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Geometry determination of complexes in a molecular liquid mixture

using electron–vibration–vibration two-dimensional infrared spectroscopy

with a vibrational transition density cube method
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We demonstrate the use of a new vibrational transition density cube (VTDC) method for

determining the geometry of complexes in a molecular liquid mixture from

electron–vibration–vibration two-dimensional infrared (EVV 2DIR) spectra. The VTDC method

was used to calculate the electrically-mediated intermolecular vibrational coupling and thereby the

EVV 2DIR spectra. Using the 1 : 1 benzonitrile–phenylacetylene (BN–PA) liquid mixture as a test

case, the new method leads to a distance of 3.60 Å between the interacting BN–PA pair, a much

more accurate value than the distance previously obtained using a dipolar approximation for the

electrical coupling. We also show that molecular dynamics simulations of the liquid mixture

predict a modal geometry of complexation which agrees well with the geometry determined from

the 2DIR data via VTDC analysis. We therefore conclude the combination of VTDC and EVV

2DIR data is a useful approach for the determination of the geometry of molecular complexes in

the condensed phase.

I. Introduction

Two-Dimensional Infrared (2DIR) Spectroscopy is loosely

analogous to Two-Dimensional Nuclear Magnetic Resonance

Spectroscopy (2DNMR). 2DIR measures vibration–vibration

coupling whereas 2DNMR measures spin–spin coupling. This

analogy has raised the hope that it may be possible to solve

molecular structures from 2DIR data as can be done using

2DNMR and that 2DIR may have some complementary

advantages due to different sensitivities and coupling physics.1

A particular variant of 2DIR spectroscopy, known as EVV

2DIR has been in development for a number of years.2–8 It has

been applied to the study of biomolecular systems4–6 particu-

larly through its flexibility in terms of accessing coupled

vibrations across the infrared and near-infrared spectrum

and its resilience in the face of sample scatter. More relevant

to this research is that we have previously shown that EVV

2DIR can be used to detect pure electrical coupling between

molecular vibrations.3,6,7 Through-space electrically-mediated

coupling allows vibrations to interact even in the absence of a

chemical bond.7 This makes EVV 2DIR particularly suitable for

the detection of the formation of molecular complexes in biological

systems.7 Non-covalent molecular complexation is the mainstay

of biological function and regulation. Through numerous weak

interactions, proteins bind to other proteins, nucleic acids,

lipids, drugs and metabolites,8 thus the capability to detect

such molecular complexes is highly desirable.

Even more valuable is the capability to determine binding

geometries of complexes. In a previous paper7 we demonstrated

that in principle it is possible to determine geometries of weakly

coupled complexes with EVV 2DIR spectroscopy. Using a simple

dipole–dipole model, geometrical parameters of the benzonitrile–

phenylacetylene (BN–PA) dimer in a liquid mixture were

determined. However, although the angle determined with

this dipolar model was fairly good, the distance obtained

(2.6 Å) was obviously too short for this system. These approximate

geometries, although useful, are still not good enough for many

applications, such as the rational design of drugs or the correct

interpretation of bindingmotifs. It is therefore necessary to develop

more accurate theoretical tools for the recovery of molecular

interaction geometry from EVV 2DIR data. In this paper we went

beyond the dipolar approximation in order to determine molecular

interaction geometries more accurately and developed a robust

method that will be generally applicable.

The distance between the BN–PA pair in the liquid mixture

used here is only around 4 Å, roughly the same size as the two

interacting molecular groups themselves. This is also typical of

the distances found in interacting biomolecular chemical

groups. For this class of problem, electronic distributions

beyond dipoles will show non-negligible contributions to the

electrostatic interaction between the two molecules and dipole–

dipole interaction model will be inadequate.9 It is therefore
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necessary to add higher-order multipole interactions into our

previous model for improved prediction and analysis of EVV

2DIR spectra. As higher and higher orders of multipole moments

were included, theoretical results can be expected to approach the

full and exact electrostatic interaction. However it is known the

convergence of this process will be slow. Moreover, expressions

for EVV 2DIR signals with higher-order multipoles will also

become more complicated and cumbersome.

In this paper we adopted a straightforward approach to

calculate from first principle the complete electrostatic coupling

between molecules, without using any multipole expansion. Our

scheme is based on the construction of so-called vibrational

transitional density cubes (VTDCs) for each molecule and

calculating the complete electrostatic coupling between them

by integration. This approach is similar in spirit to that used

by Krueger et al. for studying electronic coupling in a photo-

synthetic light harvesting complex.10 VTDCs of the first-order

have already been used to calculate vibrational mode coupling

constants in polypeptides by Moran and Mukamel,11 but

further development in interaction-induced EVV 2DIR spectra

presents new challenges. Since molecular vibrations involve nuclear

motions, these VTDCs have some unique features and also their

specific problems, which will be addressed in the present work.

Following proper theoretical development, this new approach was

applied to the BN–PA system as a test case and showed it indeed

leads to much improved geometry determination from EVV 2DIR

data. We also carried out molecular dynamics simulations of a

1 : 1 BN–PA liquid mixture, from which a better understanding of

the liquid structure was obtained through various distribution

functions. These MD simulations were then combined with our

new VTDC approach to provide us with a realistic description of

EVV 2DIR spectroscopy.

