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Trapping photon-dressed Dirac electrons in a quantum dot studied
by coherent two dimensional photon echo spectroscopy
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We study the localization of dressed Dirac electrons in a cylindrical quantum dot (QD) formed
on monolayer and bilayer graphene by spatially different potential profiles. Short lived exci-
tonic states which are too broad to be resolved in linear spectroscopy are revealed by cross
peaks in the photon-echo nonlinear technique. Signatures of the dynamic gap in the two-
dimensional spectra are discussed. The effect of the Coulomb induced exciton-exciton scattering
and the formation of biexciton molecules are demonstrated. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4707182]

I. INTRODUCTION

Due to its unique band structure, the charge carriers in
graphene are massless Dirac fermions which can cross high
potential barriers with ideal unity transmission coefficient (the
Klein paradox).1 This ensures a very effective escape chan-
nel from a trapping potential thus making it hard for conven-
tional Dirac electrons to be localized within graphene based
quantum dots (QDs). Within a finite spatial region defined by
sharp potential profile.2–8 To overcome this difficulty, and trap
the electrons for sufficiently long time, we propose to dress
the electrons with circularly polarized photons, thus providing
them with an effective mass.4, 9, 10 The localization is demon-
strated in a cylindrical QD formed in monolayer and bilayer
graphene by an antisymmetric potential kink. Conventionally
the measure of localization are characteristic resonances in
the electronic density of states.7, 8 The dynamical gap is stud-
ied semi-classically using Floquet’s theorem.11–13 We present
a fully quantum mechanical model, which is based on dress-
ing electrons in monolayer and bilayer configurations. Our
calculations show that the dressing not only opens up a dy-
namical gap in the energy dispersion but also renormalizes
the Fermi velocity and interlayer coupling coefficients. In the
bilayer configuration, the dressing tunes the gap. That is, it
can either close or open the gap, depending on the polarity
of the potential kink and the direction/degree of the polar-
ization. The resulting confined electronic states should have
similarities with the surface states of topological insulators.
Their energies are located inside the energy gap and the wave
functions decay away from the interface of the kink potential.
These topological states, with the carriers propagating along
the potential kink, are expected to be robust with respect to the
effects of disorder.2 The fully localized states are mixed with
the quasi-bound states above the energy gap which can ef-
fectively carry away the energy. Conventional linear response
spectra (proportional to the density of the states) provides
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limited information about them due to the large broadening
caused by their short lifetime.8

We propose to utilize femtosecond nonlinear spec-
troscopy in order to study their dynamics. We shall use a four-
wave mixing technique known as photon-echo.14 The mixed
signal is heterodyne detected in the direction of −k1 + k2

+ k3 as shown in Fig. 2. The photon echo is known to be
able to eliminate the inhomogeneous broadening due to im-
purities, and to allow us to focus on the intrinsic lifetimes
of the electronic states. We further discuss signatures of the
dynamic gap on the two-dimensional (2D) spectra. There is
yet another peculiar characteristic of localized Dirac elec-
trons. As in metals, they are dynamically screened, leading
to small Coulomb interaction between them. For small QD
this leaves Pauli blocking as the primary source of the non-
linear signal.7 This allows us to calculate it as a sum-over-
states (supermolecule) formalism. We can further simplify
the signal interpretation by switching to the quasiparticle pic-
ture. Those quasiparticles are given as deviation from ideal
bosons14 for which the nonlinear signals vanishes. We are
able to consider only excited states absorption Liouville path-
ways without contribution from the ground state bleaching
and excited state emission. This interference reduction pro-
vides a relatively simple interpretation of the 2D spectra.
The short lived states can be visualized via the coherences
(off-diagonal cross resonances) with those fully localized. We
employ visible light to map the QD interband transitions onto
the 2D spectra. Finally we briefly discuss the effect of the
Coulomb induced exciton scattering based on nonlinear exci-
ton equations.15 Possible formation of biexciton molecules is
demonstrated.

The outline of this paper is as follows. In Sec. II, we
present the model Hamiltonian for graphene irradiated with
a circularly polarized electromagnetic field. We deal with the
trapping of the dressed electrons within a QD in Sec. III.
Sec. IV presents the absorption and correlation spectrum for
dressed electrons in a QD. We present numerical results in
Sec. V and conclude in Sec. VI with a summary of our
results.
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II. DRESSED ELECTRONS IN FREE
STANDING GRAPHENE

The electronic Hamiltonian of graphene irradiated with
an electromagnetic field may be expressed as (see Ap-
pendix A)

H = H0 + H1 + H2, (1)

H0 = ¯ω0a
†
0a0 + W0√

N0
(σ+a0 + σ−a

†
0), (2)

H1 = ¯vF σ · k + IV (x, y), (3)

H2 =
∞∑
i=1

¯ωia
†
i ai + Wi√

Ni

((σ+ + σ−)(ai + a
†
i )). (4)

Here, H0 describes the Jaynes-Cummings model16 with a0

being the annihilation operator of a single mode circularly
polarized optical field with frequency ω0 and N0 photons in
the mode. Each of them carries the energy ¯ω0. σ± = (σ x

± iσ y)/2 are raising and lowering operators for z − projec-
tion of the electron’s pseudo-spin. In matrix representation
these are Pauli matrices. W0/

√
N0 is the electron-photon cou-

pling, a quantum mechanical analogue of the classical rota-
tional motion caused by the circularly polarized wave.

H1 describes conventional Dirac Hamiltonian1 of
graphene with Fermi velocity vF = 106 m/s; k is the wave
vector measured from one of the K points, V (x, y) is an ex-
ternal QD confining potential; I is the identity matrix. H2

describes the rest of the optical modes later used to probe the
dressed states by four-wave mixing process.

The Hamiltonian H0 may be diagonalized in a straight-
forward way16 in the following basis:

|ψN0〉 =
(

|ψ+,N0〉
|ψ−,N0〉

)
, (5)

|ψ±,N0〉 = cos φ|±, N0〉 ± sin φ|∓, N0 ± 1〉, (6)

cos φ =
√

�N0 + ¯ω0

2�N0

, (7)

sin φ =
√

�N0 − ¯ω0

2�N0

,

(8)

�N0 = ¯ω0 + W 2
0 (N0 + 1)/N0.

