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Communication: Comment on the effective temporal and spectral
resolution of impulsive stimulated Raman signals
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A compact correlation-function expression for time-resolved stimulated Raman signals, generated
by combining a spectrally narrow (picosecond) with a broad (femtosecond) pulse, is derived using a
closed time path loop diagrammatic technique that represents forward and backward time evolution
of the vibrational wave function. We show that even though the external spectral and temporal param-
eters of the pulses may be independently controlled, the effective temporal and spectral resolution of
the experiment may not exceed the fundamental bandwidth limitation. © 2011 American Institute of
Physics. [doi:10.1063/1.3581889]

Stimulated Raman spectroscopy (SRS) has found pow-
erful applications in biomedical imaging.1, 2 Closely related
coherent Raman spectroscopy (coherent anti-Stokes Raman
spectroscopy) has been proposed for remote sensing.3, 4 Pulse
shaping techniques have been used for manipulating these
signals.5–7 Impulsive stimulated Raman scattering uses fem-
tosecond pulses to measure simultaneously molecular vibra-
tions over a broad bandwidth.8–10 It has been argued that
by using a combination of a femtosecond and a picosecond
pulse it is possible to achieve both high spectral and tem-
poral resolution that exceed the fundamental transform limit.
This was denoted “circumventing Heisenberg.”11, 12 Experi-
ments on deuterated chloroform13 and other systems11 show
how the phase of the Raman-like features changes with a time
resolution (<50 fs) while the spectral resolution is less than
30 cm−1. Typical experimental data on rhodopsin14 are shown
in Fig. 1 (left panel).

Here we present a microscopic calculation and intuitive
analysis of these signals by using a compact loop diagram
representation. We show that when the temporal and the spec-
tral resolution are properly defined, their product may not
violate the transform limit. Only higher-order measurements
with more pulses can have non-conjugate time and frequency
axes that are not subject to the transform limit.

We focus on the experimental pulse configuration shown
in Figs. 2 and 3(a). A femtosecond pulse (k1) brings the
molecule to an electronically excited state where isomeriza-
tion is launched. A long picosecond pulse (k2) then excites the
system while a third short pulse (k3) centered at τ = T stim-
ulates the Raman signal which is dispersed in a spectrometer
and recorded versus frequency. The apparent time-resolution
�t is controlled by the delay T between the two femtosec-
ond pulses, and the spectral resolution �ω is determined by
the spectrometer. Since these are independent devices, there
is no lower limit on the �ω�t product. It is tempting to think
that since the Raman signal is stimulated by the second short
pulse, its time is well defined and the dispersed Raman signal
(left panel of Fig. 1) thus gives high resolution snapshots of
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the vibrational frequencies at that time. As we show below,
this interpretation is false.

Nonlinear optical signals are most commonly described
using double sided Feynman diagrams that represent the evo-
lution of the density matrix in Liouville space.15 That ap-
proach keeps track of the forward evolution in real time and
is particularly appealing for time domain (impulsive) tech-
niques. It was extensively used by Lee et al. to calculate the
Raman signals.16

We shall adopt a different, loop diagram, representation17

as shown in Fig. 3(b). We shall explain its advantages for
this application after presenting the result. The left branch of
the loop represents forward propagation of the wave function,
and the right branch corresponds to backward propagation as
we move clockwise (for rules see Ref. 17). The loop gives
the time-dependent polarization (or scattered field) at time t ,
P(t). Pulse k1 will not be treated explicitly. Instead we as-
sume that this pulse is impulsive and initiates a reaction, mak-
ing the Hamiltonian time dependent through its variation with
a classical reaction coordinate.18 The polarization induced by
the five interactions can be directly read from Fig. 3(b) and is
given by

P (5)(t) =
∫ t

−∞
dτ2

∫ t

−∞
dτ3

∫ τ3

−∞
dτ4E∗

2 (τ4) E3 (τ3) E2 (τ2)

