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We present a diagrammatic technique for calculating quantum-detected nonlinear optical signals using
loop diagrams that act in the joint matter plus field space. This formalism, which is based on time-ordered
superoperators keeps track of the entangled matter plus field state, making it most suitable for spectroscopy
applications. Photon counting is recast as a time and frequency convolution of a bare signal, which is given by a
correlation function of matter, and a gating spectrogram.
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I. INTRODUCTION

Rapid progress in pulse shaping technology [1–6] has made
it possible to control the temporal as well as the spectral
profiles of optical fields. The external optical field induces
a polarization in matter that results in the electromagnetic
response that is registered by the detection setup [7]. Time-
resolved detection is natural when the incoming pulsed fields
are much shorter than the relevant molecular time scales [3–5].
A frequency-resolved detection is used [6] for stationary
fields.

A semiclassical formalism for describing the photon
counting process was first derived by Mandel [8–10]. The
full quantum mechanical description of the field and photon
detection was developed by Glauber [11]. An ideal photon
detector is a device that measures the radiation field intensity
at a single point in space. The size of such a detector should be
much smaller than spatial variations of the field. The response
of an idealized time-domain photon detector does not depend
on the frequency of the radiation.

The standard Glauber’s theory of photon counting [11–13]
is formulated in the radiation field space. It is based on the two-
point field correlation function, convoluted with the time- and
frequenc-gating spectrogram of the detector. This approach
assumes that the detected field is given. Thus, it does not
address the matter information and the way this field has been
generated. Temporally and spectrally resolved measurements
can reveal important matter information. Recent experimental
results on single-photon spectroscopy of the single molecules
[14–16] call for an adequate microscopic foundation where
joint matter and field information could be retrieved by a proper
description of the detection process.

The resolution of simultaneous frequency and time domain
measurements is limited by the Fourier uncertainty �ω�t >

1. A naive calculation of signals without proper time and
frequency gating can work for slowly varying spectrally
broad optical fields but otherwise may yield unphysical
negative results [17]. In Ref. [18] the mixed time-frequency
representation for the coherent optical measurements with
interferometric or autocorrelation detection were calculated
in terms of a mixed material response functions and a
Wigner distribution for the incoming pulses, the detected field,

*kdorfman@uci.edu

and the gating device. Multidimensional gated fluorescence
signals for single-molecule spectroscopy have been calculated
in Ref. [19].

We consider signals generated by spontaneous emission in
modes that are initially in the vacuum state. Adopting terminol-
ogy used in spectroscopy, these are homodyne-detected signals
[20]. Note that in quantum optics the homodyne (heterodyne)
signal is interferometric detection with a local oscillator with
the same (different) frequency than the signal. In spectroscopy
the term homodyne (heterodyne) implies detection without
(with) a local oscillator.

Here we develop a microscopic diagrammatic approach
for calculating time- and frequency-gated photon counting
measurements. The observed signal is represented by a
convolution of the bare signal and detector spectrogram that
contains the time- and frequency-gate functions. The bare
signal is given by the product of two transition amplitude
superoperators [21] (one for bra and one for ket of the matter
plus field joint density matrix), each creating a coherence in the
field between states with zero and one photon. By combining
the transition amplitude superoperators from both branches of
the loop diagram we obtain the photon occupation number that
can be detected. The detection process is described in the joint
space of the field and matter by a sum over pathways each
involving a pair of quantum modes with different time order-
ings. The signal is recast using time-ordered superoperator
products of matter and field. Ideal frequency domain detection
only requires a single mode [19]. However, maintaining any
time resolution requires a superposition of the field modes
that contains the pathway information. This information is
not directly accessible in the standard detection theory that
works in the field space alone [11]. Finally in contrast with
standard detection theory the present approach only involves
a superoperator time ordering and does not require the normal
ordering.