Here, the direct product state |±, N0〉 define the uncoupled
electron with pseudo spin up (+) or down (−), and the opti-
cal mode with N0photons. Eq. (6) defines the dressed electron
states. On the basis of Eq. (5), the Jaynes-Cummings Hamil-
tonian assumes the form

〈ψN0 |H0|ψN0〉

=
( 〈ψ+,N0 |H0|ψ+,N0〉 〈ψ+,N0 |H0|ψ−,N0〉

〈ψ−,N0 |H0|ψ+,N0〉 〈ψ−,N0 |H0|ψ−,N0〉
)

=
(

N0¯ω0 + Eg/2 0
0 N0¯ω0 − Eg/2

)

= IN0¯ω0 + (Eg/2)σ3. (9)

The first term is a constant, and may be omitted.

The remaining Hamiltonian matrix elements are calcu-
lated in Appendix B, yielding

〈ψN0 |H1|ψN0〉 = ¯ṽF σ · k + IV (x, y), (10)

〈ψN0 |H2|ψN0〉

=
∞∑
i=1

I¯ωia
†
i ai + W̃i√

Ni

((σ+ + σ−)(ai + a
†
i )), (11)

where ṽF ≡ vF cos2 φ is the renormalized Fermi velocity and
W̃i ≡ Wi cos2 φ are the renormalized couplings to the probing
optical modes.

In the absence of a potential (V (x, y) = 0), the eigen-
values of H0 + H1 are ±√

(¯ṽF k)2 + (Eg/2)2 and the corre-
sponding eigenfunctions are

�+(k) = eikr

(
cos (αk/2)

eiβk sin (αk/2)

)
, (12)

�+(k) = eikr

(
sin (αk/2)

−eiβk cos (αk/2)

)
, (13)

Tanβk = ky/kx,

Tanαk = 2¯ṽF k/Eg.
(14)

The eigenvalues are the small part of a more general quasi-
energy Floquet optical lattice (see Ref. 11). Circular polariza-
tion provides the maximum optically induced gap, while with
linear polarization the gap vanishes. Therefore, we do not
cover the latter case in the manuscript.

In Appendix D we present the effective Hamiltonian
of bilayer graphene subjected to circularly polarized light.
The main effects can be summarized as: renormalized in-
terlayer coupling coefficients, broken symmetry between the
sub-lattices (A1, B1; A2, B2) of each of the layers, broken sym-
metry between the sub-lattices (A1, B2; A2, B1) belonging to
different layers.

III. DRESSED ELECTRONS CONFINED IN A QD

Let us now turn to the problem of trapping dressed elec-
trons within a QD. Since the confining potential V1(x, y) is
radial it is convenient to work with cylindrical coordinates x
= r cos θ y = r sin θ . This amounts to the following substitu-
tions:

kx = −i∂x, ky = −i∂y,

∂x ± i∂y = e±iθ

(
∂r ± i

r
∂θ

)
.

(15)

Thanks to the potential radial symmetry the Hamiltonians
in Eqs. (D7) and (D8) commutes with the angular momentum
operator L̂z = I(xky − ykx). Therefore, we may seek solu-
tion of the Dirac equation in the form

|�m(r)〉 =
(

ψm,B(r)ei(m+1/2)θ

iψm,A(r)ei(m−1/2)θ

)
. (16)

Here, the projection of the angular momentum has eigen-
values m = ±1/2,±3/2,±5/2, . . . . Substituting Eqs. (15)
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FIG. 1. Energy levels (blue dots) of a QD formed in a graphene monolayer. Green dots correspond to dressed Dirac electrons. The confining potential is
V1 = 20, and the gap Eg = 10 (in units of 2R/3γ̃0a).

and (16) into (D8), we obtain the following system of ordi-
nary differential equations(

V1(r) + (Eg/2) 3
2 γ̃0a

(
∂r − m−1/2

r

)
− 3

2 γ̃0a
(
∂r + m+1/2

r

)
V1(r) − (Eg/2)

) (
ψm,B(r)
ψm,A(r)

)

= E

(
ψm,B (r)
ψm,A(r)

)
. (17)

Here, we introduced renormalized interlayer coupling γ̃0

= (2¯vF /3a)Cos2φ. Assuming that the solution of Eq. (17)
has the form of

√
rψm(r) in the regions of constant potential,

we obtain

(
ψm,B (r<)

ψm,A(r<)

)
∼

⎛
⎜⎜⎜⎝

J|m−1/2|

(
2r<

√
E2−(Eg/2)2

3γ̃0a

)

J|m+1/2|

(
2r<

√
E2−(Eg/2)2

3γ̃0a

)
⎞
⎟⎟⎟⎠ , (18)

(
ψm,B (r>)

ψm,A(r>)

)
∼

⎛
⎜⎜⎜⎝

H
(1)
|m−1/2|

(
2r>

√
(E−V1)2−(Eg/2)2

3γ̃0a

)

H
(1)
|m+1/2|

(
2r>

√
(E−V1)2−(Eg/2)2

3γ̃0a

)
⎞
⎟⎟⎟⎠ . (19)

The Bessel function form of the wave function inside of
the QD (V1 = 0, r = r< ≤ R) is dictated by the fact that the
wave function must stay finite at r = 0. Outside the QD (V1

> 0, r = r> ≥ R) the wave function must describe the outgo-

ing wave at large distances (r> � R). We, therefore, took it
to be the Hankel function of first kind. At the boundary of the
dot the wave function must be continuous. The energies Em, n

of the quasi-stationary states inside of the QD are obtained by
solving the following equation:

H
(1)
|m−1/2| (k>R)

H
(1)
|m+1/2| (k>R)

= J|m−1/2| (k<R)

J|m+1/2| (k<R)
, (20)

where we have introduced the following notation:

k> = 2R
√

(E − V1)2 − (Eg/2)2

3γ̃0a
,

k< = 2R
√

E2 − (Eg/2)2

3γ̃0a
.

