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Two seemingly unrelated effects attributed to quantum coherence
have been reported recently in natural and artificial light-harvest-
ing systems. First, an enhanced solar cell efficiency was predicted
and second, population oscillations were measured in photosyn-
thetic antennae excited by sequences of coherent ultrashort
laser pulses. Because both systems operate as quantum heat
engines (QHEs) that convert the solar photon energy to useful
work (electric currents or chemical energy, respectively), the
question arises whether coherence could also enhance the
photosynthetic yield. Here, we show that both effects arise from
the same population–coherence coupling term which is induced
by noise, does not require coherent light, and will therefore work
for incoherent excitation under natural conditions of solar excita-
tion. Charge separation in light-harvesting complexes occurs in a
pair of tightly coupled chlorophylls (the special pair) at the heart
of photosynthetic reaction centers of both plants and bacteria. We
show the analogy between the energy level schemes of the special
pair and of the laser/photocell QHEs, and that both population
oscillations and enhanced yield have a common origin and are
expected to coexist for typical parameters. We predict an en-
hanced yield of 27% in a QHE motivated by the reaction center.
This suggests nature-mimicking architectures for artificial solar
energy devices.

photosynthesis | quantum biology | population oscillations | quantum
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According to the laws of quantum thermodynamics, quantum
heat engines (QHEs) convert hot thermal radiation into

low-entropy useful work (1, 2). The ultimate efficiency of such
QHEs is usually governed by a detailed balance between ab-
sorption and emission of the hot pump radiation (3). The laser is
an example of a QHE, which can use incoherent pump (heat)
radiation to produce highly coherent (low-entropy) light (Fig. 1
A and B). Moreover, it was demonstrated both theoretically and
experimentally that noise-induced quantum coherence (4) can
break detailed balance and yield lasers without population in-
version (5) and/or with enhanced efficiency (Fig. 1C).
Recently it has been shown that quantum coherence can, in

principle, enhance the efficiency of a solar cell or a photodetec-
tor (6–10). This photocell QHE (Fig. 1D) can be described by the
same model as the laser QHE (Fig. 1E) and obeys similar de-
tailed balance physics. To use the broad solar spectrum and
eliminate phonon loss, we separate solar flux into narrow fre-
quency intervals and direct it onto a cell array where each of the
cells has been prepared to have its band gap equal to that photon
energy (7). In particular, Shockley and Queisser (11) invoked
detailed balance to show that the open-circuit voltage of a pho-
tocell is related to the energy input of a “hot” monochromatic
thermal light by the Carnot factor. However, just as in the case of
the laser, we can, in principle, break detailed balance by inducing
coherence (Fig. 1F), which can enhance the photocell efficiency
(9, 10).
Other recent papers investigated the common ground between

photovoltaics and photosynthetic light harvesting (12, 13). Var-
ious models addressed the high efficiency of energy transfer in

photosynthetic antennae (14–19) and the mechanisms of charge
separation in reaction centers (12, 20–22). Furthermore, quan-
tum coherence effects, e.g., photon echo, have been observed in
a series of interesting photosynthesis experiments (23–30). Oscil-
lations of exciton population signals in the 2D photon echo
(rephasing) spectra have been predicted (31) and directly ob-
served (32) as evidence of quantum transport. However, because
multidimensional spectroscopy uses coherent laser radiation as
a source of quantum coherence, the quantum effects that might
be observed under natural conditions of excitation by incoherent
solar light are still an open issue.
Coherent versus incoherent energy transfer has long been

studied in molecular crystals and aggregates (33–35). It is well
established that the interplay between exciton coupling and en-
ergetic disorder controls the extent of exciton delocalization,
which in turn determines the nature of transport (36). Coherent
effects become more prominent as the excitons become more
delocalized. Recent femtosecond experiments in photosynthetic
complexes have revived the interest in the same issues. Oscilla-
tory temporal features in 2D spectra have been initially attrib-
uted to electronic coherence but growing evidence indicates that
this could be due as well to strongly coupled vibronic motions
(37–40). The simplest approach to energy transfer is based on the
Redfield equations that treat the system/bath coupling perturba-
tively to second order. They are invariant to the exciton basis and
can be applied to localized and delocalized excitons alike (41). The
Förster theory of energy transfer and the Marcus theory of charge
transfer assume localized states. Like the Redfield equations they
treat off-diagonal couplings perturbatively but include diagonal
bath fluctuations (polaron effects) to high order. Both theories can
be derived in a very transparent way by using a unified formalism
of bath fluctuations based on the cumulant expansion (20, 42).
We apply the physics of the laser and photocell described above

to investigate these effects in a QHE inspired by photosynthetic
complexes. In the model of Fig. 2B, the broad solar spectrum can
be used by various photosynthetic antennae complexes which
transfer energy to the reaction center. The antennae absorb
broadband light in the visible range and relax to the bottom of
the excited band due to rapid thermalization. They transfer
narrowband excitation to the reaction center (13). We adopt the
level schemes of Fig. 2 B and E to describe collective excitations
in molecular aggregates and show that quantum coherence may
increase the efficiency of photosynthesis. We demonstrate that
the photosynthetic reaction center may be viewed as a biological
quantum heat engine (BQHE) that transforms high-energy thermal
photon radiation into low-entropy electron flux (Fig. 2A, adapted
from ref. 31) and estimate the role of noise-induced quantum
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coherence on the efficiency of charge separation. This insight
leads to a unified picture of two seemingly unrelated quantum
coherence effects: oscillation of populations and enhanced electric
current in the BQHE. The ultimate efficiency is bound by the
Carnot limit, consistent with the second law of thermodynamics.
We describe the photoinduced charge separation between the

donor D and the acceptor A molecules interacting with thermal
light (Fig. 2B) using the four-level QHE scheme shown in Fig.
2E. State b corresponds to the lowest energy configuration where
both molecules are in the ground states. State a describes the
configuration where donor D is excited (both the excited electron
and the hole are in donor D); α is a charge-separated state with
the electron in acceptor A and the hole in donor D. Finally, β
is the ionized state where the electron is transferred to a “sink” and
the system is positively charged. After absorption of a solar photon,
the excited electron is promoted from b to a and is then transferred
to α with the excess energy radiated as a phonon. Furthermore,
the electron released from state α results in a current from α to β,
which we model by a relaxation rate Γ, such that the current j =
eΓραα is governed by the population of α. To complete the cycle,
we assume that another population transfer takes place which
brings the electron back to the ground state b of donor D with
emission of a phonon with excess energy.
Quantum coherence can significantly affect the efficiency of

this process. Fig. 2C shows two closely spaced identical donor
molecules D1 and D2 that represent a special pair of chlorophylls
at the heart of the reaction center complex where the primary
charge separation takes place (22). In photosynthesis, the sun-
light absorbed by antennae complexes is consequently trans-
ferred to the special pair. In our setup, we exclude the antenna

and assume that the pair absorbs sunlight cooperatively via the
exciton states a1 and a2 which are separated by the Davydov
splitting (33). In bacterial systems the splitting is on the order
of 450–800 wavenumbers (43), whereas in the Photosystem II
reaction center, the special pair coupling is weaker (160–200 cm−1)
(21). The remaining states are similar to those of Fig. 2E. As was
shown in refs. 9 and 10, the model in Fig. 2F can exhibit noise-
induced quantum coherence due to Fano interference. This effect
originates from the coupling of two levels to the same continuum
(4). The initial excitation of states a1 and a2 can be transferred to
the acceptor molecule in state α by emission of a phonon and can
produce useful work by contributing to the electric current and
returning to b via β. On the other hand, the system can return to
b via stimulated or spontaneous emission. Fano interference can
minimize the latter process by inducing coherence between a1 and
a2 (SI Text). Then the net absorption is enhanced and the electron
flux is increased.
Identifying the primary electron donors and dominating charge-

separation pathways has been a question of recent extensive re-
search and debate. At the moment, there is much evidence that
two main pathways make significant contributions under ambient
conditions and the lowest energy states depend on disorder (44–47).
Whereas in bacterial reaction centers the primary charge separation
takes place at the special pair (as used in this work), the reaction
centers of Photosystem II also use an additional pathway which
starts at the accessory chlorophyll of theD1 branch (48, 49). In this
work we discuss only the first pathway, which is present in both
types of reaction centers and plays an important role in optimizing
the electron transfer efficiency. Using design principles inspired by

