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Heat fluctuations and coherences in a quantum heat engine
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Quantum coherence can affect the thermodynamics of small quantum systems. Coherences have been shown
to affect the power generated by a quantum heat engine (QHE) which is coupled to two thermal photon reservoirs
and to an additional cavity mode. We show that the fluctuations of the heat exchanged between the QHE and the
reservoirs strongly depend on quantum coherence, especially when the engine operates as a refrigerator, i.e., heat
current flows from the cold bath to the hot bath. Intriguingly, we find that the ratio of positive and negative (with
respect to the thermodynamic force) fluctuations in the heat current satisfies a universal coherence-independent
fluctuation theorem.
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I. INTRODUCTION

Photovoltaic cells harness solar energy to produce electric
charge which is used to perform work [1,2]. Current photocell
technology reaches efficiencies which are too small to allow
solar energy to meet our day-to-day power needs [3]. Recent
advances in the fabrication of quantum dots have provided new
approaches for enhancing photocell efficiencies [4–8].

Quantum effects such as coherence are particularly impor-
tant in these small-sized systems. In recent studies, Scully and
co-workers [9,10] have analyzed the working of a photovoltaic
cell by modeling it as a collection of a finite set of electronic
levels resonantly coupled to thermally populated field modes at
different temperatures. A laser heat engine, or more generally a
quantum heat engine (QHE), is a quantum system that converts
the incoherent phonon energy of thermal baths to a coherent
laser field. The working mechanisms of a photocell and a QHE
are very similar. Both the photocell and the QHE have been
modeled using the same level scheme [9].

The thermodynamic properties of such QHEs have been
extensively studied [11–13] and found to satisfy the classical
Carnot Shockley-Queisser [14] bound on efficiency. Recently,
it has been demonstrated that quantum effects can dramatically
change the thermodynamics of QHEs. Examples include lasing
without inversion [15], reduction of radiative recombination
in photocells [10], extraction of work from a single thermal
reservoir [16], and enhancement of the output power of a
QHE [9].

The relative importance of fluctuations typically increases
as the size of the system decreases, and a single realization
of an experiment is no longer well approximated by the
mean behavior. In this work we analyze quantum effects
on the fluctuations in the output power of a QHE. There is
a considerable interest in understanding fluctuations in far-
from-equilibrium quantum systems [17,18]. A good measure
of these fluctuations is provided by their full counting statistics
(FCS), namely, the full probability distribution for the number
of particles or amount of energy exchanged during a given time
interval. The FCS is commonly used to characterize electron
transfer in nanojunctions [19,20].

A family of relations collectively known as fluctuation
theorems (FTs) were found to hold in systems arbitrarily far

from equilibrium [21–24]. While the first FTs were derived
for classical systems, FTs were shown to hold for quantum
models also [25–27]. The FTs appear as a constraint that the
FCS generating function must satisfy.

Here we show that apart from enhancing the yield of the
QHE [9], quantum effects also influence the full counting
statistics of fluctuations significantly. We further show that
a universal relation between the probability of positive and
negative (with respect to thermodynamic force) fluctuations
(the FT) holds. Curiously, we find that, unlike fluctuations, the
FT is universal and independent of quantum effects.

The QHE model is presented in the next section. The
steady-state properties of the model are studied in Sec. III.
In particular, the influence of quantum coherence on the QHE
current is investigated. In Sec. IV we examine how coherence
affects the distribution of heat that the QHE exchanges with
the hot reservoir. Results are summarized in Sec. V.

II. THE FOUR-LEVEL QHE MODEL

We use the same QHE model as introduced by Scully
et al. [9]. A four-level quantum system is coupled to two
thermal reservoirs at temperatures Th and Tc < Th (Fig. 1),
and to an additional cavity mode, which has a single mode.
The work done by the machine enhances this mode coherently
by stimulated emission.