II. Computation details

A. Vibrational transition density cubes

As in our previous paper,7 we consider the case when two

closed-shell molecules A and B are interacting with each other

electrostatically without any overlapping between their electronic

distributions. The spinless electron density distribution of each

molecule was denoted as P(r) and Zi is the nuclear charge of

component atom i, with i=1. . .N. As we have shown previously,

the electrostatic interaction between A and B contributes an extra

term to the total Hamiltonian of the A–B complex and leads to

induced EVV 2DIR signals. Instead of using multipole expansion

for this interaction as in our previous work, the complete classical

electrostatic interaction between these two charge distributions

can be written as:

H 0 ¼ �
XNA

i¼1
Zi

A

Z
B

PB

jRi
A� rBj

drB�
XNB

j¼1
Zj

B

Z
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þ
ZZ
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PAPB
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jRi
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which includes from left to right, attractive nuclei–electron (n–e)

interactions, and repulsive electron–electron (e–e), nuclei–nuclei

(n–n) interactions. H0 couples the two molecules and hence any

two localized vibrations on them.

Assuming the influence of intermolecular interaction on

monomeric Hamiltonians HA
0 and HB

0 of molecules A and

B is negligible, total Hamiltonian of the system can be written

as:H=HA
0 +HB

0 +H0. Then one can expand the potential

energy surface in terms of vibrational coordinates to obtain

mechanical anharmonicities.12 However for the study of

intermolecular vibrational couplings, through-space-induced

mechanical anharmonicity is negligible compared to through-

space-induced electrical anharmonicity, as has been pointed

out in our previous paper.7 Expanding the dipole moment of

the complex in vibrational coordinates, we have:

m ¼ m0þ
X
s
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þ . . . :

HereQs is the vibrational coordinate of mode s of molecule A, and

Qt that of mode t of molecule B. The first two of the three electrical

anharmonicities, @2m
@Qs

2 and
@2m
@Qt

2, only contribute to intra-molecular

EVV 2DIR signals of molecules A and B, while the last one @2m
@Qs@Qt

is fully responsible for the generation of inter-molecular vibrational

crosspeaks, coupling vibrational mode s on molecule A with

vibrational mode t on molecule B. Electrical dipole moment can

be seen as the response of the molecular Hamiltonian toward an

infinitesimal external electrical field.13 Thus these induced electrical

anharmonicities (IEAs) can be calculated by taking derivatives

from both sides of eqn (1) with respect to an electric fieldE and two

normal mode coordinates. In this case, the n–n term in eqn (1)

makes no contribution to IEA and the contribution to IEA is

simply the sum of contributions from the e–e and n–e terms, thus

can be written as:
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For the sake of clarity, here the location of the vibrations is

explicitly specified using superscripts. The e–e term contribution is:
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with k = x, y, z, the three Cartesian components. The contribu-

tions from the n–e terms are:
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The derivatives can be calculated easily with transformation

matrices between normal modes and Cartesian coordinates, and

then the total expression becomes:
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The derivative term: @
@Qs

A

PNA

i¼1

Zi
A

jRi
A�rB j

� �
, and similarly the termR

drB
@PB

@Qt
B

1
jrA�rB j in eqn (1), describes how electrostatic potential at

position rB in molecule B, created by all the nuclei (or electrons) in

molecule A, changes following the mode s vibration of molecule A.

Using the IEA, EVV 2DIR signals can be calculated in the same

fashion as shown in detail in our previous papers.2,3,7

There are two types of VTDCs in eqn (2) and (3) which

were needed for the calculation of the induced electrical

anharmonicity: the first-order VTDCs @P@Q and the second-order

VTDCs @2P
@E@Q. The first-order VTDC describes how the electron

density of a molecule changes with respect to its vibrational

motion, while the second-order VTDC describes how it changes

with respect to both the vibration and an infinitesimal electro-

static field. Detailed discussions of their properties can be found

in Appendices A and B.

As shown in eqn (2) and (3), only second-order VTDCs are

needed for the n–e term, while both first- and second-order

VTDCs are required for the e–e term. All these were calculated

through numerical finite differencing. For example the first-

order VTDC for mode s on molecule A was calculated as:

@PA

@Qs
A
¼ PAðdQs

AÞ � PAð�dQs
AÞ

2dQs
A

; ð4Þ

To calculate this particular VTDC, first the ground state

equilibrium structure of the molecule A was optimized and

normal mode coordinates were obtained. Then a small step

dQs
A of vibration along mode Qs

A was added to the equili-

brium geometry and an electron density cube PA(dQs
A) at this

geometry was generated. This was followed by subtracting the

same small vibrational step from the equilibrium geometry

and calculating another electron density cube PA(�dQs
A) at

the new geometry. Finally the VTDC was calculated using

eqn (4) with the two density cubes.

The second-order VTDCs were calculated in a similar way,

for example:

@2PB

@Ek@QB
t

¼ 1

4dQB
t dEk

� ½PBðdQB
t ; dEkÞ þ PBð�dQB

t ;�dEkÞ

� PBðdQB
t ;�dEkÞ � PBð�dQB

t ; dEkÞ�
ð5Þ

In this case a small electrostatic field steps dEk along Cartesian

axis k was also needed. All in all four separate calculations of

electron densities incorporating both an electrostatic field and a

vibrational step were needed to obtain a second-order VTDC.

To test the theory outlined above, again we chose the

BN–PA dimer as our model system. In this case, the electrostatic

interaction leads to the formation of a molecular complex, but the

method is also applicable to cases when it is simply two chemical

groups interacting with each other through-space. All VTDCs in

this research were calculated at B3LYP/6-311++G(d,p) level

using Gaussian03.14 The vibrational step and the electric field

step used in numerical differencing were chosen to be 0.01 Å and

0.005 a.u. respectively.