A B C

D E F

Fig. 1. Schemes of a laser QHE (A) and a photocell QHE consisting of quantum dots sandwiched between p- and n-doped semiconductors (D). These QHEs are
pumped by hot photons at temperature Th (energy source, blue) and by cold photons or phonons at temperature Tc (entropy sink, red) and operate with
quantum efficiency governed by the Carnot relation. Schemes of four-level molecules inside the laser cavity (B) and electronic states of the quantum dot
photocell (E). Optical transitions b↔ a and a↔ α (b↔ β) are driven by “hot” photons and ambient “cold” phonons, respectively. C and F are the same as B and
E, respectively, with the upper level a replaced by two levels a1 and a2. The QHE power of the five-level system in C and F can be doubled compared with the
four-level system in B and E when there is coherence between these levels.
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nature, we propose a scheme to design artificial light-harvesting
molecular complexes with increased electron transfer efficiency.
The effects of noise-induced coherence can be illustrated by

the following equation for the population of state a1 (50):

_ρ11 = − γ1c

h�
1+ n1c

�
ρ11 − n1cραα

i
− γ1h

h�
1+ n1h

�
ρ11 − n1hρbb

i

−
h
γ12c

�
n2c + 1

�
+ γ12h

�
n2h + 1

�iðρ21 + ρ12Þ;
[1]

where the ρii are the populations of levels i, and nhðncÞ are the
average number of hot solar photons (cold ambient phonons);
γ1c(γ1h) are the decay rates from the upper level to levels α and b,
respectively; and γ12h(γ12c) are cross-couplings that describe the
effect of interference.* The complete set of equations of motion
which describe the evolution of all density matrix elements is given
in SI Text. To obtain a clear physical insight and a qualitative
estimate, we consider a simplified model and neglect memory
effects (Markov approximation) under the condition of weak
system–bath coupling. Future extension to the non-Markovian
regime will be necessary to provide a more precise, quantitative
calculation of the predicted effects. Recent work has suggested
that protein environment plays an important role in photosynthesis
(51). The complicated dynamics of strongly coupled protein bath
goes beyond the scope of our paper.

We construct the model in Fig. 2F using elements of the re-
action center (SI Text). Charge separation in a reaction center can
be considered as work done by a system similarly to a photovoltaic
cell or more generally a QHE powered by thermal radiation of
the sun (10). Assuming that α and β are connected by a “load,”
we introduce the concept of effective voltage V as a drop of the
electrostatic potential across the load, which, according to Fermi–
Dirac statistics, yields eV = Eα − Eβ + kBTα log(ραα/ρββ), where Ei
is the energy of the state i and e is the electric charge. We apply

A B C

D E F

Fig. 2. Schemes of a BQHE based on the photosynthetic reaction center (A) and a generic heat engine (D). Scheme of charge separation between a donor D
and an acceptor A molecule (B). The broad solar spectrum is absorbed by the antennae complexes (arranged in a circle in A) which undergo rapid ther-
malization due to phonon scattering and reach the bottom of the electronic band. Thus, the narrowband excitation is transferred to the reaction center
represented by donor and acceptor molecules. E represents the generic four-level QHE scheme. C and F are the same as B and E, respectively, except that
the upper level a is replaced by two levels a1 and a2 separated by Davydov splitting. The power delivered by the QHE of C and F can be doubled compared
with B and E if there is coherence between levels a1 and a2.

Table 1. Summary of the three parameter regimes

I
(Overdamped)

II
(Underdamped)

III
(Intermediate)

E1 − E2, cm
−1 120 600 720

E1 − Eb, cm
−1 14,856 14,856 14,856

E1 − Ec, cm
−1 1,611 1,611 1,611

Ev − Eb, cm
−1 1,611 1,611 1,611

Ts, K 6,000 6,000 6,000
Ta, K 300 300 300
γ1h, cm−1 0.005 0.005 0.005
γ2h, cm−1 0.0016 0.005 0.005
γ1c, cm−1 140 35 280
γ2c, cm−1 18 35 280
Γc, cm−1 200 50 300
1/τ2, cm−1 41 41 41
n1h 60,000 10,000 90,000
n2h 10,000 20,000 10,000

*Maximum coherence γ12c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1c   γ2c

p
and γ12h =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1h   γ2h

p
; no coherence γ12c = γ12h = 0.
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this to the steady-state regime and calculate the populations ραα
and ρββ at sufficiently long times. For the operation near the open
circuit (weak illumination, no current) the power acquired from
the sun is PS = j · (Ea − Eb)/e, whereas the power that can be
extracted from the reaction center is P = j · Voc. Therefore, the
efficiency of such a heat engine η = P/PS = 1 − Ta/TS is given by
the Carnot relation.
Noise-induced coherence is most pronounced if the two in-

terfering levels overlap, i.e., the level spacing is small compared

with the inverse lifetimes of a1 and a2. In this case, the populations
relax exponentially to the steady state. In the opposite limit,
quantum coherence manifests itself as oscillations of populations
of eigenstates (8, 31). These two limits can be understood by using
a simple analogy with the overdamped and underdamped regimes
of a harmonic oscillator. Thus, one can associate the enhancement
of the steady-state yield with the overdamped regime and pop-
ulation oscillations with the underdamped regime. It is remarkable
that both effects are caused by the same mechanism of noise-

A B E

C D G

I J

K L

F

H

Fig. 3. Steady-state characteristics and excited-state dynamics of a BQHE model of a photosynthetic reaction center in Fig. 2F. Three regimes are shown:
overdamped (A–D); underdamped (E–H), and intermediate (I–L). Quantum coherence can enhance the electric current by up to 27% in the overdamped and
18% in the intermediate regimes compared with the same five-level system without coherence, whereas no current enhancement is achieved in the
underdamped regime. Nonzero steady-state coherence is obtained in B and J. Populations reveal oscillations in the presence of coherence in G and K (solid
lines), whereas no oscillations are present without coherence (dashed lines). Long-lived coherence is obtained in the overdamped (D) and intermediate (L)
regimes. Parameters corresponding to different regimes are summarized in Table 1 (Methods).
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induced coherence but realized for different parameters. The
summary of parameters used in our simulations is listed in Table 1
of Methods. We focus on the Photosystem II reaction center
and perform specific simulations using well-known parameters
from recent literature (20, 21, 31). We also simulate artificial
systems with a broad range of parameters to demonstrate related
coherence effects.
We next calculate steady-state current–voltage characteristics

for our BQHE model (Fig. 2F) in the overdamped regime by
increasing the rate Γ from zero (open circuit) to the short-circuit
condition (no electrostatic potential across the load). Fig. 3 A
and B depict the normalized electric current and the steady-state
coherence ρ12 (absolute value), respectively, as a function of the
voltage. The red line corresponds to the maximum coherence,
whereas the blue line is obtained with no coherence. In this ex-
ample, noise-induced coherence increases the peak power by about
27% compared with the same five-level system without coherence.
The dynamics of populations and coherence ρ12 shown in Fig. 3 C
and D, respectively, demonstrate that in this regime there are no
population oscillations, whereas coherence oscillates and reaches
a steady state.
Fig. 3 G and H show the population and coherence dynamics,

