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Broadband infrared and Raman probes of excited-state
vibrational molecular dynamics: simulation protocols
based on loop diagrams†

Konstantin E. Dorfman,* Benjamin P. Fingerhut* and Shaul Mukamel

Vibrational motions in electronically excited states can be observed either by time and frequency

resolved infrared absorption or by off resonant stimulated Raman techniques. Multipoint correlation

function expressions are derived for both signals. Three representations which suggest different

simulation protocols for the signals are developed. These are based on the forward and the backward

propagation of the wavefunction, sum over state expansion using an effective vibrational Hamiltonian

or a semiclassical treatment of a bath. We show that the effective temporal (Dt) and spectral (Do)

resolution of the techniques is not controlled solely by experimental knobs but also depends on the

system dynamics being probed. The Fourier uncertainty DoDt > 1 is never violated.

1 Introduction

The excited state vibrational dynamics of molecules plays a key
role in many photophysical and photochemical processes and has
attracted considerable experimental and theoretical attention.1–4

Real time structural information about rearrangement of atoms in
complex reactions can be inferred directly from time resolved
vibrational spectroscopy.5–7 Typically an ultrashort laser pulse
in the visible or the UV excites the molecule to a bright valence
excited state, launching a photoreaction or non-adiabatic
relaxation process. The vibrational dynamics can then be probed
either by the absorption of a delayed IR probe pulse8–13 or by a
spontaneous or stimulated Raman process.14

Unique marker bands in UV pump/IR probe signals serve as
fingerprints of the excited state evolution allowing us to resolve
transient reaction intermediates,2,15 structural details16 and
reveal the reaction mechanism. Such investigations helped
identifying the real time reaction mechanism leading to the
formation of photolesions in DNA nucleobases,2,6,7,17 to monitor
isomerization reactions in protein environments,18 to resolve the
consecutive steps in proton transfer reactions,15 to identify the
participating ion pairs upon photoinduced bimolecular electron
transfer19 and to follow light-induced electrocyclic reactions.20,21

Frequency shifts of IR marker bands have also been used to

monitor the response of the local environment22–25 and mole-
cular energy redistribution.26 More elaborate pulse sequences
allow us to spread the IR signal in two dimensions, resolving
the couplings between localized vibrations.27–29

Spontaneous Raman30 has long been used as an alternative
probe of molecular vibrations. Recent stimulated Raman mea-
surements that employ a femtosecond and a picosecond pulse
have generated considerable excitement.4,5,31–41 A rich pattern
of narrow (10 cm�1) vibrational lines has been reported in 25 fs
intervals. Applications were made to pNA, pDNA,42 rhodopsin,1

carbon dioxide,43 bacterial endospores,44 and other systems.
Frequency domain stimulated Raman has proven validity in cell
imaging.45

In this paper we focus on two techniques, both starting
with an optical pump pulse but then followed by a different
detection: frequency-dispersed broadband infrared (FDIR)
probe or off resonant stimulated Raman spectroscopy (SRS).5

We show how both techniques can be described and inter-
preted with minor modifications using very similar vibrational
correlation functions. The signals are intuitively described by loop
diagrams which represent forward and backward propagation of
the wavefunction.

We present a general analysis and derive closed expressions
that can be used for microscopic quantum simulations of both
infrared and Raman signals. Three representations for these
correlation functions are developed each suggesting a different
simulation strategy. The first is based on the numerical propagation
of the wavefunction which includes all relevant electronic and
nuclear (including bath) degrees of freedom explicitly. This is the
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most general, expensive and accurate method.46,47 A second
protocol uses a Sum Over States (SOS) expansion of the signals.
Here we must diagonalize an effective vibrational Hamiltonian.
This offers a numerically more tractable algorithm when it is
possible to truncate the relevant phase space. The third
approach is semiclassical. A small vibrational system is treated
quantum mechanically and is coupled to a classical bath which
causes a time dependent modulation of the system Hamiltonian.
This is the simplest theory to implement by e.g. assuming that
the vibrational frequencies change with time. This change can
be either introduced phenomenologically or by using atomistic
molecular dynamics simulations.