Those are shown in Fig. 1 for several chosen values of Eg. The
long living solutions Im[E] ≈ 0 can be obtained analytically
by noticing the following identities for the Hankel function in
the limit z  1,

H (1)
n (z) = Jn(z) + iYn(z)

= 1

(n + 1)

( z

2

)n

− i
(n)

π

(
2

z

)n

. (21)

It is clear from the above equation that when E = V1 ± Eg/2
the left hand side of Eq. (20) vanishes. Therefore, the real
energies of the QD correspond to the zeros of the Bessel
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FIG. 2. Schematic illustration of the photon-echo technique designed to
study the exciton scattering dynamics in graphene based QDs.

function with

J|m−1/2|

⎛
⎝2R

√
E2

m,n − (Eg/2)2

3γ̃0a

⎞
⎠ = 0. (22)

The splitting of the central peak in the density of states (DOS)
by the electron dressing should be readily accessible in optical
experiments. This will be the subject of the following section.

Now let us briefly comment on the QD in bilayer
graphene. Since the dressing of the electrons in the bilayer
allows wide manipulation of the gap (see Fig. 7(a.3)) one
can dynamically form conventional QDs. That is, those which
support infinitely living electronic states. There are two pos-
sible schematics shown in Fig. 7. In one case the dressing and
the substrate induced gap work concurrently and the whole
realization of the QD is almost identical to the one we had
discussed for the single layer. The only difference is the non-
homogeneous potential which forms the dot is the potential
between the graphene layers. Such QD can be readily real-
ized by screening of the substrate potential inside of the QD.
In the other schematic, the combination of the dressing and
the substrate potential closes the gap inside of the QD. The
electrons become trapped by the gap outside of the QD. In
both cases the analytical solution of Eq. (17) may be obtained
by following the procedure outlined in Refs. 2 and 6.

IV. ABSORPTION AND PHOTON-ECHO SPECTRA
OF DRESSED DIRAC ELECTRONS IN A SINGLE QD

In this section, we investigate several linear and nonlin-
ear optical techniques which allow probing of the details of
the electronic structure calculated above. The linear absorp-
tion mostly reveals the long living states (Im[E]  Re[E])
which show a narrow resonance and directly reflects the struc-
ture of the DOS.7, 8 Nonlinear photon-echo17 signal (χ (3)(−k1

+ k2 + k3)) will be designed to reveal the other short living
states. The schematic of the heterodyne detected four-wave
mixing experiment is shown in Fig. 2. By probing the coher-
ence between the electronic states in the QD, the technique
can reveal the energy of the short living electronic quasi-
bound states. We shall restrict the discussion to singly excited
states, thereby neglecting underlying many-body effects. This
allows for a conceptually simple description in terms of the
many body eigenstates.14, 18

It is also possible to study several excitonic states of the
QD and their dynamics by applying special nonlinear mea-

surements. We shall also make use of the double quantum
coherence18 (χ (3)(k1 + k2 − k3)) technique in order to ob-
serve many body effects in biexciton manifold of graphene
QD. Conceptually the approach is similar to that described in
Refs. 15 and 19. However the graphene based QD has large
screening of the Coulomb interaction between excitons. Thus,
it can be safely omitted in the following discussion. Recently
the collinear version of χ (3) technique based on phase-cycling
gained popularity in QD studies of terahertz regime.20 Its ap-
plication to graphene will be reported elsewhere.

Let us first define the effective single particle diagonal-
ized Hamiltonian in the QD,18

Ĥ =
∑
m1,n1

Em1δm1,n1ĉ
†
m1ĉn1

+
∑
m2,n2

Em2δm2,n2d̂
†
m2d̂n2, (23)

whose matrix elements are obtained from Eq. (20). Each sub-
script is a composite of two indices describing angular (m)
and radial (n) quantum numbers m1(2) = {m, n}. Here, we
have partitioned the electronic states into occupied (n < 0)
and unoccupied (n > 0) in the ground state obtained by setting
up the mean chemical potential to μ = N0¯ω0. On the other
hand it is defined via Eqs. (14) and (26) in Ref. 11. Those
equations determine nessesary electron concetration for given
optical field energy. The mean chemical potential splits quasi-
energies into quasi-electrons and quasi-holes. Further on we
shall omit the word “quasi,” it simply being implied.

The electrons in the unoccupied state can be created
by action of the ĉ

†
m1 = |�m,n>0〉 ⊗ 〈�m,n<0| operator on the

ground state. Its hermitian conjugate ĉm1 removes the elec-
tron from that state. Similarly the second term of Eq. (23)
describes the creation d̂

†
m2 = |�m,n<0〉 ⊗ 〈�m,n>0| and anni-

hilation d̂m2 of the electrons in the originally occupied states
(holes). The second term in Eq. (23) is just the hermitian
conjugate of the first. In the notation above, the symbol ⊗
stands for element-wise multiplication of the vectors. Since
the dressing circularly polarized CW mode has been already
incorporated in Eq. (23) we only have to explicitly treat the in-
teraction with the narrow pulsed time ordered incoming and
detected modes. This is given by the effective21 interaction
Hamiltonian under the rotating wave approximation,

Ĥint(t) =
∑

i,m1,m2

∑
j=±

Ej

i δ(t − ti)μ
j

m1,m2d̂m2ĉm1 + H.c.

(24)

Here, E�,±
i stands for the left(right) ± polarized component of

the incoming or detected mode electric field amplitude. The
dipole moments of transitions (in units of W̃i/(E±

i

√
Ni)) are

μ±
m1,m2 =

∫
dr〈�m1(r)|re±iθ |�m2(r)〉. (25)

Note that we are still in the single electron-hole representa-
tion, not yet in the many body exciton/hole representation.
Therefore, we do not need the envelop function to define the
transition moments as in Ref. 22.