II. GATED SIGNALS

To good a approximation we can represent an ideal detector
by two-level atom that is initially in the ground state b and
is promoted to the excited state a by the absorption of a
photon [see Fig. 1(a)]. At the same time, the detection of a
photon brings the field from its initial state ψi to a final state
ψf . The probability amplitude for photon absorption at time
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FIG. 1. (Color online) (a) Schematic of time- and frequency-
resolved measurement. (b) Loop diagram for the bare signal in a
gated measurement (for rules see Ref. [21]).

t can be calculated in first-order perturbation theory, which
yields [11]

〈ψf |E(t)|ψi〉 · 〈a|d|b〉, (1)

where d is the dipole moment of the atom and E(t) =
E†(t) + E(t) is the electric field operator (we omit the
spatial dependence). Clearly, only the annihilation part of the
electric field contributes to the photon absorption process. The
transition probability to find the field in state ψf at time t is
given by the modulus square of the transition amplitude∑

ψf

|〈ψf |E(t)|ψi〉|2 = 〈ψi |E†(t)
∑
ψf

|ψf 〉〈ψf |E(t)|ψi〉

= 〈ψi |E†(t)E(t)|ψi〉. (2)

Since the initial state of the field ψi is rarely known with
certainty, we must trace over all possible initial states as
determined by a density operator ρ. Thus, the output of the
idealized detector is more generally given by tr[ρE†(t)E(t)].

For simultaneous time- and frequency-resolved measure-
ment a frequency (spectral) gate must be combined with time
gate—a shutter that opens up for very short interval of time.
The combined detector with input located at rG is represented
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FIG. 2. (Color online) Loop diagram for correlated two-photon
measurement. Dashed lines represent the the dynamics of the system
driven by the field modes. τi and τs can be either positive or negative
giving rise to four terms in Eq. (37).

by a time gate Ft centered at t̄ followed by a frequency gate Ff

centered at ω̄ [6]. First, the time gate transforms the electric
field E(rG,t) = ∑

s Ês(rG,t) with Ês(rG,t) = E(rG,ωs)e−iωs t

as follows:

E(t)(t̄ ; rG,t) = Ft (t,t̄)E(rG,t). (3)

Then, the frequency gate is applied E(tf )(t̄ ,ω̄; rG,ω) =
Ff (ω,ω̄)E(t)(t̄ ; rG,ω) to obtain the time- and frequency-gated
field. We assume that the time gate is applied first. Therefore,
the combined detected field at the position rD can be written
as

E(tf )(t̄ ,ω̄; rD,t) =
∫ ∞

−∞
dt ′Ff (t − t ′,ω̄)Ft (t

′,t̄)E(rG,t ′),

(4)

where E(t) ≡ ∑
s

√
2πh̄ωs/�âse

−ωs t (� is a mode quanti-
zation volume) is understood. Similarly one can apply the
frequency gate first and obtain frequency- and time-gated field
E(f t).

E(f t)(t̄ ,ω̄; rD,t) =
∫ ∞

−∞
dt ′Ft (t,t̄)Ff (t − t ′,ω̄)E(rG,t ′).

(5)

The following discussion will be based on Eq. (4). Equation (5)
can be handled similarly.

In order to maintain the bookkeeping for all interactions
and develop a perturbative expansion for signals we describe
the signal in terms of Liouville space “left” and “right”
superoperators. For each ordinary operator A we define a
pair of superoperators [22] ÂLX = AX, ÂRX = XA, and
Â− = ÂL − ÂR . To avoid the confusion and distinguish the
ordinary operators (e.g., A) from the superoperator quantities
we denote all superoperators by “hat” (e.g., Â). The gated
signal is given by

S(t̄ ,ω̄) =
∫ ∞

−∞
dt

∑
s,s ′

〈
Ê

(tf )†
sR (t̄ ,ω̄; rD,t)Ê(tf )

s ′L (t̄ ,ω̄; rD,t)
〉
, (6)

where the angular brackets denote 〈· · ·〉 ≡ Tr[ρ(t) . . .]. The
density operator ρ(t) is defined in the joint field-matter space of
the entire system. Note, that Eq. (6) represents the observable
signal, and is always positive since it can be recast as a modulus
square of an amplitude [Eq. (2)]. For clarity we hereafter omit
the position dependence in the fields assuming that propagation
between rG and rD is included in the spectral gate function.