For vibrational couplings a coarse cube grid leads to very

poor representation of VTDCs. The reason is that electronic

density in a molecule form cusps around the component

nuclei. When a molecule vibrates, its component atoms move

along the normal mode coordinates with these cusps. When

this happens, electron density will increase on one side of an

atom, and decreases on the other side. This behaviour means

that in an exact VTDC of a molecule there are always two

cusps of opposite signs for each component atom, as shown in

Fig. 1 for the simple case of hydrogen ion H2
+. In another

word, at the site of each atom, the value of a VTDC will switch

from a large positive value to a large negative value. When a

VTDC is represented in a discrete 3D grid, this fast-switching

behaviour could cause numerical instability if not treated

properly. If the grid of the density cube is not sampled finely

enough, the integrations in eqn (2) and (3) become numerically

unstable, jumping wildly between neighbouring sampling grids

around each atom. On the other hand, in the regions between

the component atoms, a VTDC changes much slowly, and

using a fine grid in these regions is unnecessary and will make

the integration prohibitively expensive. In this research, this

dilemma was solved by using a two-tiered cube integration

scheme: one cubic grid called the valence grid was first created

Fig. 1 Cusps in a first-order VTDC around atoms, shown in a section of the exact first-order VTDC for bond stretching vibration of hydrogen

ion (H2
+),22 with plus and minus signs indicating increase or decrease of electron density.
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across the entire molecule, then around each component atom in

the valence grid, a small region was singled out and a much finer

grid, called a core grid, was generated. This is schematically

shown in Fig. 2.

The double-cusp problem is mainly a problem for the first-

order VTDCs. For the second-order VTDCs, actually it is

largely alleviated by cancellation. When using eqn (5) to

calculate a second order VTDC, the applied electrostatic field

mostly induces polarizations to outlying electron distributions

and has little effect to the core regions. Thus subtraction of

the first two terms in the numerators on the right hand side

largely cancelled out the cusps around the nuclei, removing the

source of numerical instability persistent in first-order VTDCs.

Thus only valence grid was used for second-order VTDCs.

For the results reported here, all the VTDCs are created on

valence grids with 200 points on each side. This leads to

8 million grid points for each molecule, much more than those

normally used in TDC method. The largest grid step used in

this research is only about 0.062 Å, along the CRC bond

direction in PA. For first-order VTDCs, a 5 � 5 � 5 region

around each atom in the valence grid was replaced by a core

grid which is created with 100 points on each side, with the

largest step only 0.0031 Å. A straightforward integration

algorithm was used in our calculation, except for the integration

in eqn (2) which was discussed in more detail in Appendix C.

When core grids were used, the integration was carried out with

both the valence grid and the set of core grids.

B. MD simulations of BN–PA mixture

Although gas-phase ab initio calculations of a molecular

complex, such as the BN–PA dimer reported in our previous

paper,7 can tell us a lot about the nature of the interaction

underlying the complexation, the structure of a liquid is

obviously much more complicated than that encompassed in

one single static structure. It makes much more sense to

compare the 2DIR-determined structures with average structures

obtained through molecular dynamics (MD) simulations. For

this purpose, we also carried out molecular dynamics simulations

of a 1 : 1 BN–PA liquid mixture.

A modified version of software package TINKER (version

5.1.09) was used for all MD simulations.15 Modified OPLS-AA

force field parameters were used for both BN and PA molecules.16

Most of the force field parameters were used directly without any

modification. However the torsional parameters for the –C–CRN

part of BN and –C–CRCH part of PA were missing in

OPLS-AA. These parameters were set to zero, as these groups

are entirely linear. More seriously, when directly used for PA,

the unpublished alkyne force field parameters in OPLS-AA

leads to a molecule with a spurious total charge. This was

corrected by setting up a new atomic type for the ispo aromatic

carbon atom in PA, and setting its partial charge to zero. The

other force parameters involving this new atomic type were the

same as other aromatic carbon atoms without modification.

With this modified force field, energy minimization of a

BN–PA dimer reached an equilibrium structure very similar

to our MP2 geometry. This can be seen partly as an indication

that our modified force field is reasonable.

To achieve the correct density of the liquid mixture, 77 BN

and 77 PA molecules were packed into a cubic box, each side

of which is 30 Å and periodic boundary condition was applied.

This led to an average density of 0.97 g cm�3. The initial

configuration of the system was created with packmol.17 NPT

simulation at 298.15 K and 1 atm was carried out with 1 fs step

size. Particle Mesh Ewald (PME) summation was used with a

cutoff of 15 Å. The system was first equilibrated for 2 ns,

during which, parameters of the system were monitored to

ensure proper equilibration. Then the production trajectory

was run for another 0.9 ns to generate data reported here.

A site–site distribution function was defined for the bond

centres of CRN and CRC as gCC–CN(R) and obtained from

the simulation. Since we were also interested in the correlation

in the liquid mixture between the CN–CC distance R and the

vectoral angle f of CRN relative to CRC (for the definition

of R and f see Fig. 1(a) in ref. 7), a two-dimensional

radial–angular distribution function was also calculated from

the trajectory.

III. Results and discussion

A. VTDCs

First-order VTDCs for the CRN stretching mode in benzonitrile

and the CRC stretching mode in phenylacetylene were calculated

as described in Section II, including one valence VTDC and 13(14)

core VTDCs for each molecule. Fig. 3 shows the valence VTDCs

for both molecules. Here their transition densities are shown

mostly concentrated around those atoms involved in the specific

modes, i.e. the –C–CRN group of BN, and the –C–CRCH

group of PA. In both cases, there are hardly any transition

densities across the benzene rings, except for the ipso carbon

atoms. The actual shape of transition density is qualitatively

similar to the H2
+ case shown in Fig. 1 and can be explained

similarly. For example, when the CRN bond in benzonitrile

stretches, electron density between C andN atoms decreases, while

increasing at the same time on both sides of C and N atoms.