The next step is to bring the Hamiltonian in
Eqs. (23) and (24) into the excitonic form. Using the
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method first proposed in Ref. 19 we define the electron-hole
pair annihilation operators (not to be confused with exciton
operators) as

B̂†
m = B̂m1,m2 = ĉm1dm2, (26)

where we used composite index of m = {m1, m2}. Since we
are interested in the third-order response the commutator of
the above operators may be truncated at quadratic order,

[B̂m, B̂†
n] = δm,n − 2

∑
p,q

δm,n;p,qB̂
†
pB̂q, (27)

where δm, n = δm1, n1δm2, n2. The tetradic matrix δm, n; p, q

(phase-filling factor) is responsible for the deviation from
the boson statistic of the pair operators, and stems from the
fermionic nature of its constituents,

2δm,n;p,q = δm1,q1δm2,p2δn1,p1δn2,q2

+ δm1,p1δm2,q2δn1,q1δn2,p2. (28)

On the basis of electron-hole pairs the Hamiltonian in
Eqs. (22) and (23) becomes Frenkel-like if truncated up to
fourth order (valid for third-order response with two excited
electron-hole pairs),

Ĥ =
∑
m

EmB̂†
mB̂m + 1

4

∑
m,n

(Em + En) B̂†
mB̂†

nB̂mB̂n, (29)

Ĥint(t) =
∑
i,m

∑
j=±

Ej

i δ(t − ti)μ
j
mB̂m + H.c. (30)

Direct diagonalization of the above Hamiltonian (29) in or-
der to find the exciton/biexciton manifolds is difficult and
non-equilibrium Green’s functions for the single and dou-
ble electron-hole pairs are used instead. If one neglects the
nonlinearities caused by the Pauli exclusion those retarded
Green’s functions are defined as

Ge1(τ ) = −iθ (τ )e−iEe1τ , (31)

Ge1,e2 = −iθ (τ )e−i(Ee1+Ee2)τ . (32)

Here, θ (τ ) is the Heaviside function and the time between two
consecutive pulses is denoted as τ i = ti+1 − ti. Note that in
order to be retarded the Green’s functions must contain the
energies with Im[Ee] < 0. We also adopted the notation Ee1

= Em1 + Em2. We shall also need their Fourier transforms
with respect to the time delays,

Ge1(ω) = 1

ω − Ee1
, (33)

Ge2,e1(ω) = 1

ω − Ee1 − Ee2
. (34)

In the above Green’s functions the biexciton energies (the
poles of Eq. (34)) is simply a sum of the exciton energies. The
nonlinear signal from such system vanishes since it represents
a collection of harmonic oscillators. The effect of Pauli ex-
clusion in Eq. (29) is usually incorporated by tetradic exciton

GSB

ESEESA

ESA

FIG. 3. Feynman diagrams for the photon echo technique ks = −k1 + k2
+ k3.

scattering matrix,

e4,e3;e2,e1(ω) = δe4,e3;e2,e1(G−1)e4,e3, (35)

which carries all the information about underlying nonlinear-
ities. Coulomb interaction can be incorporated by solving the
Bethe-Saltpeter equation as in Refs. 17–19.

The photon echo signal can be recast in terms of non-
interacting Green’s functions as well as the scattering matrix
as

S
j1,j2,j3,j4
−k1+k2+k3

(ω3, τ2 = 0, ω1)

= 2Re
∑

e1,e2,e3,e4

μ
j1
e3μ

�,j2
e2 μ

�,j3
e1 μ

j4
e4G

�
e3(−ω1)Ge4(ω3)

×e4,e3;e2,e1(ω3 + Ee3)Ge2,e1(ω3 + Ee3). (36)

Even though the above two expressions formally give the
nonlinear signal, it is hard to analyze. However it is conve-
nient for numerical simulations due to expandability of the
scattering matrix into the domain where the coulomb inter-
action may play its role. The detailed form of the scattering
matrix which involves the Coulomb interaction is given in
Refs. 15, 18, and 19. An alternative approach is to derive the
signal by using double-sided time ordered Keldish diagrams
shown in Fig. 3. The diagrammatic approach (also known as
“sum over states”) can answer one of the fundamental ques-
tions whether the nonzero scattering matrix is sufficient to
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calculate a nonlinear signal. The answer to that question is not
trivial due to the large number of interfering terms in
Eqs. (36) and (E1). The diagrams were constructed by block-
ing the consequent double excitation of the same electron-
hole pair. The nonlinear signals can be extracted from the di-
agrams by the rules stated in Refs. 14 and 18. In our case the
photon echo signal is obtained via the diagrams in Fig. 3:

S
j1,j2,j3,j4
−k1+k2+k3

(ω3, τ2,−ω1)

= Re
∑

m,m′ �=m

μ
j1
m

−ω1 − Em

μ
�,j2
m μ

�,j3
m′ μ

j4
m e−iτ2(Em−E�

m)

ω3 − Em − E′
m + Em

+ μ
j1
m′

−ω1 − Em′

μ
�,j2
m′ μ

�,j3
m μ

j4
m′e−iτ2(Em−E�

m′ )

ω3 − Em − E′
m + E′

m

− Re
∑
m,m′′

μ
j1
m′′

−ω1 + Em′′

[
μ

�,j2
m μ

�,j3
m′′ μ

j4
m

ω3 − Em

+ μ
�,j2
m′′ μ

�,j3
m μ

j4
m′′e−iτ2(Em−E�

m′ )

ω3 − Em

]
. (37)

This signal would vanish if it were not for the Pauli blocking
which prevents m to be equal to m′.

In Appendix E we have analyzed an alternative form
of the four-wave mixing known as double-quantum coher-
ence. This signal vanishes identically despite the Pauli in-
duced scattering since the exited state absorption pathways
are fully compensated by their ground state bleaching and
exited state emission counterparts. Therefore, the double-
quantum-coherence can be readily used as a measure of the
Coulomb interaction strength and screening.

V. NUMERICAL RESULTS AND DISCUSSION

The main advantage of the Pauli blocking description of
excitons is its simplicity. For a model with N singly excited
electronic states, we only need to consider N double excited
states compared with N(N − 1) in the case of Coulomb scat-
tering induced biexcitons. We note that the same number of
doubly excited states N(N − 1) are allowed in a simple bo-
son harmonic model. This allows for better tracking of path-
ways, interference and resonances. In this section, we shall
use it to classify the off-diagonal resonances in the 2D pho-
ton echo spectra in accordance with the short living excited
states of the QD. This will be compared with the linear ab-
sorption spectrum which is proportional to the single excited
electronic density of states and is given by the main diagonal
of the 2D spectra. We shall demonstrate the improved resolu-
tion of those short living states via the coherent response with
the long living excitation. First, we assume a model of two
single excited states (μ1, E1; μ2, E2). This leads by the Pauli
exclusion principle to the single double excited state (μ12,
E1 + E2). Here, the interband dipole moment μ12 is taken
in harmonic osccilator approximation. The photon echo sig-
nal contains three distinct pathways: ground state bleaching
(GSB Fig. 3(b)), excited state emission (ESE Fig. 3(d)), and
excited state absorption (ESA Figs. 3(a) and 3(c)). Those are

given by

S
(3)
GSB(ω3, t2, ω1) = Re

2∑
i,j=1

|μi |2|μj |2
(−ω1 − E�

i )(ω3 − Ej )
, (38)