The Hamiltonian for our four-level quantum heat engine is
given by

Ĥ0 =
∑

ν=1,2,a,b

EνB̂νν +
∑

k

εkâ
†
kâk + εl â

†
l âl , (1)

where the terms correspond to the four-level system, heat
baths, and the cavity mode, respectively. The coupling between
various components is described by

Ĥ =
∑

k,i=1,2

gikâkB̂
†
ia + H.c. (2)

Finally, the coupling of states |a〉 and |b〉 via the cavity mode
is

V̂ = g(â†
l B̂ba + B̂

†
baâl), (3)
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FIG. 1. (Color online) The level scheme of the QHE model. A pair
of degenerate levels |1〉 and |2〉 is resonantly coupled to two excited
levels |a〉 and |b〉 by two thermally populated field modes with hot
(Th) and cold (Tc) temperatures. Levels |a〉 and |b〉 are coupled by
a nonthermal cavity mode. Emission of photons into this mode is
interpreted as work.

where B̂νν ′ = |ν〉〈ν ′| represents the excitation operator be-
tween states |ν〉 and |ν ′〉, â† (â) denote the creation (an-
nihilation) operators for harmonic modes in the thermal
baths and in the electromagnetic field. g (a real number) is
the coupling strength between the system and the radiation
field.

One of the intriguing properties of the model is that
second-order coupling of the states |1〉,|2〉 to any of the
high-lying levels, which typically leads to rate equations for
the populations, can induce coherence between the |1〉,|2〉
states. The dynamics of the QHE can be described by a
Lindblad equation d

dt
ρ = Lρ [9], where the vector ρ =

{ρ11,ρ22,ρaa,ρbb,ρ̄12} contains the steady-state populations
and coherences. The Lindblad operator is

L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g11 0 γ1hñh γ1cñc −2g12

0 g22 γ2hñh γ2cñc −2g12

γ1hn̄h γ2hn̄h gaa g2n̄l 2γ12hn̄h

γ1cn̄c γ2cn̄c g2ñl gββ 2γ12cn̄c

−g12 −g12 γ12hñh γ12cñc ḡ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where ñi ≡ n̄i + 1 with n̄h = (e(Ea−E1)/(kBTh) − 1)−1 and n̄c =
(e(Eb−E1)/(kBTc) − 1)−1 (kB is the Boltzmann constant) repre-
senting the mean occupation of reservoir modes at energies
Ea − E1 and Eb − E1, respectively, while n̄l is the occupation
of the cavity mode, which is assumed to be held fixed at
any desired value by manipulating external parameters, e.g.,
by changing the cavity volume, reflectors, etc. The diagonal
terms are

g11 = −γ1cn̄c − γ1hn̄h, (5)

g22 = −γ2cn̄c − γ2hn̄h, (6)

gaa = −(γ1h + γ2h)ñh − g2ñl , (7)

gββ = −(γ1c + γ2c)ñc − g2n̄l , (8)

ḡ = − 1
2 (γ1h + γ2h)n̄h − 1

2 (γ1c + γ2c)n̄c − 1
τ2

, (9)

g12 = 1
2 (γ12cn̄c + γ12hn̄h). (10)

These ratelike equations are obtained with the help of
standard approximations, namely, large reservoirs whose state
is only negligibly perturbed by the system, weak system-
field coupling, the rotating-wave approximation, and a large
and slowly varying density of states of near-resonant field
modes. (The latter approximation is known as the Weisskopf-
Wigner approximation in quantum optics, or the wideband
approximation in condensed matter physics.) The derivation
can be found in Ref. [9]. In Appendix A we present a version
of the derivation which has been modified to treat also the
fluctuations of the QHE. These will be studied in Sec. IV. The
derivation in Ref. [9] essentially follows along the same lines
as given in Appendix A with λ = 0.

In Eq. (4) the coherence is coupled to the populations via
γ12c and γ12h. These coupling constants depend on the angle
between the transition dipoles for excitations between states
|1〉,|2〉 → |a〉 and |1〉,|2〉 → |b〉. The maximal value of γ12c

is
√

γ1cγ2c and the coupling vanishes when γ12c = 0, with
similar relations for γ12h. We therefore view γ12c and γ12h as
parameters which can control the value of the coherence ρ12 at
steady state, albeit in a complicated manner. Only the real part
(ρ̄12) of the coherence couples to the population dynamics for
the degenerate levels |1〉,|2〉.