As pointed out in Section II and shown in Fig. 1, when a

molecule vibrates, electron difference density around nuclei

shows distinctive double-cusp shapes, changing its sign quickly

when sampled from one side of an atom to the other side. This

behaviour is difficult to describe with a uniform grid enveloping

Fig. 2 Scheme of the two-tiered grids used for first-order VTDCs.

For second-order VTDCs only valence grids were needed. See the text

for details.
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the entire molecule. We solved this difficulty with a two-tiered

grid scheme. Shown in Fig. 3 are just the valence grids we

calculated, as the finer core grids around nuclei make them

difficult to show in one figure.

First-order VTDCs are closely linked to vibrational transi-

tion moments. When the valence VTDCs shown in Fig. 3 were

integrated along with its set of core VTDCs, according to

eqn (A1) in Appendix A, first-order dipole moment derivatives

of BN and PA can be easily calculated. These were given in

Table 1 along with the published DFT values7 and those

measured from FTIR using pure liquid BN and pure liquid PA.

As shown in Table 1, our cube-integrated values for BN and

PA are 4.71 and 9.76 times higher than the experimentally

measured values. In the same fashion as usually applied in

TDC method,10 the calculated VTDCs were scaled with these

factors before they were used to calculate the induced electrical

anharmonicity in the BN–PA complex. Symmetric consideration

also dictates that transition dipole of either BN or PA must have

only non-zero z component which lies along the CRN or CRC

bond direction. Although there are some small x and y components

due to the nature of numerical integration, the values were too

small to cause much concern once they were scaled.

Second-order VTDCs were also calculated for BN and PA,

shown for BN in Fig. 4 and PA in Fig. 5. As explained in

Section II, there is no need of core grids for second-order

VTDCs, so there are only 3 second-order VTDCs for each

molecule, with each cube corresponds to one of the three

Cartesian components of the electric-field. The coordinate

system was again chosen as the z axis lying along the CRN

or CRC bond direction while the x axis is normal to the

aromatic ring. In both the BN and PA cases, although there

are some small transition densities in the EX and EY cubes, the

most significant of the transition densities obviously exist in

the EZ cube. Compared with the first-order VTDCs, the

second-order cubes spread further out of the –C–CRN part

involved in the vibrations: the C atoms on the benzene ring

opposite to and besides the ipso carbon atom also showed

some transition density around them.

As pointed out in Appendix B, these second-order density

cubes can also be called transition polarizability density cubes

Fig. 3 First-order VTDCs for CRN stretching of BN and CRCH

stretching of PA, drawn on an isosurface of 0.013 a.u.

Table 1 Comparison of experimentally measured first-order dipole
moment derivatives and their Cartesian components calculated with
VTDC method or DFT (in a.u.)

DFTa VTDCb Exp.c

BN (0.0, 0.0, 0.698) (�0.007, �0.024, 1.098) 0.2333
PA (0.0, 0.0, 0.256) (0.007, �0.006, 0.540) 0.0553

a Calculated at B3LYP/6-311++G(d,p) level. b This work. c Magnitude

only.

Fig. 4 Calculated second-order VTDCs for CRN stretching of BN,

drawn on an isosurface of 0.053 a.u.

Fig. 5 Calculated second-order VTDCs for CRCH stretching of

PA, drawn on an isosurface of 0.053 a.u.
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as all orders of transition polarizability can be obtained from

them by integration. In particular the integrated transition

dipole polarizabilities from these cubes

are:
0:94 �0:66 �0:45
�0:76 1:96 �0:33
0:02 0:21 79:68

0
@

1
A for BN and

�4:83 �0:01 0:00
0:07 1:22 0:27
0:62 �0:01 77:30

0
@

1
A for PA. These agreed quite well

with the published DFT values7

as:
3:007 0 0
0 3:612 0
0 0 75:773

0
@

1
A for BN and

4:524 0 0
0 4:548 0
0 0 73:755

0
@

1
A for PA, at least for the dominant

@aZZ
@Q components. The smaller XX and YY terms were not

reproduced very well, there are also small off-diagonal terms,

most likely due to the nature of numerical integration. In the

BN–PA case we considered in this paper, this poses no real

problem. Since there are no available experimental @a@Q values to

compare to, our second-order VTDCs were used directly

without scaling.

B. Geometry determination using induced electrical

anharmonicity

The integrations in eqn (2) and (3) were carried out as

described in more detail in Appendix C, and the results were

summarised in Table 2. Compared to our previous dipole–

dipole value for IEA, the magnitude of IEA has slightly

more than doubled. This predominantly comes from the n–e

term contributions, while the e–e terms only contributed a

minor part.

Taking the newly calculated IEA into consideration, and

applying the same procedure of geometry determination as

described in more details in our previous paper7 to the BN–PA

system, a new value for the distance R between the CRCH

and CRN bond centres can be determined. This is calculated

to be 3.60 Å, which agrees extremely well with our MP2(full)/

BSSE value at 3.68 Å, and a much improved distance over our

previous results of 2.6 Å.