S
(3)
ESE(ω3, τ2, ω1) = Re

2∑
i,j=1

|μi |2|μj |2e−τ2(Ej −E�
i )

(−ω1 − E�
i )(ω3 − Ej )

, (39)

S
(3)
ESA(ω3, τ2, ω1)

= −Re
2∑

i �=j

|μi |2|μj |2e−τ2(Ei−E�
i )

(−ω1 − E�
i )(ω3 − Ej − Ei + E�

i )

− Re
2∑

i �=j

|μi |2|μj |2e−τ2(Ei−E�
j )

(−ω1 − E�
j )(ω3 − Ei − Ej + E�

j )
. (40)

Clearly, when Pauli blocking is neglected, we have a collec-
tion of damped oscillators and at τ 2 = 0 the signal disappears.
It would also vanish if we assume that there is no damping in
the system. We note that Pauli blocking may be suppressed
when the double exciting state is formed by electron/hole
pairs with opposite spins.

Since the nonlinear signal vanishes for ideal bosons, one
can recast it to the alternative simplified form as if from the
ESA from otherwise Pauli blocked N states as

S
(3)
−k1+k2+k3

(ω3, 0,−ω1)

= 2Re
N∑

i=1

|μi |2|μi |2
(−ω1 − E�

i )(ω3 − Ei − Ei + E�
i )

. (41)

At zero time delay τ 2 = 0 we have only the diagonal reso-
nances. The states with small damping dominate the picture.
However as the time delay progresses the off diagonal reso-
nances appear, as demonstrated in Fig. 4. It is convenient to
interpret the signal by comparing it with the linear absorption
(the top-marginal graph in the figure). For our numerical sim-
ulations, we chose the potential kink height to be V1 = −V2

= 20. Unless stated otherwise, all the energies are in units of
3γ̃0a/R. We have also added the constant dephasing rate γ

= 0.1 to account for possible contact with an external photon
bath. We have also limited ourselves to electronic states
with angular momentum up to m = 9/2. An idealized single
graphene layer grown epitaxially on SiO was considered.

The tallest absorption peak comes from the transition 5/2
→ 7/2, and is located at ω1 ≈ 40.0. That signifies the true
bound state when the electron (hole) energy reaches the height
of the potential barrier (see Eq. (20) and Fig. 1). The remain-
ing absorption peaks correspond to quasi-bound states with
finite lifetime. For the linear spectrum, the latter brings the
peak broadening. To extract additional information about the
dynamics of the quasi-bound states, we resort to the photon
echo signal. At zero time delay τ 2 = 0, this provides the same
information as the linear absorption. The positions and mag-
nitudes of the cross-peaks (rapid change in the sign of the
signal) on the main diagonal correspond to those in the lin-
ear absorption. The existence of the signal comes from the
fact that the electrons (holes) are not coupled to a simple bath
of harmonic oscillators (constant dephasing). The pattern of
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FIG. 4. Photon echo signal for various time delays τ 2 calculated from
Eq. (37). The left panels correspond to Eg = 0, while the right panels demon-
strate the dressing effect Eg = 10. The top-marginal graphs show the linear
absorption.

the cross-resonances along the main diagonal is the manifes-
tation of the destructive interference between the GSB, ESE
on one side, and the ESA pathways on the other. The latter
takes into account the Pauli blocking effect on the biexciton
(two electron-hole pair) states. At this point, we completely

neglected the effect due to the Coulomb interaction between
electrons. Later, we shall demonstrate that it is a reasonable
assumption for small QDs. Thanks to the very simple exciton
scattering matrix based on Pauli blocking, only (Eq. (35)), we
can employ a simplified quasi-particle picture in order to de-
scribe the signal (Eq. (41)).

By increasing the time delay τ 2, we may monitor the life-
time dynamics of the quasi-bound states as follows. The ESA
and ESE contributions to the signal is reduced and finally the
GSB signal survives (the lowest graphs in Fig. 4). In between,
the off-diagonal cross-peaks appear at a time. Those with the
smaller dephasing rate (strongly bound to the QD) appear
first. The most pronounced cross-peaks are those which are
correlated to the true bound state.

We next turn our attention to the dressed Dirac electrons
confined to the potential induced QD. The dressing opens up
a dynamical gap which can be controlled by the intensity and
polarization degree of CW pumping light. We shall probe the
dynamic gap by the photon echo technique described above
and compare it to the linear absorption. The gap allows for
many more bound states since the wave vector of the outgo-
ing electronic wave κ can cross over into the imaginary plane,
thus effectively quenching the outgoing wave and bounding
the electron states (see Fig. 1). For our simulations, we chose
the gap Eg = 10 which may be achieved either for small QD
or an intense pumping field with circular polarization. We
note that the gap may also be induced by a polar substrate.23

The gap achieves several bound states for the 1/2 → 3/2 elec-
tronic transitions. Since the wave functions for larger angular
momentum are highly oscillatory, the latter transition posses
highest oscillator strength, thereby effectively shifting the po-
sition of the main peak in the linear absorption (see Fig. 4
right panel). The remainder of the peaks also contain a mix-
ture between the bound and quasi-bound states. To separate
these, we shall look at the photon echo at τ 2 > 0. Finally, the
resulting GSB reveals the truly bound states (see Fig. 4 right
panel).

To examine the role played by Coulomb scattering, we
shall employ the full form of the scattering matrix. The ap-
proach is based on the nonlinear exciton equations (NEE). We
refer the reader to the comprehensive review of the technique
given by Abramavicus and Mukamel.14 Exciton scattering is
best described in the eigenstate basis of Eqs. (18) and (19).
Keeping in mind that we can have at most two excitons leads
to effective truncation schematics of otherwise infinite se-
ries of intertwined NEEs.17 In the latter case, an appropriate
factorization scheme has been applied. We have also ne-
glected incoherent exciton transport.