respectively, in the underdamped regime. The oscillatory behavior
of populations and coherence is clearly observed on a time scale
of ∼ 130 fs. This corresponds to the decoherence time after which
populations reach the steady-state values as expected for a closed
system with a conserved probability. In the absence of coherence,
populations evolve exponentially and reach the steady state at
nearly the same time as in the presence of coherence. In the
underdamped oscillator regime, there is no steady-state coherence
(Fig. 3 E and F) and thus there is no enhancement of the steady-
state electric current.
Finally, we investigate the intermediate damping regime where

both population oscillations and an enhanced current yield can
coexist. Fig. 3 I and J show the steady-state current–voltage char-
acteristics and coherence as a function of the voltage drop across
the acceptor load, respectively. Even for moderate coherence
(ρ12 ∼ 0.04), there is an enhancement of 18% in the yield. On the
other hand the dynamics of populations and coherence shown in
Fig. 3 K and L, respectively, reveals large-amplitude oscillations
on a time scale of ∼ 130 fs. Small-amplitude long-lived (steady-
state) oscillations of coherences are also present in this regime.
In summary, we describe QHEs inspired by photosynthesis

that operate under the natural conditions of incoherent excitation

by sunlight using the formalism developed earlier for the laser and
photocell engines. This establishes a connection between two
previously unrelated effects attributed to quantum coherence:
population oscillations in photosynthetic complexes and enhanced
photocurrent yield in QHEs. We investigate parameter regimes
where large electric current yield enhancement and/or population
oscillations are observed and identify noise-induced quantum co-
herence as the common origin of these effects. In contrast with
studies where coherence was generated by laser radiation, this
noise-induced coherence requires no external source. Our simu-
lations show that the coherence builds up on a time scale of a few
femtoseconds and reaches a steady state in a few nanoseconds.
Zero current (open circuit) results in zero coherence whereas
steady-state coherence can lead to current enhancement. We find
that the structure of the special pair in photosynthetic reaction
centers is suitable to use these quantum effects and increase the
efficiency of charge separation. Similar noise-induced coherence
effects have been experimentally demonstrated in semiconductor
quantum wells (52, 53). Our study suggests that these experiments
may be extended to photosynthetic complexes and hold promise
for improving the design and boosting the efficiencies of light-
harvesting devices. A broad range of parameter regimes provides
flexibility in designs and materials.

Methods
We use a quantum master equation approach similar to earlier photocell work
(SI Text) to derive the evolution of the density matrix and obtain steady-state
characteristics such as the quantum yield and the electric current. For the
simulations shown in Fig. 3 we use the parameters listed in Table 1. Here,
E1 − Eb and E1 − Ec (Ev − Eb) are the transition energies for photons and
phonons, respectively; 1/τ2 is the decoherence rate. We assume that the
system is irradiated by a concentrated solar radiation with an average number
of photons n1h and n2h at energies E1 − Eb and E2 − Eb, respectively. Due to
the large phonon energy (1,611 cm−1) that results in small occupation num-
bers, we neglect stimulated processes associated with phonons at room
temperature. n1c and n2c were set to zero.

ACKNOWLEDGMENTS. K.E.D., D.V.V., and M.O.S. acknowledge the support
by National Science Foundation (NSF) Grants PHY-1241032 (INSPIRE
CREATIV) and EEC-0540832 (MIRTHE ERC), the Office of Naval Research,
and Robert A. Welch Foundation Award A-1261. S.M. acknowledges support
from NSF Grant CHE-1058791, Defense Advanced Research Planning Agency
BAA-10-40 QuBE, and the Chemical Sciences, Geosciences and Biosciences
Division, Office of Basic Energy Sciences, Office of Science, US Department
of Energy.

1. Scovil HED, Schulz-DuBois EO (1959) Three-level masers as heat engines. Phys Rev Lett

2(6):262–263.
2. Scully MO, Zubairy MS, Agarwal GS, Walther H (2003) Extracting work from a single

heat bath via vanishing quantum coherence. Science 299(5608):862–864.
3. Einstein A (1917) Zur Quantentheorie der Strahlung. Phys Z 18:121–128.
4. Harris SE (1989) Lasers without inversion: Interference of lifetime-broadened reso-

nances. Phys Rev Lett 62(9):1033–1036.
5. Scully MO, Zubairy MS (1997) Quantum Optics (Cambridge Univ Press, Cambridge,

England).
6. Kozlov VV, Rostovtsev Y, Scully MO (2006) Inducing quantum coherence via decays

and incoherent pumping with application to population trapping, lasing without

inversion, and quenching of spontaneous emission. Phys Rev A 74(6):063829.
7. Scully MO (2010) Quantum photocell: Using quantum coherence to reduce radiative

recombination and increase efficiency. Phys Rev Lett 104(20):207701.
8. Dorfman KE, Jha PK, Das S (2011) Quantum-interference-controlled resonance profiles

from lasing without inversion to photodetection. Phys Rev A 84(5):053803.
9. Scully MO, Chapin KR, Dorfman KE, Kim MB, Svidzinsky AA (2011) Quantum heat

engine power can be increased by noise-induced coherence. Proc Natl Acad Sci USA
108(37):15097–15100.

10. Svidzinsky AA, Dorfman KE, Scully MO (2011) Enhancing photovoltaic power by

Fano-induced coherence. Phys Rev A 84(5):053818.
11. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction

solar cells. J Appl Phys 32(3):510–519.
12. Fingerhut BP, Zinth W, de Vivie-Riedle R (2010) The detailed balance limit of photo-

chemical energy conversion. Phys Chem Chem Phys 12(2):422–432.
13. Blankenship RE, et al. (2011) Comparing photosynthetic and photovoltaic efficiencies

and recognizing the potential for improvement. Science 332(6031):805–809.

14. Caruso F, Chin AW, Datta A, Huelga SF, Plenio MB (2009) Highly efficient energy
excitation transfer in light-harvesting complexes: The fundamental role of noise-
assisted transport. J Chem Phys 131(10):105106.

15. Rebentrost P, Mohseni M, Kassal I, Lloyd S, Aspuru-Guzik A (2009) Environment-
assisted quantum transport. New J Phys 11:033003.

16. Scholes GD (2010) Quantum-coherent electronic energy transfer: Did nature think
of it first? J. Phys. Chem. Lett. 1(1):2–8.

17. Ishizaki A, Fleming GR (2009) Theoretical examination of quantum coherence in a
photosynthetic system at physiological temperature. Proc Natl Acad Sci USA 106(41):
17255–17260.

18. Lloyd S, Mohseni M (2010) Symmetry-enhanced supertransfer of delocalized quantum
states. New J Phys 12:075020.

19. Strümpfer J, Sener M, Schulten K (2012) How quantum coherence assists photosyn-
thetic light-harvesting. J Phys Chem Lett 3(4):536–542.

20. Abramavicius D, Mukamel S (2010) Energy-transfer and charge-separation pathways
in the reaction center of photosystem II revealed by coherent two-dimensional optical
spectroscopy. J Chem Phys 133(18):184501.

21. Madjet ME, Abdurahman A, Renger T (2006) Intermolecular coulomb couplings from
ab initio electrostatic potentials: Application to optical transitions of strongly coupled
pigments in photosynthetic antennae and reaction centers. J Phys Chem B 110(34):
17268–17281.

22. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein
subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å
resolution. Nature 318(6047):618–624.