Transitions between system states involve energy exchange
with the different reservoirs. These can be assigned different
thermodynamical interpretations based on the nature of the
reservoirs. The two thermal reservoirs contain incoherent,
fluctuating electromagnetic fields. Previous work has demon-
strated that such photon reservoirs behave like thermal baths
[11]. Therefore energy taken from (or given to) such reservoirs
should be interpreted as heat, and is accompanied by an
appropriate change in the entropy of the reservoir. In contrast,
transitions between the states |a〉,|b〉 are coupled to an
athermal reservoir. We assume that all the energy involved
in this transition can be utilized, and therefore interpret
it as work. This means that even though the form of the
transition rates connecting two populations in Eq. (4) is
similar, the interpretation is different because of the different
nature of the reservoir degrees of freedom (which were
integrated out).

It should be stressed that we have kept the description
of the |a〉 ↔ |b〉 transition as one coupled to a field mode
to keep the notations of Ref. [9]. This transition is not
directly coupled to any coherence and therefore all the
results presented below will apply to models with a different
mechanism coupled to the |a〉 ↔ |b〉 transition, such as a
charge transfer across a voltage difference, or a chemical
catalysis. All that is needed is to replace the rates Lab

and Lba with thermodynamically consistent rates describ-
ing the process of interest (while modifying gaa and gbb

accordingly).
The energy exchanged with different reservoirs are strongly

coupled since, for instance, a cycle of transitions a → b → 1,

2 → a always involves an absorption of a photon from
the hot reservoir, an emission of one photon into the cold
reservoir, and the cavity mode. This results in two possible
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FIG. 2. (Color online) System state populations as functions of
the cold bath temperature for Th = g = nl = γ1h = 1.0, γ1c = γ2h =
0.1, and γ2c = 2.0. The inset shows the change in the coherence
(solid curve) and the steady-state current with Tc. Dotted vertical line
at Tc ≈ 0.42 indicates the temperature where the net current is zero
(see the text).

steady-state scenarios [13]. The system can work either as
a quantum heat engine—it can extract energy from the hot
bath Th, perform some work on the radiation field, and reject
the unused energy to the cold bath Tc—or as a refrigerator
which uses work to pump heat from the cold to the hot
reservoir.

III. QHE STEADY STATE

The steady-state solution for the populations and the
coherence is obtained by solving Lρs = 0. In Fig. 2, we depict
the variation of the steady-state ρs with the temperature of the
cold bath. The steady-state heat current Ih between the hot
reservoir and the system is

Ih = (Ea − E1)g2
(
ρs

aañl − ρs
bbn̄l

)
. (11)

At steady state, Eq. (11) is proportional to the power of the
QHE as defined in Ref. [9] [see Eq. (11) there]. In the inset of
Fig. 2 we plot (dotted curve) Ih as a function of Tc. It clearly
manifests two regimes, heat engine (Ih > 0) and refrigerator
(Ih < 0).

A general expression for the steady-state heat current is
given in Appendix B [see Eqs. (B1) and (B2)]. In the following
we show that in different parameter regimes coherence can
either enhance or reduce the current.

First we note that for a symmetric coupling configuration,
γ1c = γ2c = γc, γ1h = γ2h = γh, together with maximal co-
herence couplings, γ12c = √

γ1cγ2c and γ12h = √
γ1hγ2h, the

effects of coherences vanish at steady state, and the heat current
is

Ih = 2g2γhγc[ñl ñcn̄h − ñhn̄l n̄c]

D(γhn̄h + γcn̄c)
(Ea − E1) (12)

with D = [1 + 2αh][g2n̄l − γhn̄h] + [1 + 2αc][g2ñl + γh

(2 + 3n̄h)], where we have used αc = γc(1 + n̄c)/(γhn̄h +
γcn̄c), and similarly for αh.

From the general expressions for the current Eqs. (B1) and
(B2), for γ1h = γ2h, γ12h = 0, and n̄l 
 1, we can derive an

FIG. 3. (Color online) The steady-state heat current as a function
of coherences induced by the hot and cold baths for γ1h = γ2h = 0.7,
Tc = 0.2, γ1c = 0.5, γ2c = 2.0, g = 100, Ea = 1.5, E1 = E2 = 0.1,
and Eb = 0.4. The green and the blue surfaces (middle and bottom
surfaces on the left side, respectively) present variations in n̄l = 100
and n̄l = 0.01, respectively. The red surface corresponds to the current
without coherences [Eq. (B3)] for n̄l = 0.01. The y axis for the green
surface (n̄l = 100) has been scaled such that the current without
coherences for n̄l = 100 coincides with the red surface (n̄l = 0.01).