× 〈
V G† (τ3, τ4) VG† (t, τ3) V G (t, τ2) V

〉
. (1)

The electric fields are decomposed into the positive fre-
quency (E) and negative frequency (E∗) components as Ei (t)
= E i e−iωi t + E∗

i eiωi t . V is the dipole operator, and the
two-time Green’s function G(t2, t1)G†(t2, t1) represents for-
ward (backward) propagation from t1 to t2 under the time-
dependent Hamiltonian. The frequency-dispersed signal is
given by15

SSRS(ω) = �P (5)(ω)E∗
3(ω) , (2)

where

P (5)(ω) =
∫ ∞

−∞
dt P (5)(t)eiωt . (3)

Note that P (5)(t) is the positive frequency part of the polariza-
tion so that S(ω) = 0 for ω < 0.
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FIG. 1. Stimulated Raman signals from rhodopsin for different values of the
delay time T (in femtoseconds). Left panel: Experimental data adopted from
Ref. 14. Right panel: Fit to the data obtained using Eq. (4) and the same
four vibrational mode model used in Ref. 14 but with different parameters
(From Science 310, 1006 (2005). Reprinted with permission from AAAS).

For clarity we further assume that pulse k2 is monochro-
matic (E2(τ ) ≈ E2 exp(−iω2τ )), and k3 as impulsive (E3(τ )
≈ E3δ(τ − T )). Our conclusions are more general and hold
for other pulse shapes. Equation (1) then results in

P (5)(t) = i |E2|2E3
|Vab| 2 |Vcb| 2

(ω2 − ωab) 2

× exp

(
−iω2(t − T ) + i

∫ t

T
ωca(τ ) dτ − γca|t − T |

)
,

(4)

where Vi j , ωi j (τ ), and γi j , are the dipole matrix element,
time-dependent frequency, and dephasing rate for the i ← j
transition, respectively. The dephasing rate is due to finite life-
time as well as pure dephasing.

As we can see, the signal depends on the entire trajec-
tory of the frequency ωca(τ ) between the stimulation time T
and the detection time t . It may not be simply related to a
single snapshot of ωca(T ). In a frequency-dispersed measure-
ment [Eqs. (2) and (3)] t varies between −∞ and ∞, thus the
control parameter T does not represent the actual time of mea-
surement. Equation (4) for the time-dependent polarization is
to be contrasted with the phenomenological expression used
in the simulations of Ref. 14, where ωca(t)(t − T ) replaces
the integral over the changing vibrational frequency.

FIG. 2. Pulse sequence for the stimulated Raman experiment considered
here. The arrival time of the electronically resonant pulse k1 defines the time
origin (τ = 0) and launches the vibrational dynamics. The electronically off-
resonant pulse pair, k2 and k3, arrive at the sample at τ = T .

(a) (b)

FIG. 3. (a) Level scheme for the time-resolved Raman process. g is the sys-
tem ground state, a and c are vibrational states belonging to the excited elec-
tronic state accessed by the first pulse, whereas b is a higher-lying excited
state accessed transiently in the Raman process. (b) Closed-time path-loop
diagram for the polarization P (5)(t) [Eq. (1)] responsible for the stimulated
Raman signal. The loop describes the propagation of the wave function by
moving clockwise (forward (backward) in the left (right) branch). The inter-
action times are denoted τi . t is chronologically the last time. Time variables
are ordered within each branch but not between branches. The density ma-
trix formulation, in contrast, maintains complete time ordering and separates
the diagram into several Feynman diagrams. Due to the short duration of the
electronically resonant pulse, k1, the interaction times τ1 and τ5 are localized
near τ = 0. Pulse k3 is also impulsive, and τ3 is confined to the vicinity of
τ = T . τ2 and τ4 are loosely controlled by the envelope of the picosecond
k2 pulse whereas the observation time t is not controlled by the pulses. The
t − τ3 interval is limited by the vibrational dephasing timescale γ −1

ca .