23. Engel GS, et al. (2007) Evidence for wavelike energy transfer through quantum co-
herence in photosynthetic systems. Nature 446(7137):782–786.

24. Collini E, et al. (2010) Coherently wired light-harvesting in photosynthetic marine
algae at ambient temperature. Nature 463(7281):644–647.

Dorfman et al. PNAS Early Edition | 5 of 6

PH
YS

IC
S

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1212666110/-/DCSupplemental/pnas.201212666SI.pdf?targetid=nameddest=STXT


25. Panitchayangkoon G, et al. (2010) Long-lived quantum coherence in photosyn-

thetic complexes at physiological temperature. Proc Natl Acad Sci USA 107(29):

12766–12770.
26. Brixner T, et al. (2005) Two-dimensional spectroscopy of electronic couplings in

photosynthesis. Nature 434(7033):625–628.
27. Abramavicius D, Palmieri B, Voronine DV, Sanda F, Mukamel S (2009) Coherent

multidimensional optical spectroscopy of excitons in molecular aggregates; quasiparticle

versus supermolecule perspectives. Chem Rev 109(6):2350–2408.
28. Harel E, Engel GS (2012) Quantum coherence spectroscopy reveals complex dynamics

in bacterial light-harvesting complex 2 (LH2). Proc Natl Acad Sci USA 109(3):706–711.
29. Schlau-Cohen GS, et al. (2012) Elucidation of the timescales and origins of quantum

electronic coherence in LHCII. Nat Chem 4(5):389–395.
30. Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature

about solar light harvesting. Nat Chem 3(10):763–774.
31. Abramavicius D, Mukamel S (2010) Quantum oscillatory exciton migration in photo-

synthetic reaction centers. J Chem Phys 133(6):064510.
32. Panitchayangkoon G, et al. (2011) Direct evidence of quantum transport in photo-

synthetic light-harvesting complexes. Proc Natl Acad Sci USA 108(52):20908–20912.
33. Davydov AS (1962) Theory of Molecular Excitons (McGraw-Hill, New York).
34. Kenkre VM, Reineker P (1982) Exciton Dynamics in Molecular Crystals and Aggregates

(Springer, Berlin).
35. Haken H, Strobl G (1967) Exact treatment of coherent and incoherent triplet exciton

migration. The Triplet State, ed Zahlan AB (Cambridge Univ Press, Cambridge), p 311.
36. Mukamel S (2010) Communications: Signatures of quasiparticle entanglement in

multidimensional nonlinear optical spectroscopy of aggregates. J Chem Phys 132(24):

241105.
37. Nalbach P, Braun D, Thorwart M (2011) Exciton transfer dynamics and quantumness

of energy transfer in the Fenna-Matthews-Olson complex. Phys Rev E Stat Nonlin Soft

Matter Phys 84(4 Pt 1):041926.
38. Christensson N, Kauffmann HF, Pullerits T, Man�cal T (2012) Origin of long-lived co-

herences in light-harvesting complexes. J Phys Chem B 116(25):7449–7454.
39. Chin AW, Huelga SF, Plenio MB (2012) Coherence and decoherence in biological

systems: Principles of noise-assisted transport and the origin of long-lived coherences.

Philos Trans Math Phys Eng Sci 370(1972):3638–3657.

40. Turner DB, Wilk KE, Curmi PMG, Scholes GD (2011) Comparison of electronic and
vibrational coherence measured by two-dimensional electronic spectroscopy. J. Phys.
Chem. Lett. 2(15):1904–1911.

41. Zhang WM, Meier T, Chernyak V, Mukamel S (1998) Exciton-migration and three-
pulse femtosecond optical spectroscopies of photosynthetic antenna complexes.
J Chem Phys 108:7763.

42. Mukamel S (1995) Principles of Nonlinear Optical Spectroscopy (Oxford Univ Press,
New York).

43. Won Y, Friesner RA (1988) Theoretical study of photochemical hole burning in pho-
tosynthetic bacterial reaction centers. J Phys Chem 92(8):2208–2214.

44. Novoderezhkin VI, Dekker JP, van Grondelle R (2007) Mixing of exciton and charge-
transfer states in Photosystem II reaction centers: Modeling of Stark spectra with
modified Redfield theory. Biophys J 93(4):1293–1311.

45. Romero E, van Stokkum IHM, Novoderezhkin VI, Dekker JP, van Grondelle R (2010)
Two different charge separation pathways in photosystem II. Biochemistry 49(20):
4300–4307.

46. Novoderezhkin VI, Romero E, Dekker JP, van Grondelle R (2011) Multiple charge-
separation pathways in photosystem II: Modeling of transient absorption kinetics.
ChemPhysChem 12(3):681–688.

47. Cardona T, Sedoud A, Cox N, Rutherford AW (2012) Charge separation in photo-
system II: A comparative and evolutionary overview. Biochim Biophys Acta 1817(1):
26–43.

48. Holzwarth AR, et al. (2006) Kinetics and mechanism of electron transfer in intact
photosystem II and in the isolated reaction center: Pheophytin is the primary electron
acceptor. Proc Natl Acad Sci USA 103(18):6895–6900.

49. Renger T, Schlodder E (2010) Primary photophysical processes in photosystem II:
Bridging the gap between crystal structure and optical spectra. ChemPhysChem
11(6):1141–1153.

50. Power EA (1964) Introductory Quantum Electrodynamics (Elsevier, New York).
51. Lee H, Cheng YC, Fleming GR (2007) Coherence dynamics in photosynthesis: Protein

protection of excitonic coherence. Science 316(5830):1462–1465.
52. Faist J, Capasso F, Sirtori C, West KW, Pfeiffer LN (1997) Controlling the sign of

quantum interference by tunneling from quantum wells. Nature 390:589.
53. dell’Orto T, Almeida J, Coluzza C, Margaritondo G, Margaritondo G; Di Ventra M

(1995) Evidence for a photocurrent Fano resonance in an artificial nanostructure.
Phys Rev B Condens Matter 52(4):R2265–R2268.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1212666110 Dorfman et al.

www.pnas.org/cgi/doi/10.1073/pnas.1212666110


Supporting Information
Dorfman et al. 10.1073/pnas.1212666110
SI Quantum Master Equation for a Single Two-Level System
Coupled to a Harmonic Bath
We now present a microscopic derivation of the quantum master
equation (QME)––the main tool for computing the system evo-
lution. Note that the QME is a fully microscopic theory with no
phenomenological ansatz. All parameters are determined by the
characteristics of the system and the bath.
We consider a single two-level system with a ground b and an

excited a eigenstate interacting with light that is represented by a
harmonic bath. We study spontaneous and stimulated emission in
such a system generated by broadband incoherent thermal radia-
tion. The total Hamiltonian in the dipole approximation is given by

Ĥ = ĤS + ĤB + ĤSB; [S1]

where the two-level system Hamiltonian HS can be expressed in
terms of the system transition operators as

ĤS = Zωajaihaj+ Zωbjbihbj; [S2]

where Zωa and Zωb are eigenstate energies. Introducing Ŝz =

jaihaj− jbihbj, Ŝ= jbihaj, and Ŝ
†
= jaihbj and taking into account

that Zωajaihaj+ Zωbjbihbj= 1
2Zωðjaihaj− jbihbjÞ+ 1

2Zðωa +ωbÞ.
where we define the transition frequency Zω =Zωa − Zωb and
use ja〉〈aj + jb〉〈bj = 1, Eq. S2 yields

ĤS ’ 1
2
ZωŜz; [S3]

where we have neglected the constant energy term Z(ωa + ωb)/2.
The Hamiltonian HB represents a bath of harmonic oscillators

ĤB =
X
k

Zνk â
†
k âk: [S4]