The time and frequency in these experiments are controlled
by independent knobs. We can formally define uncertainties Dt
and Do associated with the pulse duration and the frequency
resolution of a spectrometer. This suggests that there is no
lower bound to the product DoDt; the measurement can
apparently be interpreted in terms of instantaneous snapshots
with high spectral resolution. For example recent experi-
ments1,5 use pulses (o50 fs) and reported spectral features
(o10 cm�1) such that DoDt B 0.5 ps cm�1 which is an order of
magnitude smaller than the Fourier uncertainty for Gaussian
pulses. An additional goal of this paper is to provide a proper
definition of Do and Dt and show that they are not purely
instrumental but depend on the system as well. We show
that the simple snapshot interpretation is false, discuss the
limitations of the spectral and temporal resolutions of these
techniques and show how they can be manipulated.

2 Loop diagram representation of
frequency-dispersed stimulated signals

Stimulated optical signals are defined as the energy change of
the electromagnetic field

S ¼
Z 1
�1

d

dt
EyðtÞEðtÞ
� �

dt: (1)

The radiation–matter interaction Hamiltonian in the rotating
wave approximation (RWA) is

H0(t) = V(t)E†(t) + H.c., (2)

where V(t) + V†(t) is a Heisenberg dipole operator and the
electric field operator E(t) = E(t) + E†(t). Both are separated into
positive (non-dagger) and negative (dagger) frequency compo-
nents (lowering and raising photon operators, respectively).
The dipole operator is given by the sum of the electronic and
nuclear dipole moments V(t) = Ve(t) + Vn(t).

The Heisenberg equation of motion for the field operator
E(t) then gives for the above integrated signal

S ¼ 2

�h

Z 1
�1

dt 0I Pðt 0ÞEyðt 0Þ
� �

¼ 2

�h

Z 1
�1

do0

2p
I Pðo0ÞEyðo0Þ
� �

;

(3)

where I denotes the imaginary part,

PðoÞ ¼
Z 1
�1

dt PðtÞeiot (4)

with P(t) = hV(t)i representing the nonlinear polarization that
arises from the interaction with the pump and the probe
pulses. The angular brackets denote h� � �i = Tr[r(t)� � �] with the
density operator r(t) defined in the joint field–matter space of
the entire system. In practice, the temporal or spectral range of
the integrations in eqn (3) is restricted by the response function
of the detector. If the detector contains a narrow time gate with
nearly d function response d(t0 � t), eqn (3) yields

STGðt;GÞ ¼
2

�h
I PðtÞEyðtÞ
� �

; (5)

where G denotes a set of parameters that characterize the
various laser pulses. Similarly if the detector consists of a
spectrometer with narrow frequency response d(o0 � o), we
obtain the frequency-gated signal

SFGðo;GÞ ¼ 2

�h
I PðoÞEyðoÞ
� �

: (6)

Note that the two signals eqn (5) and (6) carry different
information and are not related by a simple Fourier transform.
A Wigner spectrogram representation48–50 was used in ref. 51
for the integrated pump probe signals eqn (3). Here we use loop
diagrams to describe the more detailed frequency- or time-gated
signals (6) and (5), respectively. For clarity in the following we
focus on the frequency-gated expressions, the corresponding
time-gated signals are given in the Appendix A of the ESI.†