A. Spectrogram-overlap representation

In the standard detection theory [6], the detected signal is
given by a convolution of the spectrograms of the detector and
bare signal. The detector spectrogram is an ordinary function
of the gating parameters whereas the bare signal is related to
the field prior to detection. We now show that when the process
is described in the joint matter plus field space the signal can
be brought to the same form, except that now the bare signal is
given by a correlation function of matter that further includes a
sum over the detected modes. We denote this the spectrogram-
overlap (SO) representation of the signal. In the next section
we present an alternative spectrogram-superoperator-overlap
(SSO) representation that is more suitable for the counting
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of multiple photons. We first derive the signals in the time
domain, which can be directly read of the diagram [Fig. 1(b)].
We then recast them using Wigner spectrograms, which depict
simultaneously temporal and spectral profiles of the signal.

Starting with the gated signal (6), we define the bare time
domain signal in terms of superoperators using the diagram
shown in Fig. 1(b)

B(t ′,τ ) =
∑
s,s ′

〈
T Ê

†
sR(t ′ + τ/2)Ês ′L(t ′ − τ/2)e− i

h̄

∫ ∞
−∞ Ĥ ′

−(T )dT
〉
,

(7)

where B(t ′,τ ) is an ordinary function since the trace in the
right-hand side of the Eq. (7) implies the expectation value of
the superoperators. The Hamiltonian superoperator is given by

Ĥ ′
ν(t) = Ê†

ν(t)V̂ν(t) + H.c., ν = L,R. (8)

T is our key bookkeeping device, which is responsible for the
positive time ordering of superoperators

T Êν(t1)Êν ′(t2) = Êν(t1)Êν ′(t2)θ (t1 − t2)

+ Êν ′ (t2)Êν(t1)θ (t2 − t1), (9)

where θ (t) is the Heaviside step function. We next define the
detector spectrogram

D(t̄ ,ω̄; t ′,τ )

=
∫ ∞

−∞

dω

2π
e−iωτ |Ff (ω,ω̄)|2F ∗

t (t ′ + τ/2,t̄)Ft (t
′ − τ/2,t̄),

(10)

if the spectral gate applied first, using Eq. (5). The detector
spectrogram is alternatively given by

D(t̄ ,ω̄; t ′,τ )

=
∫ ∞

−∞
dt |Ft (t,t̄)|2F ∗

f (t − t ′ − τ/2,ω̄)Ff (t − t ′ + τ/2,ω̄).

(11)

Combining Eqs. (4)–(10) we obtain for the gated signal

S(t̄ ,ω̄) =
∫ ∞

−∞
dt ′dτD(t̄ ,ω̄; t ′,τ )B(t ′,τ ). (12)

The signal is given by the temporal overlap of the bare signal
and detector spectrogram. This is the conventional form [6]
introduced originally for the field space alone. Equation (7)
contains explicitly the multiple pairs of radiation modes s

and s ′ that can be revealed only in the joint field plus matter
space. Eventually this takes into account all the field-matter
interactions that lead to the emission of the detected field
modes. We can freely vary the parameters of Ff and Ft .
The spectrogram will always satisfy the Fourier uncertainty
�t�ω > 1.