The system–bath interaction Hamiltonian is given by the stan-
dard jejr · E Hamiltonian, which can be written in the dipole
approximation as

ĤSB = Z
X
k

gk
�
Ŝ+ Ŝ

†
��

âk + â†k
�
; [S5]

where the system–bath coupling constant gk =Pab·êkEk=Z with
the dipole moment of a ↔ b transition given by Pab and po-
larization of the field êk; the electric field per photon is Ek =
ðZνk=2e0VphÞ1=2, where Vph is the photon volume. Eq. S5 yields,
after using the rotating-wave approximation (RWA),

ĤSB = Z
X
k

gk
�
Ŝâ†k + Ŝ

†
âk
�
: [S6]

It is convenient to work in the interaction picture, where the
Hamiltonian is transformed as

V̂ = ei
�
ĤS+ĤB

�
t=ZĤSBe

−i
�
ĤS+ĤB

�
t=Z: [S7]

This gives

V̂ ðtÞ= Z
X
k

gkâkeiðω0−νkÞtŜ
†
+H:c:; [S8]

where ω0 = Ea − Eb is the transition frequency; Ŝ≡ jbihaj and
S† ≡ ja〉〈bj are eigenstate lowering and raising operators,

respectively. The equation of motion for the density operator
ρ̂ is (1)

dρ̂ðtÞ
dt

=−
i
Z
TrR

�
V̂ ðtÞ; ρ̂ðt0Þ⊗ ρ̂Rðt0Þ

�

−
1
Z2

TrR

Z t

t0

h
V̂ ðtÞ; �V̂�

t0
�
; ρ̂
�
t0
�
⊗ ρ̂Rðt0Þ

�i
dt0: [S9]

Inserting V̂ ðtÞ into Eq. S9, we recall that hâki= hâ+k i= 0 and
hâk âk0 i= hâ+k â+k0 i= 0, where hÂi stands for tracing over the bath
TrR½ρ̂Rðt0ÞÂ�. We next note that

�
â+k âk0

	
= nkδkk0 ;  

�
âk â

+
k0
	
=
�
nk + 1

�
δkk0 :

Furthermore, the trace can be easily performed by appro-
priate cyclic permutations of the operators. The sum over k can
be replaced by the integral as follows:

X
k

→
Vph

π2

Z∞

0

dkk2:

Hereafter we neglect all memory effects in the system
(Markov approximation) and assume that ρ̂ðt0Þ is a slowly
varying function of time. We can thus extend the integration
over t′ to ∞ and use

Z∞

t0

dt0eiðω−νkÞðt−t0Þ = πδðω− νkÞ:

This gives the final form of the QME

_ρ= −
Vph

cπ
k20 g

2
k0

h�
nk0 + 1

��
Ŝ
†
Ŝρ− 2ŜρŜ

†
+ ρŜ

†
Ŝ
�

+ nk0
�
ŜŜ

†
ρ− 2Ŝ

†
ρŜ+ ρŜŜ

†
�i

; [S10]

where k0 = ω0/c. Taking matrix elements of the density operator
ρij ≡ 〈ijρjj〉 yields

_ρaa = − γ
��
n+ 1

�
ρaa − nρbb

�
;  ρaa + ρbb = 1; [S11]

_ρab = − γ
�
n+ 1=2

�
ρab; [S12]

where

γ =
2k20Vphg2k0

πc
[S13]

is the rate of spontaneous emission for a ↔ b. The average
number of photons n ≡ nk0 for the thermal field at temperature
T is given by the Planck distribution

n=
1

expðZω0=kBTÞ− 1
: [S14]

This form of the QME obtained in the RWA is guaranteed to
yield a physically acceptable evolution which always gives pos-
itive values for populations (2). By using the RWA, we omit the
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counter-rotating terms, i.e., neglecting another type of virtual
process such as radiative (Lamb) shift of the energy levels.

SI Four-Level Laser QHE: Density Matrix Analysis
Next we study the model of a laser QHE represented by a four-
level system (Fig. S1). Transitions b ↔ a and b ↔ β, a ↔ α are
driven by hot and cold light, respectively. Lasing transition α↔ β
emits coherent laser radiation with power Pl and with energy Zνl =
Eα − Eβ. Thus, for the four-level laser QHE scheme, the density
matrix equations are given by

_ρaa = − γc
��
1+ nc

�
ρaa − ncραα

�
− γh

��
1+ nh

�
ρaa − nhρbb

�
; [S15]

_ραα = γc
��
1+ nc

�
ρaa − ncραα

�
−

Pl

Zνl
; [S16]

_ρββ =
Pl

Zνl
−Γc

��
1+Nc

�
ρββ −Ncρbb

�
; [S17]

ρaa + ρbb + ραα + ρββ = 1: [S18]

The laser power Pl is given by

Pl

Zνl
=

g2

γl

��
1+ nl

�
ραα − nlρββ

�
; [S19]

where g is the atom–field coupling constant, γl is the spontaneous
decay rate at the lasing transition α ↔ β, and γh, γc, and Γc are
the spontaneous decay rates

γh =
2k2ab   Vphtg2kab

πc
;    γc =

2k2aα   Vphn~g
2
kaα

πc
;    Γc =

2k2βb   Vphn
~G
2
kβb

πc
; [S20]

with Vpht and Vphn representing the photon and phonon volumes,
respectively. The average occupation number of photons n at
energy Eab = Ea − Eb is given by

nh =
1

exp



Eab

kBTS

�
− 1

; [S21]

whereas nc and Nc, the average occupation numbers of phonons
at energies Eaα = Ea − Eα and Eβb = Eβ − Eb, respectively, are
given by

nc =
1

exp



Eaα

kBTa

�
− 1

;   Nc =
1

exp



Eβb

kBTa

�
− 1

: [S22]

The mean number of laser photons nl obeys the equation of
motion

_nl =
g2

γl

�
ραα − ρββ

�
nl −

νl
Q
nl; [S23]

where Q is the cavity Q factor. We solve Eqs. S15–S23 for
a strong laser field ðnl � 1Þ. For a weak ambient pump nc � 1
and Nc � 1 in the good cavity limit g2Q/νlγl � 1, the laser power
yields

Pl =
nh

ðγc + γhÞΓc + 2ðγc +ΓcÞγhnh
γcΓcγhZνl: [S24]

The laser threshold condition is determined by equating the
populations of the upper and lower laser levels ραα = ρββ. For

nl � 1 in the good cavity limit, this requirement implies zero laser
power Pl = 0. In this case Eq. S16 yields

ραα
ρaa

= 1+
1
nc

= eEaα=kBTc : [S25]

Substituting the latter result into Eq. S15 yields

ρaa
ρbb

=
nh

nh + 1
= e−Eab=kBTh : [S26]

Similarly, Eq. S17 at Pl = 0 implies

ρbb
ρββ

= 1+
1
Nc

= eEβb=kBTc : [S27]

Summarizing the results of Eqs. S25–S27 yields

1=
ραα
ρββ

=
ραα
ρaa

ρaa
ρbb

ρbb
ρββ

= exp


Ea −Eα +Eβ −Eb

kBTc
−
Ea −Eb

kBTh

�
; [S28]

which is equivalent to the familiar Scovil–Schultz-DuBois result

Zνl = Zνh



1−

Tc

Th

�
; [S29]

where we take Zνh = Ea − Eb.