Defining an angular relationship between two molecules

using interacting cubes is not obvious. However we can

calculate a new PPS/PPP signal ratio with the new IEA, and

then continue to use eqn (4) in our previous paper7 to

determine the angular relationship. The CC–CN vectoral

angle f was thus determined to be 31 degrees, which is exactly

the same as was obtained from the previous dipole–dipole

model.7

The new VTDC approach also gives us a chance to re-evaluate

our dipole–dipole model, which, although deemed inadequate,

managed to account for about 50% of the total induced electrical

anharmonicity with much less computing burden. It also provides

us with an easy and straightforward way to define the angular

relationships between two interacting molecules. The natural

approach for determining the geometry of molecular complexes

is therefore to make a first pass approximation using the dipolar

approximation and once the approximate geometry is determined

to subsequently refine the structure using the more accurate

VTDC approach. Actually this type of processes of approxi-

mation followed by refinement is common to most current

biomolecular structural analysis methods.18

C. MD simulations and distribution functions

It is well known that even the simplest liquids have very

complicated dynamic structures.19 Therefore to further demon-

strate that our scheme is realistic enough for real liquid

mixtures, we also carried out MD simulations for the BN–PA

system. The details of our simulations were given in Section II.

Shown in Fig. 6 is a snapshot of the BN–PA system used in our

MD simulation after its equilibration. To highlight interacting

molecular groups we are interested in, all –CRCH groups of

phenylacetylene and –CRN groups of benzonitrile were shown

as CPK models, while one specific pair of BN and PA was

highlighted in VDW model.

A site–site distribution function gCC–CN(R) was defined

between each pair of –CRCH and –CRN bond centres over

the entire MD trajectory, and was calculated and shown in

Fig. 7. The two peaks on gCC–CN(R) indicates short-range

order in the BN–PA mixture. The first peak of gCC–CN(R)

appears at about 4.0 Å, where it shows that at this distance it is

1.5 times more likely to find a –CRCH group around a

–CRN group and vice versa, compared to the non-interacting

limit if the interaction between BN and PA were switched off.

This distance is very close to the distance in our gas-phase

structure of BN–PA dimer calculated at MP2 level7 and that

determined with our cube-integral scheme. Fig. 7 also showed

a minimum at around 5.7 Å, which may be defined as the

boundary of the first solvation shell of BN/PA.

Although site–site distribution functions, such as gCC–CN(R)

in Fig. 7, are useful, they carry no information about the

distribution of relative orientation between CRC and CRN

bonds. In particular, the correlation between the CN–CC

distance R and the orientation f between the two bonds is

of great interest to us. Thus a two-dimensional normalized

R–f distribution function fCC–CN(R,f) was calculated along

the MD trajectory and shown in Fig. 8. Some interesting

features can be observed in fCC–CN(R,f). First of all, it is

obvious that distributions of R and f are indeed correlated.

Table 2 Induced electrical anharmonicity (IEA) calculated with VTDC method and dipole–dipole model (in a.u.)

VTDC Dipole–dipole7

n–e Term (0.0074 �0.0708 0.3025) —
e–e Term Valence (0.0001 �0.0002 �0.0020) —

Core (�0.0008 0.0016 �0.0144) —
Total (�0.0007 0.0014 �0.0164) —

Total IEA (0.0067 �0.0694 0.2861) (0.0021 �0.0055 0.1480)

D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Ir

vi
ne

 o
n 

20
 S

ep
te

m
be

r 
20

12
Pu

bl
is

he
d 

on
 0

6 
Se

pt
em

be
r 

20
12

 o
n 

ht
tp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2C
P4

25
93

A

View Online

http://dx.doi.org/10.1039/c2cp42593a


This journal is c the Owner Societies 2012 Phys. Chem. Chem. Phys.

For example, there are reduced probabilities of finding

–CRCH and –CRN groups in such geometries with R from

5.0 to 7.1 Å and f from 35 to 120 degrees. On the other hand

there is a region of enhanced probabilities of finding –CRCH

and –CRN groups in geometries centring around R at 3.8 Å

and f from 25 to 50 degrees. This region agrees very well with

our experimentally determined values of both distance and

angle (3.60 Å and 31 degree), indicating that the experimentally

determined geometry by EVV 2DIR spectroscopy correctly

picked up the most possible or modal geometry in our MD

simulation. The reduced probability valley exists most likely due

to spatial hindering: since it is more possible for a neighbouring

molecule taking up the ‘‘peak’’ geometry, it becomes much

difficult for another molecule to assume the ‘‘valley’’ geometry.

The seemingly enhanced probabilities close to the top and

bottom edges (f around 0 and 180 degrees) of fCC–CN(R,f) are
largely artefacts due to a normalization factor of sin f.

It should be noted that in this study we were only characterising

the dynamical structural aspect of the BN–PA mixture. Solvation

effects, which is largely a polarization effect of a solute

molecule by electrostatic fields generated by surrounding

solvent and other solute molecules, were not considered in

this research. Further research along this direction is currently

in progress.

D. VTDC method with MD trajectory

The results presented above agree very well with our experimental

results. However as we have shown in our MD simulation,

neighbouring BN and PA molecules in a liquid mixture can

actually assume many possible configurations, due to incessant

thermal motion and weak interactions between them. For a more

realistic simulation of EVV 2DIR experiments, the distribution of

configurations must be properly addressed. One way to do this is

to combine our VTDC technique with MD simulations.

From our MD trajectory of BN–PA mixture, a set of 100

snapshots of the periodic MD cell were taken out. Then in

each snapshot our VTDC method was applied to calculate

interaction-induced electrical anharmonicities for every possible

combination of BN and PA molecules, within a cutoff limit of

intermolecular distance of 10 Å. All in all about 90000 BN–PA

pairs were included in this calculation. Then for each of them, an

EVV 2DIR signal was calculated. These give us the total 2DIR

signal when coherently summed over the entire periodic cell.

To obtain any statistically meaningful results, a large number of

interacting pairs of BN–PA molecules over long MD trajectories

of the liquid mixture must be included in the calculation. This can

be prohibitively expensive if the slower converging e–e terms in our

VTDC scheme were included. To reduce the computational cost, a

few simplifying measures had to be taken: first, only n–e terms in

our cube integral scheme were taken into consideration. This is

justified as the contributions from e–e terms were not significant,

as shown in Table 2. Secondly, the second-order VTDCs needed

for the n–e term calculation were truncated to a smaller grid size of

150� 150� 180, rather than the original size of 200� 200� 200.