3 First protocol: numerical propagation of
the wave function

We start with the visible-pump/IR-probe signal as sketched in
Fig. 1a. FDIR is somewhat simpler than SRS since it only
involves four rather than six radiation–matter interactions.
The pump pulse centered at time t3 = 0 promotes the system
from its ground electronic state g to the vibrational state a of an
excited electronic state and launches the vibrational dynamics.
The IR probe pulse centered around t3 = T can then either
stimulate emission that couples the vibrational state a and
lower vibrational state d or an absorption to higher vibrational
state c. The signal is defined as the change in probe intensity
and is either time-gated (eqn (5)) or frequency-gated (eqn (6)).
Both can be represented by the loop diagrams shown in Fig. 1b
which contain the four field–matter interactions – two with
each pulse. Diagram rules are given in ref. 52. Note that the
signals (5) and (6) are expressed in terms of E† which makes the
arrow corresponding to the last interaction pointing to the left.
We further choose the last interaction to occur on the left
branch. This choice removes any ambiguity in the diagram
rules without loss of generality.

The electric field operator consists of the pump field 1 and a
probe field 2

E(t) = E1(t) + E2(t � T), (7)
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where T represents the delay of the probe pulse relative to the
pump. The signal is given by the two loop diagrams shown in
Fig. 1b, plus their complex conjugates. These give for the
frequency-gated signal (6)

SIRðo;TÞ ¼ I

Z 1
�1

dD
2p

E�2ðoÞE2ðoþ DÞ ~SIRðo;T ;DÞ; (8)

where the D-dispersed signal is given by the two diagrams
S̃IR(o,T;D) = S̃(i)

IR (o,T;D) + S̃(ii)
IR (o,T;D) and

~S
ðiÞ
IRðo;T ;DÞ ¼ 2

�h

Z 1
�1

dt

Z t

�1
dt1

Z t

�1
dt3

Z t3

�1
dt5 E�1 t5ð ÞE1 t1ð Þ

� VeG
y t3; t5ð ÞVynGy t; t3ð ÞVnG t; t1ð ÞVye

� �
� eio t�t3ð Þ�iD t3�Tð Þ;

(9)

~S
ðiiÞ
IR ðo;T ;DÞ ¼ 2

�h

Z 1
�1

dt

Z t

�1
dt1

Z t

�1
dt3

Z t3

�1
dt5 E1 t5ð ÞE�1 t1ð Þ

� VeG
y t; t1ð ÞVnG t; t3ð ÞVynG t3; t5ð ÞVye

� �
eioðt�t3Þ�iD t3�Tð Þ:

(10)

S̃(o,T;D) represents the contribution of the o and o + D
frequency components of E2 to the signal, where o is the
detected frequency. The signal (eqn (8)) is obtained by

integration over D. Here G(t1,t2) = (�i/�h)y(t1 � t2)e�iH(t1�t2) is
the retarded Green’s function. Even though this Green’s func-
tion only depends on the difference of its two time arguments,
we retain both arguments and write G(t1,t2) rather than
G(t1 � t2). This is done since in the reduced (semiclassical)
description to be developed later where the system is coupled to
some stochastic bath degrees of freedom, time translational
invariance is lost and G then depends on both arguments. The
corresponding time-gated signal (5) is given by eqn (S2) and (S3),
ESI.† Eqn (9)–(10) may be simplified further when the first pulse
is impulsive. We can then set E1(t) = E1d(t) and the t1 and t5

integrations can be eliminated.
Diagram (i) (eqn (9)) can be understood using a forward

and backward time evolving vibronic wave packet. First,
the pulse E1 electronically excites the molecule via V†

e. The
wavefunction then propagates forward in time from t1 to t.
Then the IR probe pulse E2 deexcites the vibrational transition
to the lower vibrational level via Vn which then propagates
backward in time from t to t3. Pulse E2 excites the vibration
via V†

n and the wavefunction propagates backward in time
from t3 to t5. The final deexcitation by pulse E1 returns the
system to its initial state by acting with Ve. Diagram
(ii) (eqn (10)) can be interpreted similarly. Following initial
electronic excitation the wavefunction propagates forward in
time from t5 to t3. At this point a vibrational excitation
promotes it to the higher vibrational state and the wave-
function propagates forward in time from t3 to t. After vibra-
tional deexcitation it then propagates backward from t to t1

where an electronic excitation brings the system back in its
initial ground state.