SI Photocell QHE: Maximum Current Delivered to the Load
We note that the simple analysis above can be applied to the
photocell QHE by replacing the laser power term Pl/Zνl by the cell
current j/e. The latter gives the current–voltage characteristics of a
photocell similar to those of a p-n junction with internal resistance:

j
e
=

1− exp
�
eðV −VocÞ

kTc




C+D exp
�
eðV −VocÞ

kTc


; [S30]

where the open-circuit voltage Voc is given by

eVoc = ðEa −EbÞ


1−

Tc

Th

�
: [S31]

The factor C has the meaning of the reverse saturation
current j0, whereas D/C is equivalent to j0eR/kTc, where R is the
internal cell resistance. The general solutions for C and D are
given in ref. 3. In the limit of a weak ambient pump (nc � 1,
Nc � 1), the maximum current is given by

j=e =
γcΓcγhnh

γcΓc + ðγc + 2ΓcÞγhnh
: [S32]

SI Simplest Model of the Biological Quantum Heat Engine
The simplest biological quantum heat engine (BQHE) consists of
two interacting molecules. The states a, b, α, and β form the full
set of two-body states that provide the charge separation. Solar
radiation (photon heat bath) drives transitions from b to a, whereas
low-entropy sink (phonon bath) couples a to α and b to β. The
system Hamiltonian for a two-body model, neglecting the Lamb
shift, can be written as ĤS = Z

P
jωjjjihjj (j = a, b, α, β). Similarly,

the system–bath interaction Hamiltonian can be described by

ĤSB = Z
X
k

gk â
†
kjbijai+ Z

X
q

~gqb̂
†

qjαihaj+ Z
X
p

~Gpĉ
†
pjbihβj+H:c:;

[S33]

where the creation operator â†k couples the optical transition
a ↔ b with the emission of a photon with the momentum Zk,
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whereas the phonons with momenta Zq and Zp created by the

operators b̂
†

q and ĉ†p drive the low-temperature transitions a ↔ α
and β ↔ b, respectively. In addition, we assume that reservoir
states α and β are connected through the membranes (4) and
we model the population transfer between them in the QME
by introducing rate Γ. The evolution of density matrix elements
reads

_ρaa = γh
�
nhρbb −

�
nh + 1

�
ρaa

�
+ γc

�
ncραα −

�
nc + 1

�
ρaa

�
; [S34]

_ραα = γc
��
nc + 1

�
ρaa − ncραα

�
−Γραα; [S35]

_ρββ =Γραα +Γc
�
Ncρbb −

�
Nc + 1

�
ρββ

�
; [S36]

ρaa + ρbb + ραα + ρββ = 1: [S37]

Eqs. S34–S37 allow us to calculate the dynamics of populations of
the charge-separated states. On the other hand, in the long time
limit, one can study the steady-state characteristics of the QHE,
such as the electron flux j or the electrostatic potential across the
membranes.

SI Noise-Induced Population–Coherence Coupling: Simplest
Amplitude Treatment
In this section, we consider a simple example of the manifes-
tation of virtual processes and quantum interference in a three-
level system: the Agarwal–Fano coupling (5) for a simple problem
of radiative decay of ja1〉 and ja2〉 levels in the ground state jb〉
with the emission of a photon of wave vector k. The interaction
picture Hamiltonian in the RWA for this system coupled to a
harmonic bath is

HSB = Z
X
k

h
g*1kŜ

†

1âke
iðω1−νkÞt + g*2kŜ

†

2âke
iðω2−νkÞt +H:c:

i
; [S38]

where Ŝ
†

j ≡ σ+ajb = σjx + iσjy, j = 1, 2 is the material system raising
Pauli operator; ak is the annihilation operator of a photon with
momentum Zk; and gjk is the coupling constant for the jaj, 0〉 →
jb, 1k〉 transition. The time-dependent state vector for the system
is given by

jψi= α1ðtÞja1; 0i+ α2ðtÞja2; 0i+
X
k

βkðtÞjb; 1ki; [S39]

where j0〉 and j1k〉 are the vacuum and single photon states, re-
spectively. The Schrödinger equation for the probability amplitudes
α1, α2, and βk yields

_α1ðtÞ= − i
X
k

g*1kβke
iðω1b−νkÞt; [S40]

_α2ðtÞ= − i
X
k

g*2kβke
iðω2b−νkÞt; [S41]

_βkðtÞ= − ig1kα1e−iðω1b−νkÞt − ig2kα2e−iðω2b−νkÞt; [S42]

where Zωib =Eai −Eb is the energy spacing between levels jai〉
and jb〉, and νk is the photon frequency. We proceed by in-
tegrating Eq. S42 and substituting the result into Eqs. S40 and
S41 Using the Weisskopf–Wigner approximation (1) we find

_α1 = −
γ1
2
α1 −

ffiffiffiffiffiffiffiffiffi
γ1γ2

p
2

α2eiΔt; [S43]

_α2 = −
γ2
2
α2 −

ffiffiffiffiffiffiffiffiffi
γ1γ2

p
2

α1e−iΔt; [S44]

where

γi =
1

4πe0

4ω3
ibP2

ib

3Zc3
[S45]

is the radiative decay rate of the transition jai〉 → jb〉 with a
corresponding frequency ωI; a dipole moment Pib; Δ = ω1b − ω2b

is the level spacing between ja1〉 and ja2〉. Furthermore, Eqs. S43
and S44 are equivalent to the following density matrix equations
(ref. 6):

_ρ11 = − γ1ρ11 −
1
2

ffiffiffiffiffiffiffiffiffi
γ1γ2

p �
~ρ12 + ~ρ21

�
; [S46]

_ρ22 = − γ2ρ22 −
1
2

ffiffiffiffiffiffiffiffiffi
γ1γ2

p �
~ρ12 + ~ρ21

�
; [S47]

_~ρ12 = −
1
2
ðγ1 + γ2Þ~ρ12 − iΔ~ρ12 −

1
2

ffiffiffiffiffiffiffiffiffi
γ1γ2

p ðρ11 + ρ22Þ; [S48]

where ρii and ~ρij ≡ ρije
iΔt (i ≠ j) represent the diagonal (pop-

ulations) and off-diagonal (coherences) matrix elements, re-
spectively.
Expressions S46–S48 apply to the simple case of degenerate

levels, i.e., ω1b = ω2b and real matrix elements ðgik = g*ikÞ. Phys-
ically the interference terms ffiffiffiffiffiffiffiffiffi

γ1γ2
p are the results of the vir-

tual emission and reabsorption of radiation such as ja1, 0〉 →
jb, 1k〉 → ja2, 0〉, etc. Virtual processes due to quantum noise
that are the source of the quantum interference at zero tem-
perature become less subtle at finite temperature, when thermal
noise leads to stimulated emission and absorption as an addi-
tional channel of interference (3). Furthermore, noise-induced
coherence can be created in a system with two lower levels by
stimulated absorption and reemission of a virtual photon (3). In
the following we consider a more general model that includes
both noise-induced coherence and electron transport.