approximate expression for the current:

Ih = I 0
h

[
1 − f

Q

1 − f (1+2n̄c)
α

]
, (13)

where I 0
h is the current in absence of coherences [see Eq. (B3)],

Q = (α1c + α2c)/ñc, α = 2 + α1c + α2c + α1h + α2h, and
f = 2γ 2

12cn̄c/[γ1c(γ2cn̄c + γ2hn̄h) + γ2c(γ1cn̄c + γ1hn̄h)]. Since
Q < α/(1 + 2n̄c), we note that in this limit, the current is
reduced by the coherences. Similar coherence dependence is
found for γ1h = γ2h, γ12c = 0, and n̄l 
 1. For n̄l < 1 with
γ1h = γ2h, we find that the current can be either enhanced or
suppressed depending on the relative values of the induced
coherences due to the hot and the cold baths. This is shown in
Fig. 3, which compares the value of the steady-state current for
finite γ12c and γ12h to its value for γ12c = γ12h = 0. Our results
indicate that in order to enhance the QHE power using quantum
coherences, the average occupation in the cavity mode must
be kept below unity.

IV. FLUCTUATIONS

We now consider a measurement in which the QHE is
brought to its steady state, and then the energy, or equivalently
the number of photons k, that it exchanges over a time t with
one of the reservoirs—here chosen to be the hot reservoir—is
mesaured. Due to the stochastic nature of the dynamics,
repetitions of the measurement will result in different values.
By repeating the process many times one can calculate
the probability distribution of the heat exchanged with the
reservoir. We are interested to find out how the coherence of
the system affects this distribution.

To quantify the heat fluctuations at steady state we follow
the measurement procedure outlined in Ref. [25]. The FCS of
the heat exchange can be calculated using a twisted generator
L(λ), where an auxiliary field λ is introduced in the transi-
tions involving heat exchange with the reservoir of interest.
For the heat exchanged with the hot reservoir, the twisted
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FIG. 4. (Color online) Probability distribution of the number of
photons transferred between the hot bath and the system, k, for t =
1000, Tc = 0.01 (black), Tc = 0.25 (green), Tc = 0.42 (red), Tc =
0.70 (orange), and Tc = 0.90 (magenta) [Tc increasing from right to
left]. Other parameters are the same as given in Fig. 2. Solid and
dotted curves denote results for the maximum coherence γ12h(c) =√

γ1h(c)γ2h(c) and no coherence γ12h(c) = 0, respectively. For Tc � .42
the system operates as a refrigerator. Inset shows standard deviation
(σ ) at different temperatures with (filled circles) and without (empty
circles) coherences. Stars represent the percentage change in σ due
to coherences.

generator L(λ) is

L(λ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

g11 0 γ1h;λñh γ1cñc −2g12

0 g22 γ2h;λñh γ2cñc −2g12

γ1h;−λn̄h γ2h;−λn̄h gaa
g2n̄l

γl
2γ12h;−λn̄h

γ1cn̄c γ2cn̄c
g2ñl

γl
gββ 2γ12cn̄c

−g12 −g12 γ12h;λñh γ12cñc ḡ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(14)

where γX;λ = γXeiλ. Equation (14) is derived from the Hamil-
tonian in Appendix A. Note that the auxiliary field λ appears
not only in the transition connecting populations, but also in
transitions between coherences and populations.

The probability distribution of the heat exchange can be
calculated from Eq. (14) in a standard way by propagating the
Lindblad equation with L(λ), tracing over populations, and
then calculating the inverse Fourier transform with respect to
λ, as explained in Appendix C.

Probability distributions for the number of photons trans-
ferred are shown in Fig. 4 for the measurement time t = 1000
and temperatures spanning both the heat engine and the re-
frigerator regimes. Coherence clearly affects the distributions.
In all cases, the central part of the distribution function can
be approximated very well by a Gaussian. Coherence reduces
thermal fluctuations in the heat current as is evident by the
variance. This reduction is more pronounced when the system
operates as a refrigerator (absorbing a coherent cavity photon
and transferring heat from the cold to the hot bath), as shown
in the inset of Fig. 4.