In eqn (9) and (10) the matter correlation function is given in
the time domain. Alternatively one can read the signal (8) from
the diagrams when both field and matter correlation functions
are given in the frequency domain

S
ðiÞ
IRðo;TÞ ¼ I

4p
�h

Z 1
�1

do0

2p
do1

2p
do01
2p

E�2ðoÞE2ðo0ÞE�1 o1ð Þ

� E1 o01
� �

d o� o0 þ o1 � o01
� �

ei o
0�oð ÞT

� VeG
y o1ð ÞVynGy o1 � o0ð ÞVnG o01

� �
Vye

� �
;

(11)

S
ðiiÞ
IR ðo;TÞ ¼ I

4p
�h

Z 1
�1

do0

2p
do1

2p
do01
2p

E�2ðoÞE2ðo0ÞE�1 o1ð Þ

� E1 o01
� �

d o� o0 þ o1 � o01
� �

ei o
0�oð ÞT

� VeG
y o1ð ÞVnG o0 þ o01

� �
VynG o01

� �
Vye

� �
:

(12)

Here G(o) = h�1/[o + og � H/�h + ie], d o� o0 þ o1 � o01
� �

represents the energy conservation that follows from time
translation symmetry of all four field–matter interactions.
One can separate the preparation pulse E1 and break the d-
function as follows:

d o� o0 þ o1 � o01
� �

¼
Z 1
�1

dD dðo� o0 þ DÞd o1 � o01 � D
� �

;

(13)

Fig. 1 FDIR: level scheme (a) and closed-time path-loop diagrams (b).
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where D defines the spectral bandwidth of the incoming
pulse which translates into the spectral bandwidth of the
relevant matter degrees of freedom. Eqn (11) and (12)
then yield

S
ðiÞ
IRðo;TÞ ¼ I

2

�h

Z 1
�1

dD
2p

do1

2p
E�2ðoÞE2ðoþ DÞE�1 o1ð ÞE1 o1 � Dð Þ

� VeG
y o1ð ÞVynGy o1 � o� Dð ÞVnG o1 � Dð ÞVye

� �
eiDT ;

(14)

S
ðiiÞ
IR ðo;TÞ ¼ I

2

�h

Z 1
�1

dD
2p

do1

2p
E�2ðoÞE2ðoþ DÞE�1 o1ð ÞE1 o1 � Dð Þ

� V eGy o1ð ÞV nG oþ o1ð ÞVynG o1 � Dð ÞVye
� �

eiDT :

(15)

We now turn to the electronically off-resonant SRS signal
shown in Fig. 2a and b, which is completely analogous to the
FDIR signal. Even though these signals represent different
physical processes and even involve a different number of
field–matter interactions they can be described using very
similar diagrams where we simply replace Vn - an and o by
o � o3. In SRS the pump pulse initiates the vibrational

dynamics in the excited electronic state. Pulse 3 and the
probe then induce the Raman process (see Fig. 2a). The
relevant diagrams are shown in Fig. 2b (plus their complex
conjugates). An electronically off-resonant Raman process
induced by pulses 2 and 3 is instantaneous since by
Heisenberg uncertainty the system can only spend a very
short time in the intermediate state. The Raman process is
thus described by an effective field–matter interaction
Hamiltonian

H 0ðtÞ ¼ anE
y
2ðtÞE3ðtÞ þ E

y
1ðtÞVeðtÞ þH:c:; (16)

where an = ~an + ~a†
n is the excited state polarizability that

couples fields 2 and 3 parametrically via a Raman process. It
is a symmetric (real) operator. The time-domain signal (5)
can be read directly from diagrams (i) and (ii). Assuming
that pulse 3 is a narrow band (picosecond) and set E3(t � T) =
E3e�io3(t�T). We obtain the frequency gated Raman analo-
gues of eqn (9) and (10)