Some insight into the effective time resolution of these
measurements can be obtained by considering a model sys-
tem of a single vibrational mode whose frequency changes
according to

ωca(t) =
{

ωfinal
ca + e−t/t ′(

ωinitial
ca − ωfinal

ca

)
: t ≥ 0

ωinitial
ca : t < 0

. (5)

In Fig. 4, we use Eq. (4) to model the signal for this model
with the dephasing time set to γ −1

ca = 620 fs. The vibrational
frequency at the arrival time of pulse k3 is shown by a red cir-
cle in each case. In Fig. 4(a) t ′ = 5 ps and spectra are shown
for values of T in increments of 500 fs. Here the timescale t ′

over which the vibrational frequency changes is much shorter
than the dephasing time γ −1

ca , and the peak position in the de-
tected polarization is in quite good agreement with the nomi-
nal vibrational frequency ωca(T ). Figure 4(b) has t ′ = 300 fs
and 200 fs increments between measurements. Only for the
very slow reaction is the vibrational frequency well resolved.

We had further applied the theory to simulate the signals
of Ref. 14 from rhodopsin. The simulation shown in Fig. 1
includes four vibrational modes, one of which has a constant
frequency of 959 cm−1 and three of which vary according to
Eq. (5). The polarization is modeled according to Eq. (4),
with γ −1

ca = 620 fs. This fit is of similar quality of that of
Ref. 14 but the fitting parameters are different. The results
from a crude fit give t ′ = 300 fs, initial frequencies ωinitial

ca of
750, 770, and 820 cm−1, and final frequencies ωfinal

ca 867, 851,
and 915 cm−1. Including finite-duration pulses did not signif-
icantly affect these results.
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FIG. 4. Stimulated Raman signals calculated for a model system consisting
of a single vibrational mode whose frequency varies according to Eq. (5) for
successive values of the interpulse delay T, starting with T = 200 fs, with
fixed increments from bottom to top. The vibrational frequency ωca(T ) is
indicated as a red circle, and the dephasing time is γ −1

ca = 620 fs. (a) The fre-
quency changes very slowly (t ′ = 5 ps) compared with γ −1

ca . The increment
is �T = 1.2 ps. (b) The frequency changes rapidly (t ′ = 300 fs) compared
with γ −1

ca , and the increment is �T = 200 fs.

Observing the oscillation period from a Raman mode is
not the same as having that time-frequency resolution. For ex-
ample, when one obtains an interferometric autocorrelation,
one is able to observe oscillations with the period of the op-
tical carrier frequency. For 800 nm one would observe oscil-
lations that are 2.7 fs in period regardless of the pulse dura-
tion. The data used in Ref. 14 to support the violation of the
time-bandwidth product only detected the phase of the Raman
oscillations and does not prove superior time resolution.

The closed-time path loop follows the wave function in
Hilbert space and requires both forward and backward time
evolutions.17 It is more compact since it only maintains partial
time ordering of interactions (on the forward and on the back-
ward branches, but not between branches). When describing
experiments with temporally overlapping pulses the loop rep-
resentation contains fewer terms since there is no need to
maintain complete time ordering. This is particularly helpful
in the present application where we need only one diagram
[plus its complex conjugate, this is why we have imaginary
part in Eq. (2)].

The stimulated Raman signal obtained by employing
a broad and a narrow pulse offers a high spectral res-
olution of vibrational lines and some useful but limited
(integrated) information on the time dependent vibrational
frequencies. The loop diagram provides a convenient tool
for computing and interpreting these signals. It clearly re-
veals the origin of the Raman resonances: They are gen-
erated during a single time interval in this diagram where
the system’s wave function propagates backward from the
observation time t to τ3 which is close to the delay
time T . Note that t − T is a time interval between two
successive interactions along the loop but not in real time.