We now compare different distributions to their counter-
parts calculated without coherence. In Fig. 5, we show the
distributions for the heat engine regime (left panel), where
we have centered all distributions around the mean transfer.
The distribution is virtually unaffected by coherence. In the
refrigerator regime (right panel), the distributions with and
without coherence are clearly different.

The Fano parameter FP = 〈k2〉−〈k〉2

〈k〉 has been extensively
used [28,29] to quantify the non-Poisson character of the
statistics (FP = 0 for Poisson statistics). In Fig. 6 we present
this parameter over a range of Tc with and without coherences
for small values of 0.000 01 < nl < 0.02. It shows a mini-
mum at small Tc, but the statistics remains super-Poissonian
(FP > 0) over the whole range of Tc. For large values of
nl , the Fano parameter diverges (shown in the inset) at
Tc = Eb−E1

(Ea−E1)/Th−kB ln(1+1/n̄l )
where 〈k〉 = 0. Coherence tends

to decrease the super-Poisson character of the statistics as the
cold bath temperature is increased.

Interestingly, we find that even though coherences
influence the full statistics, a coherence-independent
steady-state fluctuation relation still holds. This can be
demonstrated by showing that L(λ) satisfies a simple
identify:

U−1L(λ)U = LT (−λ + iα), (15)

where U = diag{r,r,r n̄cn̄l

ñc ñl
,r n̄c

ñc
, r

2 } for any r , and LT is the
transpose of L. The parameter

α = ln
ñhn̄cn̄l

ñl ñcn̄h

= Ea − E1

kBTh

− Eb − E1

kBTc

+ ln
n̄l

n̄l + 1
(16)

is an affinity which describes the effective thermodynamic
force driving the system away from its equilibrium.
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FIG. 5. (Color online) Probability distribution of the number of photons transferred for different measurement times (increasing from top
to bottom) in the heat engine regime, Tc = 0.12 (left panel), and refrigerator regime, Tc = 0.95 (right panel). Other parameters are the same as
in Fig. 2. Solid and dotted curves have the same meanings as in Fig. 4.

043843-4



HEAT FLUCTUATIONS AND COHERENCES IN A QUANTUM . . . PHYSICAL REVIEW A 86, 043843 (2012)

0.0 0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

0.95

1.00

Tc

F
P

0.0 0.2 0.4 0.6 0.8
200
100

0
100
200

Tc

F
P

FIG. 6. (Color online) Fano parameter for different values of
nl = 0.0001,0.001,0.01,0.02 (increasing from bottom to top). Solid
and dashed curves represent the results with and without the
coherences, respectively. The inset (nl = 1.0) shows the divergence
of the Fano parameter at the point where the current vanishes.

The similarity transformation Eq. (15) implies that L(λ)
and L(−λ + iα) have the same eigenvalues, resulting in the
fluctuation relation

P (k,t)

P (−k,t)
= eαk. (17)

Equation (17) holds asymptotically in the long-observation-
time limit. It is clearly a steady-state quantum fluctuation
relation, similar to those obtained by Jarzynski and Wójcik [30]
and Andrieux et al. [31]. (See Refs. [25,26] for comprehensive
reviews of quantum fluctuation relations.) One of the appealing
properties of the QHE model studied here is that the fluctuation
relation can be obtained from a ratelike equation in which
quantum coherence plays an explicit role. Note that α depends
only on the bath distribution functions (we assume that n̄l , the
number of photons in the cavity mode, is held fixed). Therefore
Eq. (17) is independent of the value of the quantum coherence
(γ12c,γ12h).

V. SUMMARY

To summarize, we have considered a model of a quantum
heat engine which was previously studied as an example of a
system whose thermodynamical properties are influenced by
quantum coherence. We have obtained a closed expression for
the steady-state current and have found that for small cavity
occupation the performance of the QHE can be enhanced by
coherence.