~S
ðiÞ
SRSðo� o3;T ;DÞ ¼ 2

�h

Z 1
�1

dt

Z t

�1
dt1

Z t

�1
dt3

Z t3

�1
dt5

� E3j j2E�1 t5ð ÞE1 t1ð Þei o�o3ð Þ t�t3ð Þ�iD t3�Tð Þ

� VeG
y t3; t5ð ÞanGy t; t3ð ÞanG t; t1ð ÞVe

y� �
;

(17)

~S
ðiiÞ
SRSðo� o3;T ;DÞ ¼ 2

�h

Z 1
�1

dt

Z t

�1
dt1

Z t

�1
dt3

Z t3

�1
dt5

� E3j j2E1 t5ð ÞE�1 t1ð Þei o�o3ð Þ t�t3ð Þ�iD t3�Tð Þ

� VeG
y t; t1ð ÞanG t; t3ð ÞanG t3; t5ð ÞVe

y� �
:

(18)

The corresponding time-gated signals are given by
eqn (S4) and (S5), ESI.† Similar to eqn (11) and (12) we can
recast (17) and (18) using frequency domain matter correlation
functions

S
ðiÞ
SRSðo� o3;TÞ ¼I

4p
�h

Z 1
�1

do0

2p
do1

2p
do01
2p

E3j j2E�2ðoÞE2 o0ð ÞE�1 o1ð Þ

� E1 o01
� �

d o� o0 þ o1 � o01
� �

ei o
0�oð ÞT

� VeG
y o1ð ÞanGy o1 � o0þ o3ð ÞanG o01

� �
Vye

� �
;

(19)

S
ðiiÞ
SRS o� o3;Tð Þ ¼I

4p
�h

Z 1
�1

do0

2p
do1

2p
do01
2p

E3j j2E�2ðoÞE2 o0ð ÞE�1 o1ð Þ

� E1 o01
� �

d o� o0 þ o1 � o01
� �

ei o
0�oð ÞT

� VeG
y o1ð ÞanG o0 þ o01 � o3

� �
anG o01

� �
Vye

� �
:

(20)Fig. 2 SRS: level scheme (a) and closed-time path-loop diagrams (b).
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Breaking up the d-function according to eqn (13) we get

S
ðiÞ
SRS o� o3;Tð Þ ¼ I

2

�h

Z 1
�1

dD
2p

do1

2p
E3j j2E�2ðoÞE2ðoþ DÞE�1 o1ð Þ

�E1 o1 � Dð Þ V eGy o1ð ÞanGy o1 � oþ o3 � Dð ÞanG o1 � Dð ÞV e
y� �
;

(21)

S
ðiiÞ
SRS o� o3;Tð Þ ¼ I

2

�h

Z 1
�1

dD
2p

do1

2p
E3j j2E�2ðoÞE2ðoþ DÞE�1 o1ð Þ

� E1 o1 � Dð Þ V eGy o1ð ÞanG o� o3 þ o1ð ÞanG o1 � Dð ÞV e
y� �
:

(22)

The simulation protocol based on these equations requires the
full forward (G) and backward (G†) propagation of the wavefunc-
tion while retaining all electronic and nuclear degrees of freedom.
This task can be accomplished by numerically exact propagation
techniques, based on the split-operator Fourier-transform, the
short iterative Lanczos method or a Chebyshev expansion,46,53

