To summarize this section, the fluorescence equa-
tions, Equations (27) and (31), describe the signal and
two-photon fluorescence, provided that 2D parameters
(Equations (3), (4) and (6)) are known. The CM
induced fluorescence is given by initial polariton
distribution (Equation (32)) and will be compared
with photoinduced fluorescence given by Equation
(33). Various spectroscopic resonances shall be classi-
fied in accordance with corresponding polariton levels.
This may be accomplished by observing the time
evolution of the spectral snapshots in the transient
setup using Equation (34). All the above signals will be
discussed in the next section for various combinations
of material parameters.

4. Numerical results and discussion

Hereafter, we shall assume the following micro-cavity
parameters: the de-tuning between the exciton and the
cavity mode is zero D¼ 0 thus making the central
frequency equal to both !c and !1S. Their values may
be approximated by the band-gap energy but since we
present our graphs in the de-tuning of the emitted light
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and the central frequency coordinates !1�� the exact
value is not necessary. The quality factor is taken to be
Q¼ 13,000 corresponding to the de-phasing rate
�¼ 0.01meV; the exciton lifetime is 10�7 s and the
bi-exciton is 500 ps. The quantum dot is assumed to be
able to accommodate at least four excitons in 1S lowest
state. On average, only 1% of the quantum dots accept
more than one photon hN0i¼ 0.01, thus keeping us
away from the possible saturation. This parameter
fully defines Poisson statistics of multi-photon induced
fluorescence. For carrier-multiplication-induced fluo-
rescence we have to specify parameter �40 which
varies in our simulations. Note that since we use the
bosonization procedure based on Usui transformation
our model is fully justified in the weak confinement
regime for rather large QDs. However, it was shown
in [32] that the approximation (5) is valid up to the
saturation limit (q-deformed bosons approximation
q2¼ 1� �). The nonlinearity parameters must be then
redefined and such regimes will be reported elsewhere.

First, we shall consider regime of strong polariton
coupling (compared to the nonlinearities) when G�
g� �G. We assume the following QD parameters:
exciton-microcavity central mode coupling G¼ 2.5meV,
the Coulomb matrix element g¼ 0.3meV (so that
G� g), the phase filling is neglected �¼ 0. The resulting
spectra are shown in Figure 3.

In the case when CM does not play its role (�¼ 0,
QY¼ 1) we have standard polariton emission. There
are two spectral resonances (Rabi doublet) provided by
a single polariton state and separated by 2G as shown
in Figure 3(1.1). The contribution from multi-polariton
states emission is too weak to be observable in a single
photon emission specter. However, they show them-
selves in the correlation specter Figure 3(1.2). The
correlation resonances shown there occur between !1

photon and virtual double photon !1þ!2. In accor-
dance with Equation (31) the resonances due to !1

photon occur at the poles of the retarded Green’s
function Gj0,m0;j0�1/2,m1(!1) while the virtual double
photon !1þ!2 resonances are given by the poles of the
advanced Green’s function across the loop
G?j0,m0;j0�1,m2ð!1 þ !2Þ. More precisely, the correlation
between N¼ 1 (horizontal axes) and N¼ 2 (vertical
axes) provide resonances arranged in a ladder-like
pattern. The horizontal steps have the size of G and the
vertical steps are of 2G size. We shall refer to such
correlation resonances as group A. When the CM
effect is increased to �¼ 0.1, QY¼ 1.2 the effect of
multi-polariton emission is enhanced. The two other
peaks from N¼ 2 manifold and separated by 4G arise
as illustrated in Figure 3(2.1). They correspond to a
Rabi quadruplet. The central two peaks are hidden by
the Rabi doublet. The correlation specter
(Figure 3(2.2)) also reveals correlation between N¼ 3

and N¼ 2 manifolds (group B). A further increase of
the quantum yield (�¼ 0.5, QY¼ 2) reveals N¼ 3 Rabi
multiplet (Figure 3(3.1)). The central peaks of which
are masked by the lower multiplets. The correlation
resonances between N¼ 3 and N¼ 4 polariton states
appears in Figure 3(3.2). Rabi multiplets are slightly
split by the Coulomb interaction.

Now let us turn to the weak coupling regime by
assuming smaller size QD. Such a regime we define by
the following parameters: G¼ 4meV and g¼ 3meV.
At this point we assume the phase filling �¼ 0.1 since it
scales as �1/V while the Coulomb coupling scales as
�1/V1/3 [29,33,23]. The spectra are given in Figure 4.
Owing to to strong nonlinearities the multi-polaritons
pronounce themselves even in the absence of the CM.
However, their contribution is much more effective in
the CM case. The Rabi multiplets become asymmetric
and the emission is predominantly given by the
excitonic part of the polariton manifolds. The
Coulomb splitting of the multiplets is strong enough
to mix up the resonances from various multiplets. To
classify the resonances and correlation resonances it is
convenient to use transient photoluminescence setup.
We take spectroscopic snapshots at various t0s along
the Auger-driven multi-exciton relaxation as shown in
the frequency integrated specter (Figure 1(b)). Due to
quantized Auger lifetimes the contributions from the
multi-polariton manifolds become less pronounced
sequentially. That is, the contribution from N¼ 4
dies out first then N¼ 3 disappears from the spec-
tra and so on until we are left with the Rabi
doublet (N¼ 2).