By doing so the total number of cells in a cube was halved, further

reducing the computing burden. We found this practice had very

little influence on the quality of the cubes. Actually if the IEA

reported in Section III C was re-calculated using these truncated

cubes, there was only a 3% change of its magnitude. The use of

Fig. 6 A snapshot of the 1 : 1 BN–PA liquid mixture used in MD

simulations, plotted with VMD.23

Fig. 7 Normalized CN–CC site–site distribution function gCC–CN(R)

of the 1 : 1 BN–PA liquid mixture, calculated from MD simulations.

Fig. 8 Radial–angular distribution function fCC–CN(R,f) of the 1 : 1

BN–PA liquid mixture, calculated from MD simulations.
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truncated cubes also has the added benefit of avoiding spuriously

huge values of induced electrical anharmonicities, as it was

noticed that, although rare in our MD trajectory, one molecule

can get so close to its partner that an overlap between the original

cubes occurs, leading to unphysical values of induced electrical

anharmonicities. Using truncated cubes effectively solved this

problem.

On the other hand, although our dipolar model is less

accurate than the VTDC technique, it is still of interest to us

because of its faster computational speed and the physical

picture it provides. Therefore the dipolar model is also used to

calculate 2DIR signals using the same set of MD snapshots.

For the sake of comparison with VTDC scheme, the same

cutoff limit was used as well.

Shown in Fig. 9 is the distribution of magnitudes of the

calculated induced electrical anharmonicities. Using our

previously calculated values for our dipolar model and VTDC

method (0.1481 and 0.2945 a.u.) as references, it can be seen

that only a small proportion of BN–PA interactions lead to

IEAs with a magnitude equal or higher, while a majority of

the interactions only lead to very small induced electrical

anharmonicities. This is not surprising as in our analysis every

combination of BN and PA in MD trajectory was taken into

consideration up to the cutoff limit, but presumably only those

pairs lying close enough to each other can possibly interact

strongly to generate contributing IEAs to EVV 2DIR signals.

In Fig. 10 are the distributions of three Cartesian components

of calculated IEAs in a body-fixed frame located on BN

moiety of each BN–PA pair, using both dipole–dipole model

and VTDC models. The z-axis of the body-fixed frame was

chosen to be along CRN bond direction, pointing from C to N.

The most obvious feature in this figure is that VTDC-calculated

induced electrical anharmonicities showed different distributions

than those calculated with dipolar model. For the x- and y-

components VTDC calculated distributions are much narrower

than those calculated via dipolar model.While for the z-component,

the distribution of the VTDC results is much wider. Since the same

set of snapshots were used in dipolar and VTDC calculations,

the reason of the differences in distributions of IEA compo-

nents between dipolar and VTDC model must be the inclusion

of all the higher order electrostatic interactions within VTDC

model. The distribution of the x- and y-components in both

dipolar and VTDC cases can be fitted nicely with Laplace

distributions centred close to 0 and is largely symmetric.

However the distributions of the z-component of IEAs in both

cases are evidently asymmetric, with noticeablymore distributions

on the positive side (pointing from C to N) than those on the

negative side (pointing fromN to C). This is obviously a reflection

of intrinsic point symmetry of BN and PA molecules, and is also

in accord with the signs of values given in Table 2.

When calculated EVV 2DIR signals between all BN–PA

pairs were summed over the entire periodic cell, the total signal

detected in an experiment was obtained. This, divided by the

number of BN–PA pairs in the simulation cell, was used to

obtain an ‘‘effective’’ nonlinear susceptibility with all BN–PA

pairs assuming a representative modal structure. For the

current study we are more interested in signal ratios which

experimentally can be measured reliably. PPS/PPP ratio is an

important experimental observable which can be used to

determine the angular relationship between the interacting pair.

For the BN–PA system, these were measured experimentally to

Fig. 9 Distributions of magnitudes of induced electrical anharmoni-

cities calculated with dipole–dipole model and the VTDCmethod, also

shown as an enlarged inset. The two arrows point out the corres-

ponding reference values obtained with the gas-phase dimer model.

Fig. 10 Distributions of the i component (i = x, y, z) of induced

electrical anharmonicities in a BN-fixed frame calculated with (a)

dipole–dipole model and (b) VTDC method.
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be 0.417 � 0.037 for the CN–CC crosspeak (at 2239/

4353 cm�1), and 0.368 � 0.017 for the CC–CN crosspeak

(at 2113/4353 cm�1).7 Using VTDC scheme, the squared

magnitude of effective nonlinear susceptibility |w(3)|2 of the

CN–CC crosspeak were calculated to be 4.48� 10�30 (this and

all the following values in units of cm6 erg�2) for the case of

PPP configuration and 3.69 � 10�30 in the PPS case. This

gave us a PPS/PPP ratio of 0.826, which is much higher than

the experimentally measured PPS/PPP ratio. For the CC–CN

crosspeak, the values are 5.57 � 10�31 for the PPP case and

8.57 � 10�32 for the PPS case. This led to a PPS/PPP ratio of

0.154 which is too low compared to the experimental ratio.

The signal ratio between the CN–CC crosspeak and one

of the two intra-molecular crosspeaks, the CN–CN cross-

peak (2239/4478 cm�1), was previously used with the dipolar

model to determine the distance between the interacting

BN–PA pair. Using quantum chemically calculated molecular

properties, |w(3)|2 of the reference CN–CN crosspeak (2239/

4478 cm�1) was calculated to be 3.36 � 10�29 for the

PPP polarization case and 4.87 � 10�30 for the PPS case.