Wigner spectrograms provide a more intuitive time and
frequency representation of gated signals. The Wigner spec-
trogram of the bare signal reads

WB(t ′,ω′) =
∑
s,s ′

∫ ∞

0
dτe−iω′τ 〈T Ê

†
sR(t ′ + τ/2)

×Ês ′L(t ′ − τ/2)e− i
h̄

∫ ∞
−∞ Ĥ ′

−(T )dT
〉
, (13)

Similarly the detector’s spectrogram is given by

WD(t̄ ,ω̄; t ′,ω′) =
∫ ∞

−∞

dω

2π
|Ff (ω,ω̄)|2Wt (t

′,ω′ − ω,t̄), (14)

where

Wt (t
′,ω) =

∫ ∞

−∞
dτF ∗

t (t ′ + τ/2,t̄)Ft (t
′ − τ/2,t̄)eiωτ . (15)

Combining Eqs. (13)–(15) we can recast Eq. (12) in the form

S(t̄ ,ω̄) =
∫ ∞

−∞
dt ′

dω′

2π
WD(t̄ ,ω̄; t ′,ω′)WB(t ′,ω′). (16)

The signal is given by the spectral and temporal overlap of the
bare signal and the detector spectrograms.

B. Spectrogram-superoperator-overlap representation

So far we included the summation over the detected
field modes in the bare signal, while treating the detection
spectrogram as an ordinary function of gating parameters. This
representation works quite well for a single detection. However
for higher-order correlation measurements involving several
photons, an easier bookkeeping of the numerous field modes
can be achieved by redefining the detector spectrogram as a
superoperator. In this case the observed signal is represented
by the overlap of two spectrogram superoperators (SSOs) in
time, frequency, and field mode space. We first define the
reduced field density operator in the subspace of the detected
modes s and s ′ Tr′[ρ(t)] = 〈ρ(t)〉′, where prime represents
the partial trace over the matter and field degrees of freedom
excluding the s and s ′ modes. Thus the quantity that contains
all the information about the matter and field evolution up
to detection point [see Fig. 1(b)] is the following two-time
superoperator

B̂(s,s ′)(t ′,τ ) = 〈
T e− i

h̄

∫ t ′−τ/2
−∞ Ĥ ′

L(T )dT e
i
h̄

∫ t ′+τ/2
−∞ Ĥ ′

R(T )dT
〉′
. (17)

We next define the detector superoperator

D̂(s,s ′)(t̄ ,ω̄; t ′,τ ) = D(t̄ ,ω̄; t ′,τ )Ês ′L(t ′ − τ/2)Ê†
sR(t ′ + τ/2),

(18)

where D(t̄ ,ω̄; t ′,τ ) is defined in Eq. (10). Combining
Eqs. (17) and (18) we obtain for the signal

S(t̄ ,ω̄) =
∫ ∞

−∞
dt ′dτ

∑
s,s ′

Trs,s ′ [D̂(s,s ′)(t̄ ,ω̄; t ′,τ )B̂(s,s ′)(t ′,τ )].

(19)

The detected signal is represented by an overlap between de-
tector spectrogram D̂(s,s ′) and bare signal B̂(s,s ′) superoperators.

Similarly, one can recast the results of SSO in the Wigner
representation. To that end we introduce the Wigner superop-
erator for the bare signal

Ŵ
(s,s ′)
B (t ′,ω′)

=
∫ ∞

−∞
dτe−iω′τ 〈T e− i

h̄

∫ t ′−τ/2
−∞ Ĥ ′

L(T )dT e
i
h̄

∫ t ′+τ/2
−∞ Ĥ ′

R (T )dT
〉′
, (20)
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and for the detector

Ŵ
(s,s ′)
D (t̄ ,ω̄; t ′,ω′) =

∫ ∞

−∞

dω

2π
WD(t̄ ,ω̄; t ′,ω)Ŵ (s,s ′)

E (t ′,ω − ω′),

(21)

where WD(t̄ ,ω̄; t ′,τ ) is defined in Eq. (14) and Wigner
superoperator for the field modes s and s ′ reads

Ŵ
(s,s ′)
E (t ′,ω) =

∫ ∞

−∞
dτeiωτ Ês ′L(t ′ − τ/2)Ê†

sR(t ′+τ/2). (22)

Combining Eqs. (20)–(22) we obtain the final SSO expression
for the signal

S(t̄ ,ω̄)=
∫ ∞

−∞
dt ′

dω′

2π

∑
s,s ′

Trs,s ′
[
Ŵ

(s,s ′)
D (t̄ ,ω̄; t ′,ω′)Ŵ (s,s ′)

B (t ′,ω′)
]
.