The photon echo and the linear absorption are shown in
the right panel of Fig. 5 for larger size QD. We see the off-
diagonal correlation resonances and symmetry breaking for
τ 2 = 0. These indicate the bonding and anti-bonding biex-
citon resonances with the biexciton binding energy of a few
eV. Indeed, when the biexciton binding energy is increased
as a result of the Coulomb interaction, the ESA peaks are
shifted along ω3: downwards for positive anti-binding (ex-
citon repulsion) and upwards for negative bonding energy
(exciton attraction). The ESA cross-peaks are no longer can-
celled by the GSB and ESE, thus creating the doublets. By
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FIG. 5. The same as in Fig. 4 with the Coulomb scattering taken into account
via Eq. (36) with the scattering matrix given by Eq. The left panels represent
large QD, R/a0 = 1000. Right panels are for smaller QD, R/a0 = 100.

increasing the QD size, we see the formation of excitons with
exciton binding energy of 10–30 eV in the left panel of Fig. 5.
Signatures of the off-diagonal quadratic coupling also persist
for longer delay times τ 2 > 0.

VI. CONCLUDING REMARKS

We proposed dressing the Dirac electrons with circu-
larly polarized photons in order to localize them within a
QD on graphene monolayer. We also investigated the local-
ization of dressed electrons in a cylindrical QD formed on
bilayer graphene. When graphene is irradiated with a circu-
larly polarized electromagnetic field, an energy gap opens up
in the dispersion relation for graphene in the presence of this
electromagnetic field. Consequently, the resulting confined
electronic states for a QD seem to have properties that are
similar in nature to the surface states of topological insula-
tors. Their energies are located inside the energy gap and the
wave functions decay as a function of distance from the inter-
face of the potential. These topological states are robust with
respect to the effects of disorder. Our calculations showed
that the dressing does not only open a dynamical gap in the
energy dispersion spectrum, but it also leads to a renormal-
ization of the Fermi velocity as well as the intra layer and
interlayer coupling parameters. In fact, in the bilayer config-
uration, the dressing serves as a tool for tuning the energy
gap. That is, it can either close or open the gap, depending on
the polarity of the potential and the direction of the light po-
larization. Linear spectroscopy cannot resolve the short lived
broadened excitonic states and they must be resolved by using
a four-wave mixing technique known as photon-echo. This
eliminates the inhomogeneous broadening due to impurities,
and focuses on the intrinsic lifetimes of the electronic states.
We measure the localization through the electronic density of
states. The strong dynamical screening of the Coulomb in-
teraction leads us to consider only the Pauli blocking due to
the Fermi statistics. We simplify the signal interpretation by
switching to the quasiparticle picture. Those are given as the
deviation from the harmonic oscillator for which the nonlin-
ear signals disappear. This allows us to consider only excited
states absorption Liouville pathways. In this way, we are able
to reduce the interference due to the usual combination be-
tween the ground state bleaching and excited states emission.
Visible light is used to map the QD interband transitions onto
2D spectra and terahertz pulse shaped fields for the intraband
transitions. Important aspects of terahertz pulse shaped fields
for the intraband transitions will be reported elsewhere. The
latter will allow us to use a novel and more convenient phase
cycling method to obtain the χ (3) response.20
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APPENDIX A: DERIVATION OF EQ. (1)

The graphene Hamiltonian subjected to circularly polar-
ized light has the form9
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H = ¯vF σ ·
(

k − e

c¯
A

)
. (A1)

The vector potential operator of the electromagnetic field can
be partitioned as

A = A0 +
∞∑
i=1

Ai , (A2)

A0 =
√

2π¯c2

ω0�
(e+a0 + e−a

†
0), (A3)

Ai =
√

2π¯c2

ωi�
(ex(ai + a

†
i )). (A4)

Here,
√

2e± = ex ± iey are polarization vectors given in
terms of the unit vectors along corresponding Cartesian di-
rections; � is the mode quantization volume. As one can see
Eq. (A2) describes the electromagnetic wave propagating
along z −axis (transverse to graphene). It is clock-wise cir-
cularly polarized. We will need the circular polarization since
graphene is gapless and no RWA is applicable. The rest of the
optical modes described by Eq. (A3) are linearly polarized.
Note that we have no phase on the optical field since we as-
sume graphene being ideally flat and situated at z = 0. That
is exp (±ikzz) = 1. Substituting Eq. (A2) into Eq. (A1) and

denoting −e

√
4π¯v2

F /ωi� = Wi/
√

Ni in order to keep nota-
tion consistent with Ref. 16 we obtain Eq. (1).

APPENDIX B: DERIVATION OF EQS. (10) AND (11)

We first need the following identities

σ∓|±, N0〉 = |∓, N0〉, (B1)

σ∓|∓, N0〉 = 0. (B2)

Therefore, we shall have

¯vF (σxkx + σyky)|ψ±,N0〉
= ¯vF ((σ+ + σ−)kx + i(σ− − σ+)ky)|ψ±,N0〉
= ¯vF ((σ+ + σ−)kx + i(σ− − σ+)ky)

× (cos φ|±, N0〉 ± sin φ|∓, N0 ± 1〉)
= ¯vF (kx(cos φ|∓, N0〉 ± sin φ|±, N0 ± 1〉)

± iky(cos φ|∓, N0〉 ∓ sin φ|±, N0 ± 1〉)). (B3)

Using the above equation we can calculate all the neces-
sary matrix elements:

H1 = H̃1 + V (x, y)

〈ψ+,N0 |H̃1|ψ+,N0〉
= ¯vF ((cos φ〈+, N0| + sin φ〈−, N0 + 1|)

× kx(cos φ|−, N0〉 + sin φ|+, N0 + 1〉)
+ iky(cos φ|−, N0〉 − sin φ|+, N0 + 1〉)) = 0, (B4)

〈ψ−,N0 |H̃1|ψ−,N0〉
= ¯vF ((cos φ〈−, N0| − sin φ〈+, N0 − 1|)

× kx(cos φ|+, N0〉 − sin φ|−, N0 − 1〉)
− iky(cos φ|+, N0〉 + sin φ|−, N0 − 1〉)) = 0, (B5)

〈ψ−,N0 |H̃1|ψ+,N0〉
= ¯vF ((cos φ〈−, N0| − sin φ〈+, N0 − 1|)

× kx(cos φ|−, N0〉 + sin φ|+, N0 + 1〉)
+ iky(cos φ|−, N0〉 − sin φ|+, N0 + 1〉))