where the wavefunction is commonly expanded in the set of
orthogonal eigenstates of H. Non-adiabatic effects can be conve-
niently accounted for either in a diabatic or adiabatic basis of the
participating electronic states.54 The major drawback of this
numerically exact treatment is that the computational effort and
storage requirements grow exponentially with the number of
degrees of freedom considered which limits their application to
molecular systems with less than six degrees of freedom (4 atoms).
The change to nonorthogonal representations of the time-
dependent wavefuntion allows us to evaluate the Trotter expan-
sion analytically and thus to avoid the unfavourable scaling
behaviour which is accordingly not an intrinsic property of the
powerful propagators.47,55 The approximate multiconfiguration
time-dependent Hartree (MCTDH) method56 formally still scales
exponentially but superior scaling and less memory require-
ments compared to the exact propagation methods can be
achieved if the number of degrees of freedom and contraction
coefficients are large. A major drawback of all propagation
methods is that the global multi-dimensional potential energy
surface has to be known a priori. Approximate direct quantum
dynamical approaches like the variational multi-configuration
Gaussian wavepacket method57 or ab initio multiple spawning58,59

which rely on Gaussian functions as basis sets circumvent this
shortcoming as the potential energy surface is only sampled in the
actual fraction of space where it is actually required. In some
applications it may be desirable to consider only a few vibrational
modes explicitly and treat the rest classically. Even in this case we
may use Green’s function expressions (9) and (10) propagated
forward and backward along the loop under an effective time
dependent Hamiltonian.60

4 Second protocol: sum over states
expansion

One can evaluate the matter correlation functions in eqn (9)
and (10) by expanding them in the eigenstates of the total
system. Again in this approach all bath degrees of freedom

cannot be separated and must be included explicitly. The
resulting SOS expansion provides useful insights and a con-
venient computational algorithm. Starting with eqn (9) and
(10), a frequency-gated signal can be expressed

S
ðiÞ
IRðo;TÞ ¼ �I

2i

�h4

X
a;a0;d

mga0m
�
agm
�
a0dmade

� ioaa0 þgaa0ð ÞT

o� oad þ igad
E�2ðoÞ

� E2 o� oaa0 þ igaa0ð ÞE�1 oa0 þ iga0ð ÞE1 oa � igað Þ
(23)

S
ðiiÞ
IR ðo;TÞ ¼ �I

2i

�h4

X
a;a0 ;c

mga0m
�
agm
�
a0cmace

� ioa0aþga0að ÞT

o� oa0c þ iga0c
E�2ðoÞ

� E2 o� oa0a þ iga0að ÞE�1 oa0 þ iga0ð ÞE1 oa � igað Þ:
(24)

The corresponding time-gated signals are given by eqn (S6)
and (S7), ESI.†

So far we had expanded the density operator starting with
the ground state and including the preparation pulse E1.
Alternatively we can avoid the explicit treatment of preparation
and simply assume that the system has been initially prepared
in the non-stationary state represented by the density operator
raa0. Elaborate pulse sequences can be used in this preparation.
We can then evaluate the matter correlation function that
corresponds to the last two interactions with the probe pulse
for the i contribution:

V̂nLðtÞV̂
y
nR t3ð Þ

D E
¼ Tr V̂

y
n t3ð ÞrV̂nðtÞ

h i

¼
X
a;a0;d

ra;a0 d V̂nðtÞ
�� ��a� �

a0 V̂
y
n t3ð Þ

��� ���dD E

¼
X
a;a0;d

raa0madm
�
a0de

� ioadþgad½ �te� ioa0dþgd�ga0½ �t3 ;

(25)

The D-dispersed signal (9) and (10) then yields

~S
ðiÞ
IRðo;T ;DÞ ¼ �4pi

�h2

X
a;a0;d

m�a0dmadraa0d D� oa0a þ iga0að ÞeiDT
oþ D� oa0d þ i gd � ga0ð Þ ;

(26)

~S
ðiiÞ
IR ðo;T ;DÞ ¼ �4pi

�h2

X
a;a0 ;c

m�a0cmacra0ad D� oaa0 þ igaa0ð ÞeiDT
oþ D� oa0c þ i gc � ga0ð Þ :

(27)