Compared to the values given above for the CN–CC cross-

peak, we have the signal ratios between the two at 0.133 in the

PPP case and 0.759 in the PPS case. However, the experimen-

tally measured signal ratio in the PPP case is 0.73 � 0.05. All

these results were summarised in Table 3. Also shown in

this table were the corresponding values calculated with the

dipole–dipole model. Compared to the VTDC results in the

table it is noteworthy that for both PPS/PPS ratios, the VTDC

results seems to over-compensate the discrepancies between

the dipole–dipole model and the experimental values by

including full electrostatic interactions between BN and PA

monomers. On the other hand, both models underestimated the

signal ratio between the CN–CC crosspeak and the reference

CN–CN crosspeak.

To check whether the discrepancies between our calculated

signal ratios and experimental values were artefacts due to the

relatively small MD system used in our simulation, we also

carried out NPT MD simulations of a much larger BN–PA

system, which contains 384 BN and PA molecules in a cubic

box, with each side of 51.30 Å. It was first equilibrated for

1 ns, then a 0.5 ns production MD simulation was carried out.

All the simulation conditions were chosen as the same as those

described in Section II. Analysis of the trajectory of this larger

MD system indicated exactly the same dynamics of the liquid

mixture as our original MD model. Thus no improvement of

theoretical signal ratios can be expected by using larger MD

simulations. This strongly suggested that the discrepancies

between our calculated theoretical signal ratios and reported

experimental values are most likely inherent in the force field

we used, which should be addressed in further studies.

V. Conclusion

In this paper, we have shown that an integration method based

on vibrational transition density cubes (VTDCs) can be used

for the calculation of induced electrical anharmonicities

between two weakly interacting molecules. Rather than using

any expansions, this method takes into consideration of the

complete classical electrostatic interaction. An efficient two-

tiered integration scheme was developed to speed up the

integration. Using the benzonitrile–phenylacetylene liquid

mixture as a test system, we showed that this newly developed

method led to a much more accurate induced electrical

anharmonicity between the –CRN and –CRCH stretching

vibrations of the two molecules, and consequently improved

accuracy in geometry determination from EVV 2DIR data. By

taking into consideration of the complete electrostatic inter-

action between BN and PA, instead of counting on any

multipole expansion, the distance between two interacting

molecular groups was determined to be 3.60 Å. The angle

between CRN and CRC bond directions was determined to

be 311. For a better understanding of the dynamic structure of

the BN–PA liquid mixture, MD simulations were carried out

and distribution functions characterising liquid structure were

obtained. It was found the 2DIR-determined geometrical

parameters agree quite well with the most probable geometry

taken by one BN(PA) molecule and one of its neighbouring

PA(BN) molecules in its first solvation shell. The new VTDC

method and dipole–dipole model were also combined with

MD simulations to provide us a more realistic description of

EVV 2DIR signals. Limited by the currently available force

fields, we nevertheless consider this combination of methods

will provide the most powerful tools for our future studies of

EVV 2DIR spectroscopy in condensed phase.

With the theoretical toolkit established in this and our

previous paper,7 a viable recipe for accurate geometry determina-

tion of non-bonded complexes from EVV 2DIR data can now be

proposed. The procedure starts with first making a dipole–dipole

approximation between the interacting complexes, and obtaining a

set of approximate angles and distances of the complex. This will

be followed by structural refinement using the VTDC approach

outlined here. Future work will demonstrate the utility of this

approach in molecular systems relevant to biology where

interactions in the absence of covalent bonds are key contribu-

tions to biological function.

Appendix

A. First order VTDCs

Just like transition densities traditionally defined20 for electronic

transitions, the first-order VTDC defined here are closely linked

Table 3 Calculated signal intensity ratios using cube integral method and dipole–dipole model with MD trajectory

|wPPS
(3)|2/|wPPP

(3)|2 Ratio between CN–CC crosspeak and CN–CN crosspeak

CN–CC crosspeak
(2239/4353 cm�1)

CC–CN crosspeak
(2113/4353 cm�1) PPP PPS

VTDC + MD 0.826 0.154 0.133 0.759
Dipole–dipole + MD 0.258 0.635 0.037 0.066
Exp.7 0.417 0.368 0.73 —
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to vibrational transition moments. But unlike the former, the

first-order VTDC alone cannot determine vibrational transi-

tion moments. Consider a molecule with an electron density

distribution P(r) and N nuclei with charges Zi, i = 1. . .N

located at Ri. The molecular dipole moment operator is:

l ¼ �
Z

rPðrÞdvþ
X
i

ZiRi:

Thus the first-order dipole derivative with respect to a normal

mode Qs will be:

@l

@Qs
¼ �

Z
r
@PðrÞ
@Qs

dvþ
X
i

Zi
@Ri

@Qs
; ðA1Þ

which decides its corresponding vibrational transition dipole.

Obviously here the first-order VTDC
@PðrÞ
@Qs

alone cannot determine

the transition dipole. An extra term involving the nuclear contribu-

tions has to be included too, which is not generally zero.