= cos2 φ(kx + iky), (B6)

〈ψ+,N0 |H̃1|ψ−,N0〉
= ¯vF ((cos φ〈+, N0| + sin φ〈−, N0 + 1|)

× kx(cos φ|+, N0〉 − sin φ|−, N0 − 1〉)
− iky(cos φ|+, N0〉 + sin φ|−, N0 − 1〉))

= cos2 φ(kx − iky), (B7)

〈ψ±,N0 |V (x, y)|ψ±,N0〉
= V (x, y)(cos2 φ + sin2 φ) = V (x, y). (B8)

For H2 matrix elements we will need, the following
identities:

〈ψ±,N0 |σ+ + σ−|ψ±,N0〉
= 〈ψ±,N0 |(cos φ|∓, N0〉 ± sin φ|±, N0 ± 1〉)
= (cos φ〈±, N0| ± sin φ〈∓, N0 ± 1|)

× (cos φ|∓, N0〉 ± sin φ|±, N0 ± 1〉) = 0, (B9)

〈ψ∓,N0 |σ+ + σ−|ψ±,N0〉 = cos2 φ. (B10)

APPENDIX C: DERIVATION OF EQS. (D5) AND (D6)

For the bilayer we will need the following identities:

〈ψN0 |σ±|ψN0〉

=
(

〈ψ+,N0 |σ±|ψ+,N0〉 〈ψ+,N0 |σ±|ψ−,N0〉
〈ψ−,N0 |σ±|ψ+,N0〉 〈ψ−,N0 |σ±|ψ−,N0〉

)

= (cos2 φ)σ±, (C1)

〈ψN0 |σ+a0|ψN0〉 = 〈ψN0 |σ−a
†
0|ψN0〉

=
√

N0

2
sin 2φ

(
1 0
0 −1

)
=

(√
N0

2
sin 2φ

)
σ3. (C2)

APPENDIX D: DRESSED ELECTRONS
IN BILAYER GRAPHENE

Starting with Eq. (38) of the review article of Castro
Neto et al.,1 and applying the procedure of Appendix A, the
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FIG. 6. Bilayer graphene structure and renormalized coupling coefficients.

Hamiltonian which describes the dressing of the electrons in
the bilayer (Bernal stack) can be expressed as

H =
(

H11 H12

H21 H22

)
. (D1)

Here, H11 = H(V1) and H22 = H(V2) describe the electrons
on the first and second graphene layers, respectively. Those
layers may experience different potential profiles (V1,2) enter-
ing Eq. (3). The interlayer coupling is described by the off-
diagonal block matrices as

H12 = γ1σ− + 3γ3a(kx − iky)σ+

+ W 3
0√
N0

σ+a0 +
∑
i=1

W 3
i√
Ni

(σ+ + σ−)(ai + a
†
i ), (D2)

H21 = γ1σ+ + 3γ3a(kx + iky)σ−

+ W 3
0√
N0

σ−a
†
0 +

∑
i=1

W 3
i√
Ni

(σ+ + σ−)(ai + a
†
i ). (D3)

Here, we have introduced effective electron-photon coupling
matrix elements W

j

i /
√

Ni = −3eγja
√

2π/ωi�¯, where a
= 1.42 Å is the carbon-carbon distance within a layer.
Additionally, we have γ0 = 2.8 eV is the nearest-neighbor
hopping energy within the layer (A1 ⇀↽ B1, A2 ⇀↽ B2). Fermi
velocity can be expressed in terms of the above parameters as
¯vF = 3γ0a/2. γ1 = 0.4 eV is the interlayer hopping energy
between atoms of type A: (A1 ⇀↽ A2). γ3 = 0.3 eV is the in-
terlayer hopping energy between atoms of type B: (B1 ⇀↽ B2).

γ4 = 0.04 eV is the interlayer hopping energy between atoms
of type B and A: (A1 ⇀↽ B2, B1 ⇀↽ A2). Electronic couplings
between various atoms in the bilayer graphene are shown in
Fig. 6. The double layer can be regarded as corresponding to
as γ 1 = γ 3 = γ 4 = 0.

On the dressed state basis of Eq. (C2), the diagonal
blocks are given by the results of the previous section as

〈ψN0 |H11,22|ψN0〉
= ¯ṽF σ · k + (Eg/2)σ3 + IV1,2(x, y)

+ IN0¯ω0 +
∑
i=1

I¯ωia
†
i ai + W̃ 0

i√
Ni

(σ+ + σ−)(ai + a
†
i ).

(D4)

The off-diagonal blocks may be derived from Eqs. (D2) and
(D3), and Appendix C to become

〈ψN0 |H12|ψN0〉 = γ̃1σ− + 3γ̃3a(kx − iky)σ+

+ γ̃4σ3 +
∑
i=1

W̃ 3
i√
Ni

(σ+ + σ−)(ai + a
†
i ),

(D5)

〈ψN0 |H21|ψN0〉 = γ̃1σ+ + 3γ̃3a(kx + iky)σ−

+ γ̃4σ3 +
∑
i=1

W̃ 3
i√
Ni

(σ+ + σ−)(ai + a
†
i ),

(D6)

where the renormalized model parameters are γ̃1,2

= γ1,2 cos2 φ, γ̃4 = (W 3
0 /2) sin 2φ, and W̃ 3

i = W 3
i cos2 φ. For

the purpose of further discussion, it is convenient to localize
H0 + H1 as we did in a preceding section for monolayer
graphene. The corresponding matrix elements are

Single layer:

〈ψN0 |〈B1A1|H0 + H1|A1B1〉|ψN0〉

=
(

V1(x, y) + (Eg/2) 3
2 γ̃0a(kx + iky)

3
2 γ̃0a(kx − iky) V1(x, y) − (Eg/2)

)
.