The most interesting observation and the main
result of this paper is that the fluorescence spectra from
the excitons themselves (G¼ 0) do not show any
spectral sensitivity to the CM parameter �. Even
more so, this result holds true for any confinement
regime above the saturation limit. With and without
CM the central exciton resonance is just split into
multiple exciton resonances separated by g (see
Figure 4(3.1), 4(3.2)). Since for excitons �G¼ 0 the
phase filling only modifies relative intensity of the
peaks as given by Equation (23). Given a large
dephasing parameter these multiexciton resonances
are accountable for non-Lorentzian line shape [12].
Analogously, the polariton spectra become insensitive
to the CM mechanism under increasing de-tuning D.
On the other hand, the polariton emission spectra
become more sensitive to the CM parameter � when
the coupling G increases. Another merit of the
proposed polariton-based fluorescence is the ability
to detect signatures of the CM for the values of the
pump fluence one order of magnitude smaller than
those required for conventional exciton transient
photoluminescence. This may be used for CM
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detection in solar cells exposed to relatively low
intensity sunlight.

5. Conclusions

Using the micro-cavity coupled to weakly confined
excitons in quantum dots we investigated the

signatures of carrier multiplication in the single- and

two-photon emitted frequency resolved fluorescence.

These are compared to the spectra provided by the

conventional multi-photon induced fluorescence.

The two processes are distinguished by the statistics

of the initial polariton distribution. We argue that

N=1

N=2

N=3

N=1

N=2

N=1

A

A

A

C

C

B

B
B

B

Figure 3. Multi-polariton single (left panels) and two-photon (right panels) fluorescence spectra for small exciton nonlinearities
with (2.1), (2.2), (3.1), (3.2) and without CM (1.1), (1.2). Region (C) indicates correlation resonances (CR) between N¼ 4 and
N¼ 3 levels. Region (B) also includes CR from N¼ 3 and N¼ 2 levels. Region (A) includes, in addition to the above, CR from
N¼ 2 and N¼ 1 levels. (The color version of this figure is included in the online version of the journal.)
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(1)

(2)

(3)

(1)

(2)

(3)

(a) (b)

Figure 4. Multi-polariton single (panels (a)) and two-photon (panels (b)) fluorescence spectra in the presence of exciton
nonlinearities comparable with the exciton-photon coupling. Panels (1) show multi-photon induced fluorescence (�¼ 0). Panels
(2) include CM effect (�¼ 0.01) on the spectra. Panels (3) show multi-exciton fluorescence in the absence of the micro cavity
coupling (the CM effect is present). Notice that, in the latter case, the presence of CM does not change the spectral form. For all
panels the resonances are classified by taking the spectral snapshots along the Auger driven relaxation (see Figure 1(b)). (The
color version of this figure is included in the online version of the journal.)
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exciton emission spectra turned out to be CM insensi-
tive, while the polariton’s emission demonstrates strong
spectral signatures of the CM. When the polaritonic
effect dominates the confinement-boosted exciton’s
nonlinearities, increasing quantum yield leads to con-
secutive appearance of Rabi multiplets. The correlation
spectra reveals formation of more multiplets as com-
pared with the single photon emission. When the
confinement increases, the multiplets start to overlap
and their classification requires transient measurements
of the spectral snapshots. These are based on the
discrete Auger lifetimes of the multi-excitons. Increased
nonlinearities boost the CM spectral signatures.
According to our model, the search for CM signatures
in polariton fluorescence spectra would require smaller
pump fluence compared with those for conventional
transient photoluminescence.
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Notes

1. A process whereby the hot electron relaxes to its ground
state and the excess energy is transferred via Coulomb
scattering to the hole, which is excited deep into the
valence band.

2. A highly excited carrier decays to its ground state and
excites a valence electron across the bandgap, thus
producing two electron-hole pairs from one.

3. We use the term fluorescence rather than photolumines-
cence since we do not specify the relaxation mechanisms
and bundle them up into the dephasing parameter.

4. Since fluorescence is a phase insensitive process, the
mode is fully defined by its frequency, and the wave
vector may be omitted.
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[29] Liu, Y.; Imoto, N.; Özdemir, S� .; Jin, G.; Sun, C.P. Phys.

Rev. A 2002, 65, 023805.

[30] Roslyak, O.; Mukamel, S. Mol. Phys. 2009, 107,
265–280.

[31] Klimov, V.; Mikhailovsky, A.; McBranch, D.;

Leatherdale, C.; Bawendi, M.G. Science 2000, 287,
1011–1013.

[32] Avancini, S.; Krein, G. J. Phys. A: Math. Gen. 1995, 28,
685–691.

[33] Liu, Y.X.; Cao, C.Q.; Cao, H. Phys. Rev. A 2000, 61,
023802.

Journal of Modern Optics 2019

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
,
 
I
r
v
i
n
e
]
 
A
t
:
 
1
7
:
4
0
 
6
 
A
p
r
i
l
 
2
0
1
1