SI Microscopic Derivation of the QME with Couplings
Between Populations and Coherences
Next, we derive the master equation that reveals coupling be-
tween populations and coherences due to noise. For simplicity
we focus on a three-level system with eigenstates 1, 2, and b. The
two upper levels 1 and 2 have frequencies ω1 and ω2. Following
the general approach outlined in SI QME for a Single Two-Level
System Coupled to a Harmonic Bath, we transform the system
and bath Hamiltonians. Thus, in the interaction picture and the
RWA, the system–bath Hamiltonian reads

V̂ ðtÞ= Z
X
k

g1kâkeiðω1−νkÞtŜ
†

1 + Z
X
q

g2qâqeiðω2−νqÞtŜ
†

2 +H:c:;

[S49]

where gik =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zνk=e0V

p Pi are the atom–radiation coupling con-
stants corresponding to dipole transitions with the strength
Pi (i = 1, 2), whereas Ŝ

†

1ðŜ1Þ and Ŝ
†

2ðŜ2Þ are the raising (low-
ering) operators for transitions between eigenstates b ↔ 1 and
b ↔ 2, respectively (Ŝ

†

i ≡ jiihbj, Ŝi ≡ jbihij, i = 1, 2). We assume
that the system interacts with a thermal reservoir described by
the density operator ρ̂R. Substituting V̂ ðtÞ into Eq. S9, we find the
QME for the density operator
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Following the same procedure outlined for a two-level system
interacting with a bath, the QME reduces to

where k1,2 = ω1,2/c, and Δ = ω1 − ω2. Introducing notations

γij =
2k2i Vph giki gjki

πc

and redefining the density matrix operator hij~ρjji= hijρjjieiðωi−ωjÞt,
the QME becomes

d~ρðtÞ
dt

= − i
X2

i;j=1

�
ωi −ωj

�
~ρ

−
X2

i;j=1

γij

h�
nki + 1

��
Ŝ
†

j Ŝi~ρ+ ρŜ
†

i Ŝj − Ŝi~ρŜ
†

j − Ŝj~ρŜ
†

i

�

+ nki
�
Ŝ
†

i Ŝi~ρ+ ~ρŜ
†

i Ŝi − Ŝ
†

i ~ρŜj − Ŝ
†

j ρŜi
�i

: [S52]

Thus, the terms that couple population and coherence are
presented for i ≠ j. Because gk∼

ffiffiffi
k

p P·êk is a slowly varying
function of k and the level spacing is small (ω1 − ω2 ω1,2), we
assume that the matrix γ12 ’ γ21 = 0 for no coherence whereas
γ12 ’ γ21 ’ ffiffiffiffiffiffiffiffiffi

γ1γ2
p for maximum coherence. We take γi ≡ γii

(i = 1, 2) corresponding to the rate of spontaneous emission, i.e.,
the natural linewidth of the corresponding eigenstate. Taking
matrix elements of Eq. S52 ρij ≡ hij~ρjji, we finally obtain

_ρ11 = − γ1
��
n1 + 1

�
ρ11 − n1ρbb

�
−
γ12
2

�
n2 + 1

��
~ρ21 + ~ρ12

�
; [S53]

_ρ22 = − γ2
��
n2 + 1

�
ρ22 − n2ρbb

�
−
γ12
2

�
n1 + 1

��
~ρ12 + ~ρ21

�
; [S54]

_~ρ12 = −
1
2
�
γ1
�
n1 + 1

�
+ γ2

�
n2 + 1

��
~ρ12 − iΔ~ρ12

−
γ12
2

��
n1 + 1

�
ρ11 +

�
n2 + 1

�
ρ22 −

�
n1 + n2

�
ρbb

�
; [S55]

where ~ρ12 = ρ12e
−iΔt with Δ = ω1 − ω2, and ni ≡ nki (i = 1, 2).

SI Laser QHE Enhanced by Noise-Induced Coherence
Consider a laser model with the upper state a replaced by a
doublet a1 and a2 (Fig. S2). Based on the analysis given in
SI Microscopic Derivation of the QME with Couplings Between
Populations and Coherences and taking into account the noise-
induced coherence as per Eqs. S53–S55, the evolution of the
density matrix elements for the laser QHE with degenerate upper
levels a1, a2 (Δ = 0) is described by

_ρ11 = − γ1c
��
1+ nc

�
ρ11 − ncραα

�
− γ1h

��
1+ nh

�
ρ11 − nhρbb

�

−
�
γ12c

�
1+ nc

�
+ γ12h

�
1+ nh

��
Re½ρ12�; [S56]

_ρ22 = − γ2c
��
1+ nc

�
ρ22 − ncραα

�
− γ2h

��
1+ nh

�
ρ22 − nhρbb

�

−
�
γ12c

�
1+ nc

�
+ γ12h

�
1+ nh

��
Re½ρ12�; [S57]

dρ̂ðtÞ
dt

= −
Vph

cπ

(
k21g

2
1k1

h�
nk1 + 1

��
Ŝ
†

1Ŝ1ρ− Ŝ1ρŜ
†

1

�
+ nk1

�
ρŜ1Ŝ

†

1 − Ŝ
†

1ρŜ1
�i

+ k22g1k2g2k2e
iΔt
h�
nk2 + 1

��
Ŝ
†

1Ŝ2ρ− Ŝ2ρŜ
†

1

�
− nk2 Ŝ

†

1ρŜ2
i

+ k21g2k1g1k1e
−iΔt

h�
nk1 + 1

��
Ŝ
†

2Ŝ1ρ− Ŝ1ρŜ
†

2

�
− nk1 Ŝ

†

2ρŜ1
i
+ k22g

2
2k2

h�
nk2 + 1

��
Ŝ
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��
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��
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�
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Ŝ2Ŝ

†
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†
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;   [S51]

dρ̂ðtÞ
dt

= −
Z t

t0

dt0
(X

k;k0
g1kg1k0e

iðω1−νkÞt−iðω1−νk0Þt0TrR
h
âkŜ

†

1;
h
â+k0 Ŝ1; ρ̂ðt0Þ⊗ ρ̂Rðt0Þ

ii

+
X
k;q0

g1kg2q0e
iðω1−νkÞt−iðω2−νq0Þt0TrR

h
âkŜ

†

1;
h
â+q0 Ŝ2; ρ̂ðt0Þ⊗ ρ̂Rðt0Þ

ii
+
X
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g2qg1k0eiðω2−νqÞt−iðω1−νk0Þt0TrR
h
âqŜ

†
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h
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+
X
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g2qg2q0e
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h
âqŜ

†

2;
h
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+
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ii)

:

[S50]
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_ρ12 = −
1
2
�ðγ1h + γ2hÞ

�
1+ nh

�
+ ðγ1c + γ2cÞ

�
1+ nc

��
ρ12

−
γ12c
2

��
1+ nc

�ðρ11 + ρ22Þ− 2ncραα
�

−
γ12h
2

��
1+ nh

�ðρ11 + ρ22Þ− 2nhρbb
�
−
ρ12
τ2

; [S58]

_ραα = γ1c
��
1+ nc

�
ρ11 − ncραα

�
+ γ2c

��
1+ nc

�
ρ22 − ncραα

�

+ 2γ12c
�
1+ nc

�
Re½ρ12�−

Pl

Zνl
; [S59]

_ρββ =
Pl

Zνl
−Γc

��
1+Nc

�
ρββ −Ncρbb

�
; [S60]

ρ11 + ρ22 + ρaa + ρββ = 1: [S61]

The maximum interference corresponds to γ12h =
ffiffiffiffiffiffiffiffiffiffiffiffi
γ1hγ2h

p
and γ12c =

ffiffiffiffiffiffiffiffiffiffiffiffi
γ1cγ2c

p , whereas for no interference γ12h = γ12c = 0.
Taking into account Eqs. S19 and S23 for γ1c = γ2c = γc, γ1h =
γ2h = γh, and assuming no decoherence 1/τ2 = 0, the maximum
coherence reads

ρ12 =

�
γ12c
γc

−
γ12h
γh



Pl

2Zνl

γc
�
1+ nc

��
1−



γ12c
γc

�2

+ γh

�
1+ nh

��
1−



γ12h
γh

�2
: [S62]

In the approximation of a weak ambient pump nc;Nc � 1 in
the strong field and good cavity limits, we find the laser power
with no coherence to be

Pl =
2nh

ðγc + γhÞΓc + ð4γc + 3ΓcÞγhnh
γcΓcγhZνl; [S63]

whereas for the maximum coherence the power is

Pl =
2nh

ðγc + γhÞΓc + 2ð2γc +ΓcÞγhnh
γcΓcγhZνl: [S64]