The natural time variables in the double sided approach are
the intervals between successive interactions in real time. This
is why the loop representation is so natural for the description
of this signal. The alternative description of these resonances
in terms of the density matrix is fully time ordered and in-
volves only forward propagation.15 However, it will be much
less intuitive since the loop diagram is then split into several
double-sided diagrams and there is no single interval respon-
sible for the resonances.

Figure 3(b) shows that the temporal and spectral reso-
lutions are conjugates: both are determined by a single time
interval t − τ3. The observed narrow vibrational lines indi-
cate that t is long and hence the temporal resolution must be
low. In fact, the signal from the isomerization product ωfinal

ca
appears even at T = 0. This does not imply a fast reaction,
but rather reflects the low temporal resolution of the measure-
ment. It is true that the control parameters satisfy �ω�t < 1,
but these do not reflect the intrinsic resolution of the measure-
ment.

By comparing Eqs. (1) and (2), we see that the femtosec-
ond pulse envelope E3 appears twice in the signal: as E3(τ3)
and E∗

3(ω). E3(τ3) in the right branch is impulsive and ensures
that the interaction time τ3 is centered at τ3 = T within the
pulse envelope. For the detection (top interaction in the left
branch), Eq. (2) selects a single Fourier component, k3 then
provides the broad bandwidth for its detection via Eq. (2).
The time t is not restricted by the duration of pulse 3. The
long t − T interval is the reason for the low temporal reso-
lution and the high spectral resolution (narrow Raman lines).
The dispersed signal for the delay time T depends on the en-
tire time evolution between T and ∞. The signal does depend
parametrically on T since only the dynamics between T and
∞ is monitored. This dependence contains useful informa-
tion, but technically there is no temporal resolution for the
subsequent vibrational dynamics. The �ω�t > 1 inequality
for the effective resolution is maintained.

Different detection modes have different degrees of con-
trol over t , which determine the effective spectral and tem-
poral resolution of the signal. The temporal resolution of the
frequency dispersed signal considered here, �P (5)(ω)E∗

3(ω),
is determined by γ −1

ca which limits the range of t values that
contribute to the integral in Eq. (3). Time-resolved detection,
�P (5)(t)E∗

3(t), will sharply restrict the t − T interval since
E∗

3(ω) is replaced by E∗
3(t), but the spectral resolution will

be poor. Intermediate resolutions can be achieved by a proper
gating.19 It should be possible to control the temporal and
spectral resolution of the signal by using three pulses and
looking at the homodyne four-wave mixing signal generated
spontaneously in the direction k2 − k2′ + k3. The signal can
then be gated19 and the gating spectrogram may be varied to
adjust the resolution. The two extreme limits for the gated
spontaneous signal will be |P(ω)|2 [ideal spectral resolution,
resembling Eq. (2)] and |P(t)|2 (ideal temporal resolution).

The present diagram may be extended to include more
elaborate pulse sequences20 as well as pulse shaping effects.21

We have shown that electronically off resonant stimulated
Raman measurements cannot possess both high temporal and
spectral resolution, beyond the transform limit. The signal
is determined by the evolution during a single time interval,
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representing backward propagation from t to T .22 Since T is
sharply defined by the delay of the two short pulses (k1 and
k3), the effective temporal and spectral resolutions are deter-
mined by the degree of control of the detection time t. Strict
control will result in a time resolved measurement with no
spectral resolution. As this control is relaxed, spectral reso-
lution emerges at the expense of the temporal one, since the
two resolutions are Fourier conjugates and are bounded by
the transform limit. Multidimensional techniques involving
additional pulses can acquire both high temporal and spec-
tral resolutions, by controlling different time intervals.15 An-
other interesting extension will be to replace the electronic
excitation by k1 considered here by a broadband Raman
initiation.8, 9 This will create a wave packet of low frequency
vibrational modes. The initiation process must then be treated
quantum mechanically18 rather than in terms of a classical
coordinate.
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