We further considered the fluctuations around the steady
state of the QHE. The numerical results presented in Figs. 4–6
clearly demonstrate that the distribution of exchanged heat
depends on the coupling parameters that control the amount
of coherence. An asymptotic fluctuation theorem for the
fluctuations in the heat transferred between the hot bath and
the QHE is derived analytically. Interestingly, our calculations
show that a coherence-independent fluctuation theorem, with
an affinity that depends only on properties of the external
reservoirs, holds.
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APPENDIX A: DERIVATION OF EQUATIONS OF MOTION
FOR THE REDUCED DENSITY MATRIX

In order to compute the full statistics of fluctuations, we
follow the two-point measurement procedure as described
in Ref. [25]. The generating function for k-quanta transfer
between the hot reservoir and the system is obtained as

G(λ,t) = TrF {ρ̂T (λ,t)}, (A1)

where TrF is the full trace in the space of system +
reservoirs + cavity, ρT (λ = 0,t) is the density matrix of the
total system. We make projections (measurements) in the hot
reservoir and assume that the first measurement is performed at
time t = 0, when the system-reservoirs coupling is turned on
and the system density matrix is diagonal, i.e., initially (t = 0)
the system is in a pure quantum state. The second measurement
is made after a time t . The time evolution of ρ̂T (λ,t) is given
by (h̄ = 1)

ρ̂T (λ,t) = e−iĤT (λ)t ρ̂T eiĤT (−λ)t , (A2)

where HT (λ) = Ĥ0 + V̂ + Ĥc + Ĥh(λ), with Ĥ0 and Ĥc given
by the first and the second terms (where k ∈ cold reservoir) on
the right-hand side of Eq. (2), respectively, and

Ĥh(λ) = e−iλ/2
∑

q,i=1,2

giq âqB̂ai + H.c., (A3)

where q ∈ hot reservoir. From (A2), we get

∂

∂t
ρT (λ,t) = −i[Ĥ (λ)ρT (λ,t) − ρT (λ,t)Ĥ (−λ)]. (A4)

Tracing over reservoirs and cavity modes, and defining
ρ̂(λ,t) = TrR{ρT (λ,t)}, we get

∂

∂t
ρ̂(λ,t) = −iTrR{[Ĥ (λ)ρT (λ,t) − ρT (λ,t)Ĥ (−λ)]}. (A5)

Up to second order in the coupling to the reservoirs and
the cavity, and assuming the Markovian approximation, the
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right-hand side gives

∂

∂t
ρ̂(λ,t) = −i[Ĥ0,ρ̂(λ,t)] − �phπ

∑
i,i ′

[gihg
∗
i ′h{B̂aiB̂

†
ai ′ ρ̂(λ,t)ñh(ωai ′ ) − e−iλn̄h(ωai ′ )B̂ai ρ̂(λ,t)B̂†

ai ′

− eiλñh(ωai ′)B̂
†
ai ′ ρ̂(λ,t)B̂ai + n̄h(ωai ′ )ρ̂(λ,t)B̂†

ai ′B̂ai} + gi ′hg
∗
ih{ñh(ωai ′)ρ̂(λ,t)B̂ai ′B̂

†
ai

− e−iλn̄h(ωai ′ )B̂ai ′ ρ̂(λ,t)B̂†
ai − eiλñh(ωai ′)B̂

†
ai ρ̂(λ,t)B̂ai ′ + n̄h(ωai ′)B̂

†
aiB̂ai ′ ρ̂(λ,t)}

+ gi ′cg
∗
ic{ñc(ωbi ′)ρ̂(t)B̂bi ′B̂

†
bi − n̄c(ωbi ′ )B̂bi ′ ρ̂(λ,t)B̂†

bi − ñc(ωbi ′ )B̂
†
bi ρ̂(λ,t)B̂bi ′

+ n̄c(ωbi ′ )B̂
†
biB̂bi ′ ρ̂(λ,t)} + gicg

∗
i ′c{ñc(ωbi ′ )B̂biB̂

†
bi ′ ρ̂(t) − n̄c(ωbi ′ )B̂bi ρ̂(λ,t)B̂†

bi ′ − ñc(ωbi ′ )B̂
†
bi ′ ρ̂(λ,t)B̂bi

+ n̄c(ωbi ′ )ρ̂(λ,t)B̂†
bi ′B̂bi}] − π |gbl|2[ñl(ωab)B̂abB̂

†
ab − 2nl(ωab)B̂abρ̂(λ,t)B̂†

ab

− 2ñl(ωab)B̂†
abρ̂(λ,t)B̂ab + n̄l(ωab)ρ̂(λ,t)B̂†

abB̂ab + ñl(ωab)ρ̂(λ,t)B̂abB̂
†
ab + nl(ωab)B̂†

abB̂abρ̂(λ,t)], (A6)

where we have indicated the couplings with the hot and the cold baths by subscripts h and c, respectively, and ωij = Ei − Ej .
The mode populations are n̄x = Tr{â†

x âx ρ̂x}, where x corresponds to either the hot (x = h) or cold (x = c) reservoir, or to the
cavity mode (x = l), and ñx = 1 + n̄x . �ph is the density of states of the thermal reservoirs which is assumed to be independent
of energy and identical for the two reservoirs.