(23)

The detected signal is given by the trace of a convolution of
two Wigner superoperators for the detector Ŵ

(s,s ′)
D and bare

signal Ŵ
(s,s ′)
B .

III. BARE SIGNAL

The bare signal contains all relevant information for
calculating photon counting measurement. Below we present
several schemes for calculating the bare signal, using superop-
erator diagrammatic techniques. This will be done using both
SO and SSO representations.

The bare signal is given by the closed path time-loop
diagram shown in Fig. 1 [22]. We assume arbitrary field-matter
evolution starting from the matter ground state g that promotes
the system up to some excited state. Then the system emits a
photon with frequency ωs that leaves the matter in the state e.
This photon is later absorbed by the detector.

A. Bare signal expressed as a product
of two transition amplitudes

We first calculate the time-dependent bare signal (7) in the
interaction picture where we factorize the detected field and
matter correlation functions

(
− i

h̄

)2 ∫ t ′+τ/2

−∞
dt1

∫ t ′−τ/2

−∞
dt ′1〈T V̂L(t ′1)V̂ †

R(t1)〉

×〈T Ê
†
sR(t ′ + τ/2)Ês ′L(t ′ − τ/2)Ê†

s ′L(t ′1)ÊsR(t1)〉. (24)

Since both Ês ′L and ÊsR are initially in the vacuum state, the
field correlation function reads

〈Ê†
sR(t ′ + τ/2)Ês ′L(t ′ − τ/2)Ê†

s ′L(t ′1)ÊsR(t1)〉

=
(

2πh̄

�

)2

ωsω
′
se

iωs (t ′+τ/2−t1)−iω′
s (t ′−τ/2−t ′1). (25)

In the absence of dissipation (unitary evolution) we can
factorize the matter correlation function as

〈T V̂L(t ′1)V̂ †
R(t1)〉 =

∑
e

〈〈V̂L(t ′1)|ge〉〉〈〈ge|V̂ †
R(t1)〉〉 =

∑
e

〈〈e(t ′ + τ/2)g|V̂L(t ′1)T exp

[
− i

h̄

∫ t ′1

−∞
Ĥ ′

L(T )dT

]
|gg〉〉

×〈〈gg|V̂ †
R(t1)T exp

[
i

h̄

∫ t1

−∞
Ĥ ′

R(T )dT

]
|e(t ′ + τ/2)g〉〉, (26)

where we denote 〈〈eg|Â|gg〉〉 ≡ Tr[|g〉〈e|Â|g〉〈g|]. We next
define the transition amplitude

Teg(t) = − i

h̄

∑
s

2πh̄ωs

�

∫ t

−∞
dt ′1e

−iωs (t−t ′1)−iωeg t

×〈〈e(t)g|V̂L(t ′1)T exp

(
− i

h̄

∫ t ′1

−∞
Ĥ ′

L(T )dT

)
|gg〉〉.

(27)

Since all interactions are from the left (L), we can also write
the transition amplitude using ordinary operators in Hilbert
space

Teg(t) = − i

h̄

∑
s

2πh̄ωs

�

∫ t

−∞
dt ′1e

−iωs (t−t ′1)−iωeg t

×〈e(t)|V (t ′1)T exp

(
− i

h̄

∫ t ′1

−∞
H ′(T )dT

)
|g〉. (28)

This gives for the bare signal (7)

B(t ′,τ ) = −
∑

e

Teg(t ′ − τ/2)T ∗
eg(t ′ + τ/2). (29)

The corresponding Wigner function is given by

WB(t ′,ω′) = −
∑

e

∫ ∞

0
dτe−iω′τ Teg(t ′ − τ/2)T ∗

eg(t ′ + τ/2).