(D7)

Bilayer:

〈ψN0 |〈B2A2A1B1|H0 + H1|B1A1A2B2〉|ψN0〉

=

⎛
⎜⎜⎜⎜⎜⎝

V1(x, y) + (Eg/2) 3
2 γ̃0a(kx + iky) γ̃4 3γ̃3a(kx − iky)

3
2 γ̃0a(kx − iky) V1(x, y) − (Eg/2) γ̃1 −γ̃4

γ̃4 γ̃1 V2(x, y) + (Eg/2) 3
2 γ̃0a(kx − iky)

3γ̃3a(kx + iky) −γ̃4
3
2 γ̃0a(kx + iky) V2(x, y) − (Eg/2)

⎞
⎟⎟⎟⎟⎟⎠ . (D8)

This implies that the dressing of the Dirac electrons in bilayer
gives

� renormalized interlayer coupling coefficients, which
are denoted by tilde,
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FIG. 7. Dotted/solid curves represent electron dispersion of double/bilayer graphene. Panel (a) assumes that γ̃1/γ̃0 = 0.4 and the remaining interlayer coupling
parameters are zero. Panel (b) also introduces the effect of γ̃3/γ̃0 = 0.3. Panel (c) demonstrates the effect of γ̃4/γ̃0 = 0.3. Panel (d) illustrates the combined
effect of γ̃3 and γ̃4. In column 1 we have dressing induced Eg/γ̃0 = 1/2 with no potential difference between the layers. In column 2 we have potential
difference between the layers (V1 − V2)/γ̃0 = 1/2 with no electron dressing Eg/γ̃0 = 0. Columns 3 and 4 illustrate their combine effect; (3) corresponds to
Eg/γ̃0 = 1/2, and (4) has Eg/γ̃0 = 1. Blue (green) curves show a section of the energy along kx(ky) directions.

� broken the symmetry between the sub-lattices (A1, B1;
A2, B2) of each of the layers. Measure of the broken
symmetry is (Eg/2),

� broken symmetry between the sub-lattices (A1, B2; A2,
B1) belonging to different layers. A measure of the bro-
ken symmetry is γ̃4.

The corresponding eigenvalues for constant potentials
(V1, V2) are shown in Fig. 7 for chosen values of the param-
eters. We first focus on the largest interlayer coupling γ̃1 and
neglect the rest of the coupling (Fig. 7(a)). The four bands are
given by

(2E + V2 + V1)2

= E2
g + (V1 − V2)2 + 9a2k2γ̃ 2

0 + 2γ̃ 2
1 ± 2

√
(V1 − V2)2

(
E2

g + 9a2k2γ̃ 2
0

) + γ̃ 2
1

(
9a2k2γ̃ 2

0 − 2Eg (V1 − V2)
) + γ̃ 4

1 . (D9)

On its own, Eg opens a gap in the bilayer spectrum similar to
the monolayer (Fig. 7(a.1)). The gap may be opened by ap-
plying a potential difference between the layers (V1 �= V2 in
Fig. 7(a.2)). The combined effect of the potential differ-
ence and Eg > 0 can either widen V2 − V1 < 0, or shrink
V2 − V1 > 0 the gap compared with the gap induced by the
potential difference itself (Fig. 7(a.3)). We observe that when
2Eg = V2 − V1, the gap closes (Fig. 7(a.4)). Inclusion of the
rest of the coupling breaks the symmetry between kx and ky, as
follows from Fig. 6. The analytical form of the energy bands,
although possible, is too large to be presented here. The en-
ergy bands are shown in Figs. 7(b)–7(d).

When one considers the trapping of those electrons in
a QD induced by circular potential kink the wave function
within and outside of the potential region assumes the form
similar to Eq. (17):

|�m(r)〉 =

⎛
⎜⎜⎝

ψm,B1 (r)ei(m+1/2)θ

iψm,A1 (r)ei(m−1/2)θ

iψm,A2 (r)ei(m−1/2)θ

ψm,B2 (r)ei(m+1/2)θ

⎞
⎟⎟⎠ . (D10)

The effective Hamiltonian, the extension of Eq. (17) has form:
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⎛
⎜⎜⎜⎜⎜⎝

V1(r) + (Eg/2) 3
2 γ̃0a

(
∂r − m−1/2

r

)
0 0

− 3
2 γ̃0a

(
∂r + m+1/2

r

)
V1(r) − (Eg/2) γ̃1 0

0 γ̃1 V2(r) + (Eg/2) − 3
2 γ̃0a

(
∂r + m+1/2

r

)
0 0 3

2 γ̃0a
(
∂r − m−1/2

r

)
V2(r) − (Eg/2)

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

ψm,B1 (r)
ψm,A1 (r)
ψm,A2 (r)
ψm,B2 (r)

⎞
⎟⎟⎠ = E

⎛
⎜⎜⎝

ψm,B1 (r)
ψm,A1 (r)
ψm,A2 (r)
ψm,B2 (r)

⎞
⎟⎟⎠ .

(D11)

Solution of the above differential equation yields the complex
spectra of the trapped electrons.

APPENDIX E: DOUBLE QUANTUM COHERENCE

The double quantum coherence signal can be derived
from the diagrams in Fig. 8 assuming the following form:

S
j1,j2,j3,j4
k1+k2−k3

(ω3, ω2, τ1 = 0)

= 2Im
∑

e1,e2,e3,e4

μ
�,j1
e1 μ

�,j2
e2 μ

j3
e3μ

j4
e4Ge4(ω3)G�

e3(ω2 − ω3)

× [
e4,e3;e2,e1(ω3 + Ee3)Ge2,e1(ω3 + Ee1)

−e4,e3;e2,e1(ω2)Ge2,e1(ω2)
]
. (E1)

DESE DESE

DESA DESA

FIG. 8. Feynman diagrams for the double quantum coherence signal gener-
ated in ks = k1 + k2 − k3 direction.

When the Coulomb scattering may be neglected the
above signal is greatly simplified into sum-over-states expres-
sion with the explicit Pauli blocking principle

S
j1,j2,j3,j4
k1+k2−k3

(ω3, ω2, τ1)

= Re
∑

m,m′ �=m

μ
�,j1
m μ

�,j2
m′ e−iEmτ1

ω2 − Em − Em′

×
[

μ
j3
m μ

j4
m′

ω3 − Em − Em′ + Em′
+ μ

j3
m′μ

j4
m

ω3 − Em − Em′ + Em

− μ
j3
m′μ

j4
m

ω3 − Em − Em′ + Em′
− μ

j3
m μ

j4
m′

ω3 − Em − Em′ + Em

]
.

(E2)

This signal vanishes identically despite the Pauli induced
scattering making it a measure of the screened Coulomb
interaction.
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