Thus, in the limit of γc � Γc � γhnh, the power of the laser
QHE with the single upper level of Eq. S24 is given by

Pl =
1
2
γcZνl: [S65]

Similarly, the laser power for the model with an upper
doublet and no coherence of Eq. S63 yields a 33% enhance-
ment result

Pl =
2
3
γcZνl; [S66]

whereas for the model with maximum coherence the result of
Eq. S64 compared with the model with a single level yields
a result that is 2× larger,

Pl = γcZνl: [S67]

SI Photocell QHE Enhanced by Noise-Induced Coherence
Similarly, we consider a photocell QHE with the upper state
a replaced by a doublet a1 and a2. This model is described by the
same equations as the laser QHE (Eqs. S56–S61) if one replaces

the laser power Pl/Zνl by the cell current j/e. The current–voltage
characteristics for the coherence-enhanced photocell are also
given by Eq. S30 with different values of factors C and D (3). The
coherence ρ12 is given by

ρ12 =

�
γ12c
γc

−
γ12h
γh



j
2e

γc
�
1+ nc

��
1−



γ12c
γc

�2

+ γh

�
1+ nh

��
1−



γ12h
γh

�2
: [S68]

For the weak ambient pump nc;Nc � 1, the cell current with
no coherence is given by

j=e=
2γcΓcγhnh

γcΓc + ð2γc + 3ΓcÞγhnh
; [S69]

whereas for the maximum coherence it yields

j=e=
2γcΓcγhnh

γcΓc + 2ðγc +ΓcÞγhnh
: [S70]

Thus, for γ2 � Γc,γhnh, Eq. S32 yields for the model with
a single level a

j=e=
1
2
eγc: [S71]

Similarly, for the model with an upper doublet and no co-
herence we have 33% enhancement

j=e=
2
3
γc; [S72]

and 100% enhancement for the maximum coherence

j=e= γc: [S73]

Thus, because the power of the photocell QHE is given by
Pcell = j · V and the value of the voltage V that corresponds
to the maximum power is close to the open-circuit voltage
eVoc = (Ea − Eb)(1 − Tc/Th), the power delivered to the load
by a photocell is essentially determined by the value of the
maximum current and, therefore, can be doubled by inducing
coherence.

SI Coherence-Assisted BQHE
To extend the ideas of the previous sections to photosynthesis, we
consider a three-body BQHE with two donor and one acceptor
molecules. Namely, we note that if two identical donor mole-
cules are close together and absorb sunlight cooperatively, then
there exist two exciton states separated by Davydov splitting. We
denote them a1 and a2. Furthermore, applying the formalism
of SI Simplest Model of the BQHE to this model yields the
following evolution of the density matrix elements ðρaiaj ≡ ρijÞ:

_ρ11 = − γ12h
�
n2h + 1

�
Re½ρ12�− γ12c

�
n2c + 1

�
Re½ρ12�

− γ1h
��
n1h + 1

�
ρ11 − n1hρbb

�
− γ1c

��
n1c + 1

�
ρ11 − n1cραα

�
;

[S74]

_ρ22 = − γ12h
�
n1h + 1

�
Re½ρ12�− γ12c

�
n1c + 1

�
Re½ρ12�

− γ2h
��
n2h + 1

�
ρ22 − n2hρbb

�
− γ2c

��
n2c + 1

�
ρ22 − n2cραα

�
;

[S75]
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_ρ12 = −
γ12h
2

��
n1h + 1

�
ρ11 +

�
n2h + 1

�
ρ22 −

�
n1h + n2h

�
ρbb

�

−
γ12c
2

��
n1c + 1

�
ρ11 +

�
n2c + 1

�
ρ22 −

�
n1c + n2c

�
ραα

�

−
1
2
�
γ1h

�
n1h + 1

�
+ γ2h

�
n2h + 1

��
ρ12 −



iΔ+

1
τ2

�
ρ12

−
1
2
�
γ1c

�
nc1 + 1

�
+ γ2c

�
n2c + 1

��
ρ12; [S76]

_ραα = γ12c
�
n1c + n2c + 2

�
Re½ρ12�−Γραα

+ γ1c
��
n1c + 1

�
ρ11 − n1cραα

�
+ γ2c

��
n2c + 1

�
ρ22 − n2cραα

�
;

[S77]

_ρββ =Γραα −Γc
��
Nc + 1

�
ρββ −Ncρbb

�
; [S78]

ρbb + ρ11 + ρ22 + ραα + ρββ = 1; [S79]

where γi and ~γi are the spontaneous decay rates of the transitions
a1,2 → b and a1,2 → α, respectively. n1h, n2h and n1c, n2c, Nc are
the photon and phonon occupation numbers similar to nh, nc,
and Nc of Eqs. S21 and S22 with Eab and Eaα replaced by E1,2 −
Eb and E1,2 − Eα, respectively; τ2 is the decoherence time; Δ = ω1 −
ω2 is the splitting of the levels a1 and a2. The noise-induced
couplings γ12h =

ffiffiffiffiffiffiffiffiffiffiffiffi
γ1hγ2h

p and γ12c =
ffiffiffiffiffiffiffiffiffiffiffiffi
γ1cγ2c

p for the maximum
coherence, whereas for no coherence γ12h = γ12c = 0.

SI Application to the Reaction Center of Photosystem II
We apply the model in the previous section to describe the dy-
namics of a photosynthetic reaction center (RC) (Fig. S3).
Photosynthetic antennae transfer energy of the absorbed solar
photons to the RC where the transmembrane charge separation

takes place. The resulting electrochemical potential drives the
synthesis of ATP and the oxidized part of the RC splits water,
releasing molecular oxygen. RCs from green plants, algae, and
bacteria have similar overall structures but they differ in the
nature and precise orientation of the constituent pigments. This
results in spectroscopic differences and a range of dynamical
parameters. However, our five-level scheme may be applied to
all RCs.
As an example, we consider the Photosystem II reaction center

(PSII RC) of green plants. The core of PSII RC consists of six
pigment molecules which are closely spaced and coupled by the
dipole–dipole interactions forming exciton states. These pig-
ments are held together by a protein matrix consisting of two
branches, D1 and D2. At the center of the PSII RC is a pair of
coupled chlorophylls PD1 and PD2, which contribute mostly to the
lowest energy states and are the primary electron donors. They
form two exciton states which are denoted as a1 and a2. They are
analogous to the special pair of bacteriochlorophylls in the
bacterial RC. In PSII RC, these two molecules are also coupled
to the accessory chlorophylls AccD1 and AccD2 located in two
different branches. Only the donor D1 branch takes an active
part in the electron transfer process and therefore we consider
only the AccD1 accessory molecule in our model. The remaining
two pheophytin pigments are coupled to the rest of the mole-
cules. PheD1 is the final electron acceptor in the PSII RC charge-
separation process.
Electron transfer in the PSII RC has been thoroughly in-

vestigated and several charge-separation pathways were identified.
One of the pathways involves the formation of a radical pair
P+
D1Acc

−
D1 from an excited state which involves PD1 and PD2. This

is described in our model as a transition between the states a1, a2
and the radical pair state α. Then the electron moves further along
the multiple sequence of transfer events generating a current
between levels α and β, finally returning to the ground state b.
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Fig. S1. Generic scheme of a four-level QHE.
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Fig. S2. Generic scheme of a five-level QHE with an upper doublet a1, a2 that can exhibit noise-induced coherence.

Fig. S3. Structure of the PSII RC [generated using atomic coordinates from the Protein Data Bank, www.rcsb.org (PDB ID code 1IZL)].
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