(30)

Together with the gated spectrogram (10) the bare signal
(29) represents the time- and frequency-resolved gated signal.
The final result can be recast in Hilbert space without
using superoperators. The Wigner representation is very
convenient and intuitive for time- and frequency-resolved
measurements. The drawback is that for general photon
correlation measurements, the definition of the signals and
spectrograms will require a derivation for each new type of
measurement. This is not very convenient for higher-order

013810-4



NONLINEAR SPECTROSCOPY WITH TIME- AND . . . PHYSICAL REVIEW A 86, 013810 (2012)

correlation measurements, where we would like to introduce
a modular detection anytime we need. This will be done next.

Note, that in the presence of a bath, the signal (30) is no
longer given by a product of two amplitudes. Teg(t) is then an
operator in the space of the bath degrees of freedom. Therefore,
Eq. (30) yields

WB(t ′,ω′)=−
∑

e

∫ ∞

0
dτe−iω′τ 〈Teg(t ′ − τ/2)T ∗

eg(t ′ + τ/2)〉,

(31)

where 〈· · ·〉 corresponds to averaging over the bath degrees of
freedom.

B. Transition amplitude superoperator

We start with the bare signal superoperator (17). Similar to
Eq. (24) we factorize the matter correlation function(

− i

h̄

)2∫ t ′+τ/2

−∞
dt1

∫ t ′−τ/2

−∞
dt ′1〈T V̂L(t ′1)V̂ †

R(t1)〉′Ê†
s ′L(t ′1)ÊsR(t1).

(32)

The matter correlation function can be further factorized into
a product of two amplitudes according to Eq. (26). We next
define the transition superoperator. For the ket

T̂
(s ′)
eg,L(t) = − i

h̄

∫ t

−∞
dt ′1Ê

†
s ′L(t ′1)e−iωeg t

×〈〈e(t)g|V̂L(t ′1)T exp

(
− i

h̄

∫ t ′1

−∞
Ĥ ′

L(T )dT

)
|gg〉〉,
(33)

and for the bra

T̂
(s)†
eg,R(t) = i

h̄

∫ t

−∞
dt1ÊsR(t1)eiωegt

×〈〈gg|V̂R(t1)T exp

(
i

h̄

∫ t1

−∞
Ĥ ′

R(T )dT

)
|e(t)g〉〉.

(34)

Note that Eq. (33) represents a transition amplitude that
includes all the field-matter interactions, but excluding the
detection. On the other hand Teg(t) in Eq. (27)

Teg(t) =
∑

s

Trs
[
Ês(t)T̂

(s)
eg (t)

]
(35)

does include the detection.
The bare signal superoperator is thus given by

B̂(s,s ′)(t ′,τ ) = −
∑

e

T̂
(s ′)
eg,L(t ′ − τ/2)T̂ (s)†

eg,R(t ′ + τ/2). (36)

The corresponding Wigner superoperator reads

Ŵ
(s,s ′)
B (t ′,ω′) = −

∑
e

∫ ∞

−∞
dτe−iω′τ

× T̂
(s ′)
eg,L(t ′ − τ/2)T̂ (s)†

eg,R(t ′ + τ/2). (37)

Together with Eqs. (18) and (19), the bare signal spectro-
gram superoperator (36) represents the time- and frequency-
resolved gated signals. Note that the bare superoperator (36)

depends explicitly on the initial and final states of matter.
In addition the convolution of two amplitudes Teg reveals
the multiple pathways between these initial and final states
that allows to observe them through the simultaneous time
and frequency resolution. Both the bare and the detector
spectrograms contain the superoperator of the field s and
s ′ modes. This follows immediately from the diagrammatic
representation of Fig. 1(b). As was done in Eq. (31) bath
correlations can be added to Eq. (37).