Defining ρij ≡ 〈i|ρ̂|j 〉, we obtain the following set of coupled equations for the populations ρii and the real part of the
coherence ρ̄12:

∂

∂t
ρ11 = − [γ1cn̄c(ωb1) + γ1hn̄h(ωa1)] ρ11 + eiλγ1hñh(ωa1)ρaa + γ1cñc(ωb1)ρbb − [γ12cn̄c(ωb2) + γ12hn̄h(ωa2)] ρ̄12, (A7)

∂

∂t
ρ22 = − [γ2cn̄c(ωb2) + γ2hn̄h(ωa2)] ρ22 + eiλγ2hñh(ωa2)ρaa + γ2cñc(ωb2)ρbb − [γ12cn̄c(ωb1) + γ12hn̄h(ωa1)] ρ̄12, (A8)

∂

∂t
ρaa = γ1he

−iλn̄h(ωa1)ρ11 + γ2he
−iλn̄h(ωa2)ρ22 − [γ1hñh(ωa1) + γ2hñh(ωa2) + g2ñl(ωab)]ρaa

+ γ12he
−iλ[n̄h(ωa1) + n̄h(ωa2)]ρ̄12 + g2n̄l(ωab)ρbb, (A9)

∂

∂t
ρbb = γ1cn̄c(ωb1)ρ11 + γ2cn̄c(ωb2)ρ22 + g2n̄l(ωab)ρaa + γ12c [n̄c(ωb1) + n̄c(ωb2)] ρ̄12

− [γ1cñc(ωb1) + γ2cñc(ωb2) + g2n̄l(ωab)]ρbb, (A10)

and
∂

∂t
ρ̄12 = −1

2
[γ12hn̄h(ωa1) + γ12cn̄c(ωb1)] ρ11 − 1

2
[γ12hn̄h(ωa2) + γ12cn̄c(ωb2)] ρ22

+ 1

2
γ12he

iλ [n̄h(ωa1) + n̄h(ωa2)] ρaa + 1

2
γ12h [n̄c(ωb1) + n̄c(ωb2)] ρbb − iω12ρ̄12

− 1

2
[γ1hn̄h(ωa1) + γ2hn̄h(ωa2) + γ1cn̄c(ωb1) + γ2cn̄c(ωb2)]ρ̄12, (A11)

where we have further defined the couplings

γ1x = π�ph

2
|g1x |2, γ12x = π�ph

2
g1xg2x. (A12)

For the degenerate case, ωa1 = ωa2, ωb1 = ωb2, we recover the results in Eq. (14).

APPENDIX B: CALCULATION OF THE STEADY-STATE CURRENT

At steady state, ρ̇ = 0, and substituting λ = 0, the above equations become a set of coupled linear equations in the populations
and coherence. This set can be solved analytically to obtain the steady-state density matrix. The steady-state heat current between
the system and the hot bath is given by Eq. (11). Substituting for steady-state values of ρaa and ρbb, we obtain

Ih = g2ñl

ḡD (Ea − E1) [ḡ[(β11+β22){�hα1cg12 + γ2hγ12cn̄hñc} − (2γ12hn̄h + �hβ11){g12(α1c + α2c) − γ12cñc}]

− ḡ2n̄h(γ1hα1c + γ2hα2c)] + g2n̄l

ḡD (Ea − E1) [ḡ ((β11 + β22){g12[�hα1h − ñh(γ1h + γ2h)] + γ2hγ12hn̄hñh}

− (2γ12hn̄h + �hβ11){g12(α1h + α2h) − γ12hñh}) + ḡ2n̄c(γ1cα1h + γ2cα2h)], (B1)
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where βii = −(γ12hn̄h + γ12cn̄c)/(γihn̄h + γicn̄c),i = 1,2, �h = n̄h(γ1h − γ2h), and αic = γicñc/(γihn̄h + γicn̄c). The function
D is