Higher order transition moments can be obtained in similar

ways.More generally consider a spherical l-polemoment defined as:

qlm =
R
rlClm(y,f)P(r)dv,

with Clm being the modified spherical harmonics as defined by

Brink and Satchler.21 Then the l-pole moment of the molecule

will be:

qlm ¼ �
Z

rlClmðy;fÞPðrÞdvþ
X
i

ZiR
l
iClmðyi;fiÞ

Therefore the first-order derivative of vibrational transition

l-pole moment will be:

@qlm
@Qs

¼ �
Z

rlClmðy;fÞ
@PðrÞ
@Qs

dv

þ
X
i

Zi
@

@Qs
½Rl

iClmðyi;fiÞ�: ðA2Þ

The nuclear derivatives in eqn (A1) and (A2) can be easily

calculated from transformation matrix between normal mode

coordinates and Cartesian coordinates. In theory, first-order

VTDC combined with these nuclear derivatives completely

determines the full set of vibrational transition moments of a

molecule. Also note that for any molecule with a total charge

C, i.e. C ¼ �
R
PðrÞdvþ

P
i

Zi. It follows that for a first order

VTDC: Z
@PðrÞ
@Qs

dv ¼ 0:

This can be used as a test of the quality of VTDCs created.

B. Second-order VTDCs

The second-order VTDCs have a clearer physical meaning

than their first-order counterparts, as transition polarizabil-

ities can be solely determined by them. For the same molecule

discussed in the above section, it can be shown that its

electronic dipole polarizability is:

ak �
@l

@Ek
¼ �

Z
r
@PðrÞ
@Ek

dv;

as long as the electric field is not strong enough to significantly

modify themolecular geometry. The transition dipole polarizability

is determined by the first order derivative of ak, which is:

@ak
@Qs
¼ @2l

@Ek@Qs
¼ �

Z
r
@2PðrÞ
@Ek@Qs

dv;

thus can be completely decided by
@2PðrÞ
@Ek@Qs

, the second-order

VTDCs. In this sense, the second-order VTDC can also be

called transition polarizability density cube. For the l-order

moment as defined in Appendix A, the corresponding transi-

tion l-mode polarizability is:

@2qlm
@Ek@Qs

¼ �
Z

rlClmðy;fÞ
@2PðrÞ
@Ek@Qs

dv

Similar to the first-order VTDCs, the second-order VTDCs

must also satisfy: Z
@2PðrÞ
@Ek@Qs

dv ¼ 0:

C. Integrating the e–e term contributions

With all the density cubes calculated, eqn (2) and (3) can be

used to calculate the IEA. The n–e term integration in eqn (3)

involves only one VTDC and can be easily carried out.

However, the integration for e–e terms in eqn (2) involves

two VTDCs, each having 8 million cells in our cases, and thus

is extremely expensive computationally. The partition of the

3D space into valence and core regions means that the

integration in eqn (2) now will become the sum of two terms:

one only involves first-order core VTDCs:

@mk
@Qs

A@Qt
B

� �core

ee

¼

�
Z

drB
@2PB

@Ek@Qt
B

X
i

Z
atom i

drA
@PA

@Qs
A

� �
i

1

jrA � rBj

�
Z

drA
@2PA

@Ek@Qs
A

X
j

Z
atom j

drB
@PB

@Qt
B

� �
j

1

jrA � rBj
;

ðC1Þ

and another involves only first-order valence VTDCs:

@mk
@Qs

A@Qt
B

� �valence

ee

¼

�
Z

drB
@2PB

@Ek@Qt
B

Z
drA

@PA

@Qs
A

� �
v

1

jrA � rBj

�
Z

drA
@2PA

@Ek@Qs
A

Z
drB

@PB

@Qt
B

� �
v

1

jrA � rBj
:

ðC2Þ

On first look, this partitioning makes the e–e term integration

even more expensive: in the BN–PA case, although each core

cube has about 1 million cells, there are now about 13 or 14 core

cubes to integrate. However each core cube only occupies a tiny

space around its corresponding atom (the longest variation is

�0.155 Å). If we denote the location of the atom as RA and the

coordinate variation in the cube by drA, then we have:

|rA � rB| = |Ri
A + drA � rB| = |Ri

A � rB + drA|B |Ri
A � rB|

for each core cube. The last approximation is valid if the

distance |RA � rB| is much larger than drA, which should be
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true for most non-bonded interactions, e.g. the BN–PA inter-

action. A similar equation also exists for core cubes of molecule B.

Then eqn (C1) becomes:

@mk
@Qs

A@Qt
B

� �core

ee

’

�
Z

drB
@2PB

@Ek@Qt
B

X
i

Z
atom i

drA
@PA

@Qs
A

� �
i

1

jRA � rBj

�
Z

drA
@2PA

@Ek@Qs
A

X
j

Z
atom j

drB
@PB

@Qt
B

� �
j

1

jrA � RBj

¼ �
Z

drB
@2PB

@Ek@Qt
B

X
i

1

jRi
A � rBj

Z
atom i

drA
@PA

@Qs
A

� �
i

�
Z

drA
@2PA

@Ek@Qs
A

X
j

1

jrA � Rj
Bj

Z
atom j

drB
@PB

@Qt
B

� �
j

Since 1
jRA�rB j does not depend on rA, it can be moved out of the

inner integral. Now the inner integration is simply the sum of all

cells in a core cube and only need to be carried out once, making

the integral of eqn (C1) as fast as the n–e term integration.

That still leaves us with the integral in eqn (C2). Fortunately

a large percentage of all the cells in a second-order VTDC were

extremely small and did not contribute much to the integration.

So when carrying out integration of eqn (C2), a cutoff limit was

set to preselect those grid points which have values too small to

be of any significance. For the results reported in this paper, a

cutoff limit of 0.001 a.u. was used which still means 45–47% of

total grid points being included in the e–e term integration. A

series of test calculations with decreasing cutoff limits showed

that although convergence was slow, enough accuracy has been

reached for the purpose of geometry determination with the

cutoff limit used. For the n–e term integration in eqn (3),

complete second-order VTDCs were always used.
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