IV. LIMITING CASES: TIME- OR
FREQUENCY-RESOLVED SIGNALS

We now consider two limiting cases. In the absence of
a frequency gate, then Ff (ω,ω̄) = 1 we get WD(ω̄,t̄ ; t,τ ) =
δ(τ )F ∗

t (t + τ/2,t̄)Ft (t − τ/2,t̄). For the narrow time gate
|Ft (t,t̄)|2 = δ(t − t̄) we then obtain the time-resolved mea-
surement

S(ω̄,t̄) = −
∑

e

|Teg(t̄)|2. (38)

In the opposite limit if there is no time gate [i.e., Ft (t,t̄) = 1]
and the frequency gate is very narrow, such that Ff (t,ω̄) =√

γ

π
e−iω̄t−γ t θ (t) at γ → 0, then WD(ω̄,t̄ ; t,τ ) = e−iω̄τ . In this

case we obtain the frequency-resolved measurement

S(ω̄,t̄) = −
∑

e

|Teg(ω̄)|2, (39)

where Teg(ω) = ∫ ∞
−∞ dteiωtTeg(t). Equations (38) and (39)

indicate that if the measurement is either purely time-resolved
or purely frequency-resolved, the signal can be expressed
in terms of the modulus square of a transition amplitude.
Interference can then occur only within Teg in Hilbert space
but not between the two amplitudes. Simultaneous time and
frequency gating also involves interference between the two
amplitudes; the pathway is in the joint ket plus bra density
matrix space. In the presence of a bath, the signal can be written
as a correlation function in the space of bath coordinates
〈T ∗

eg(t̄)Teg(t̄)〉 for Eq. (38) and 〈T ∗
eg(ω̄)Teg(ω̄)〉 for Eq. (39).

V. MULTIPLE DETECTIONS

The present formalism is modular and may be easily
extended to any number of detection events. To that end it
is more convenient to use the time domain, rather than Wigner
representation. For coincidence counting of two photons
measured by first detector with parameters ω̄i ,t̄i followed by
second detector characterized by ω̄s,t̄s (see Fig. 2) the time-
and frequency-resolved measurement in SO representation is
given by

S(t̄s ,ω̄s ; t̄i ,ω̄i) =
∫ ∞

−∞
dt ′sdτs

∫ ∞

−∞
dt ′i dτiD

(s)(t̄s ,ω̄s ; t
′
s ,τs)

×D(i)(t̄i ,ω̄i ; t
′
i ,τ

′
i )B(t ′s ,τs ; t

′
i ,τ

′
i ), (40)

where the detector spectrogram for mode ν = i,s reads

D(t̄ν ,ω̄ν ; t ′ν,τν) =
∫ ∞

−∞

dων

2π
e−iωντν |Ff (ων,ω̄ν)|2

×F ∗
t (t ′ν + τν/2,t̄ν)Ft (t

′
ν − τν/2,t̄ν). (41)

013810-5



KONSTANTIN E. DORFMAN AND SHAUL MUKAMEL PHYSICAL REVIEW A 86, 013810 (2012)

The bare signal is given by

B(t ′s ,τs ; t
′
i ,τi) = −

∑
e

Teg(t ′s − τs/2,t ′i − τi/2)

× T ∗
eg(t ′s + τs/2,t ′i + τi/2). (42)

The transition amplitude for the ket reads

Teg(ts ,ti) =
(

− i

h̄

)2 ∫ ts

−∞
dt ′1

∫ ti

−∞
dt ′2e

−iωeg ts

×〈〈e(ts)g|V̂L(t ′1)V̂L(t ′2)