D = (1 + α1h + α2h)[(2γ12hn̄h + �hβ11)(g12 + γ12cñc) + ḡ(γ2hn̄h − g2n̄l − �hα1c)]

− (1 + α1c + α2c)[(2γ12hn̄h + �hβ11)(g12 + γ12hñh) + ḡ(γ2hn̄h − gaa − �hα1h)]

+ (β11 + β22)[(γ2hn̄h − gaa − �hα1h)(g12 + γ12cñc) − (γ2hn̄h − g2n̄l − �hα1c)(g12 + γ12hñh)]. (B2)

In the absence of coherences, i.e., γ12c = γ12h = 0, but for arbitrary couplings γix where i = 1,2 and x = h,c, the current is
given by

I 0
h = g2(Ea − E1)[ñl n̄h(γ1hα1c + γ2hα2c) − n̄l n̄c(γ1cα1h + γ2cα2h)]

(1 + α1c + α2c)[g2ñl + γ2h(1 + 2n̄h) + α1h(γ1cn̄c + γ2hn̄h)] + (1 + α1h + α2h)(g2n̄l − γ2hn̄h + �hα1c)
, (B3)

where α1c(2c) = γ1c(2c)(1 + n̄c)/[γ1c(2c)n̄c + γ1h(2h)n̄h], and similarly for α1h(2h) and �h(c) = [γ1h(1c) − γ2h(2c)]n̄h(c).

APPENDIX C: CUMULANT GENERATING FUNCTION

The generating function corresponding to the probability of
transferring k photons between the hot bath and the quantum
engine is defined as

G(λ,t) ≡
∑

k

eiλkP (k,t). (C1)

The number of transferred photons is proportional to the heat
exchange. This generating function can be calculated using
standard techniques,

G(λ,t) = Trρ(λ,t), ρ̇(λ,t) = L(λ)ρ(λ,t), (C2)

where ρ(λ,t = 0) = ρs and Tr denotes a sum over the
populations.

We look for the fluctuations in the net photon transfer
between the hot reservoir and the system. In this setup the
hot reservoir serves as a “classical” detector. The moment
generating function then allows us to compute the full

steady-state distribution function for the net number k of
photons transferred between the reservoir and the QHE,

P (k,t) =
∫

dλ

2π
e−iλkG(λ,t). (C3)

Equation (C3) immediately provides the heat distribution
function P (h,t) for the transferred heat h = (Ea − E1)k
between the system and the hot bath during a binning time t .

One can also defined a cumulant generating function S(λ)
via G(λ,t) = etS(λ). For long observation times, the cumulant
generating function S(λ) is dominated by the eigenvalue of the
generator L(λ) with the largest real part. In this limit only the
dominant eigenvalue of L(λ) is required to calculate the full
distribution function. The numerical results presented in the
paper are based on a diagonalization of the twisted propagator
L(λ). Finally, when the generating function is asymptotically
dominated by the eigenvalue with the largest real part, it
satisfies a symmetry relation G(λ) = G(−λ + iα) which leads
to the fluctuation relation when combined with Eq. (C3).
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[30] C. Jarzynski and D. K. Wójcik, Phys. Rev. Lett. 92, 230602

(2004).
[31] D. Andrieux, P. Gaspard, T. Monnai, and S. Tasaki, New J. Phys.

11, 043014 (2009).

043843-8

http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.74.2694
http://dx.doi.org/10.1103/PhysRevLett.78.2690
http://dx.doi.org/10.1023/A:1023208217925
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/PhysRevE.60.2721
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/RevModPhys.81.1665
http://dx.doi.org/10.1103/PhysRevB.75.155316
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/RevModPhys.83.771
http://dx.doi.org/10.1103/PhysRevLett.90.170604
http://dx.doi.org/10.1126/science.284.5412.299
http://dx.doi.org/10.1126/science.284.5412.299
http://dx.doi.org/10.1364/AO.22.001898
http://dx.doi.org/10.1364/AO.22.001898
http://dx.doi.org/10.1103/PhysRevLett.92.230602
http://dx.doi.org/10.1103/PhysRevLett.92.230602
http://dx.doi.org/10.1088/1367-2630/11/4/043014
http://dx.doi.org/10.1088/1367-2630/11/4/043014