× T exp

(
− i

h̄

∫ max[t ′1,t
′
2]

−∞
Ĥ ′

L(T )dT

)
|gg〉〉, (43)

and for the bra

T ∗
eg(ts ,ti) =

(
i

h̄

)2 ∫ ts

−∞
dt1

∫ ti

−∞
dt2e

iωegts

×〈〈gg|V̂ †
R(t1)V̂ †

R(t2)

× T exp

(
i

h̄

∫ max[t1,t2]

−∞
Ĥ ′

R(T )dT

)
|e(ts)g〉〉. (44)

Similarly, one can derive multiple detection measurement
using SSO formalism. The coincidence signal is given by

S(t̄s ,ω̄s ; t̄i ,ω̄i) =
∫ ∞

−∞
dt ′sdτs

∫ ∞

−∞
dt ′i dτi

∑
s,s ′

∑
i,i ′

×Trs,s ′,i,i ′[D̂(s,s ′)(t̄s ,ω̄s ; t
′
s ,τs)D̂(i,i ′)

×(t̄i ,ω̄i ; t
′
i ,τi)B̂(s,s ′,i,i ′)(t ′s ,τs ; t

′
i ,τi)], (45)

where the detector spectrogram superoperator reads

D̂(ν,ν ′)(t̄ν ,ω̄ν ; t ′ν,τν)

= D(t̄ν ,ω̄ν ; t ′ν,τν)Êν ′L(t ′ν − τν/2)Ê†
νR(t ′ν + τν/2) (46)

and the detection spectrogram D(t̄ν ,ω̄ν ; t ′ν,τν) is defined in
Eq. (41). The bare signal superoperator yields

B̂(s,s ′,i,i ′)(t ′s ,τs ; t
′
i ,τi) = −

∑
e

T̂
(s ′,i ′)
egL (t ′s − τs/2,t ′i − τi/2)

× T̂
(s,i)†
egR (t ′s + τs/2,t ′i + τi/2), (47)

where the transition superoperator for the left branch, the ket, is

T̂
(s ′,i ′)
egL (ts ,ti) =

(
− i

h̄

)2 ∫ ts

−∞
dt ′1

∫ ti

−∞
dt ′2e

−iωeg ts

×Ê
†
s ′L(t ′1)Ê†

i ′L(t ′2)〈〈e(ts)g|V̂L(t ′1)V̂L(t ′2)

× T exp

(
− i

h̄

∫ max[t ′1,t
′
2]

−∞
Ĥ ′

L(T )dT

)
|gg〉〉.

(48)

and for the bra (right branch)

T̂
(s,i)†
egR (ts ,ti) =

(
i

h̄

)2 ∫ ts

−∞
dt1

∫ ti

−∞
dt2e

iωegts

×ÊsR(t1)ÊiR(t2)〈〈gg|V̂ †
R(t1)V̂ †

R(t2)

×T exp

(
i

h̄

∫ max[t1,t2]

−∞
Ĥ ′

R(T )dT

)
|e(ts)g〉〉.

(49)

Note, that in the presence of a bath bare signal (42) and
(47) will contain the correlation function of two transition
operators in the bath space similarly to Eq. (31).

VI. CONCLUSION

We have developed a diagrammatic approach in the joint
matter plus field space for calculating time- and frequency-
gated photon counting measurements. Unlike standard detec-
tion theory the present approach does not require the normal
ordering of the field operators, it only employs superoperator
time ordering. The result is given by the temporal and spectral
overlap of the bare and detector spectrograms. The detector
is governed by the time and frequency gates. The bare signal
is represented by the product of two transition amplitudes,
each corresponding to the side of the loop diagram. The
transition amplitude superoperator creates a coherence in the
field between states with zero and one photon. The detection
of photons occurs by combining two transition amplitude
superoperators—one for bra and one for ket in the joint field
plus matter space. The detection involves an interference of
two pathways with different time orderings.
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