The delta function arises from the time translation invariance
of correlation functions: D = oaa0 + igaa0 that involves two
frequencies of the probe field and the frequency band of
the nonequilibrium preparation state aa0. Time translational
invariance is maintained provided we treat the preparation
explicitly via interaction with pulse E1(o1) and E�1ðo01Þ as in
eqn (23) and (24). This implies that o1 � o01 þ oþ D� o ¼ 0.
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We can then write

d o01 � o1 � D
� �

¼
Z 1
�1

do0 d o01 � o1 � o0

� �
dðo0 � DÞ: (28)

The probe pulse by itself does not obey this symmetry as
D a 0. Thus, a description that excludes the preparation
(actinic) pulse 1 does not have this symmetry. In this case, for
a narrowband preparation pulse o1 ’ o01 results in D = 0
which means that the signal has low frequency resolution
limited only by state lifetimes. The preparation pulse launches
the vibrational dynamics, which results in high frequency
resolution due to joint field plus matter bandwidth as shown
in eqn (26) and (27).

When both the pump and the probe pulses are ultrashort,
i.e. E1(t) = E1d(t) is centered at t = 0 and E2(t) = E2d(t � T) is
centered at t = T, we can neglect the frequency dispersion of the
pulse envelopes. Eqn (23) and (24) then give

SIRðo;TÞ ¼ �I
2i

�h4

X
a;a0

mga0m
�
ag E1j j2 E2j j2

�
X
d

m�a0dmade
ðioa0a�ga0aÞT

o� oad þ igad
þ
X
c

m�a0cmcae
ðioaa0 �gaa0 ÞT

o� oa0c þ iga0c

" #
:

(29)

One can derive similar SOS expressions for the frequency-
gated SRS signals. Eqn (23) and (24) are then recast as

S
ðiÞ
SRS o� o3;Tð Þ

¼ �I2i

�h4

X
a;a0 ;d

mga0m
�
agaa0daade

�ðioaa0 þgaa0 ÞT

o� o3 � oad þ igad
E3j j2E�2ðoÞ

� E2 o� oaa0 þ igaa0ð ÞE�1 oa0 þ iga0ð ÞE1 oa � igað Þ;

(30)

S
ðiiÞ
SRS o� o3;Tð Þ

¼ �I2i

�h4

X
a;a0;c

mga0m
�
agaa0caace

� ioa0aþga0að ÞT

o� o3 � oa0c þ iga0c
E3j j2E�2ðoÞ

� E2 o� oa0a þ iga0að ÞE�1 oa0 þ iga0ð ÞE1 oa � igað Þ:

(31)

As we did for FDIR, we shall express the signals (30) and (31)
in a form that reveals the broken time translational symmetry.
For the general pulse envelope of the pump field E3(o3) that
enters twice in the signal, e.g. E�3ðo3Þ and E3ðo03Þ, the overall
translational symmetry for all six interactions yields

d o01 � o1 þ o03 � o3 � D
� �
¼
Z 1
�1

do0 d o01 � o1 � o0

� �
d o0 þ o03 � o3 � D
� �

;
(32)

where the product of two delta functions reveals the broken
symmetry for the pump/probe fields when the preparation pulse

is excluded. Assuming a narrowband pump E3(t) = E3e�io3(t�T)

eqn (26) and (27) can be written as

~S
ðiÞ
SRS o� o3;T ;Dð Þ ¼ � 4pi

�h2
E3j j2

�
X
a;a0;d

aa0daadraa0d D� oa0a þ iga0að ÞeiDT
o� o3 þ D� oa0d þ i gd � ga0ð Þ ;

(33)

~S
ðiiÞ
SRS o� o3;T ;Dð Þ ¼ � 4pi

�h2
E3j j2

�
X
a;a0;c

aa0caacra0ad D� oaa0 � igaa0ð ÞeiDT
o� o3 þ D� oa0c þ i gc � ga0ð Þ :

(34)

Finally for a broadband probe E2 the SRS signal (30) and (31)
reduces to

SSRS o� o3;Tð Þ ¼ �I2i

�h4

X
a;a0

mga0m
�
ag E1j j2 E2j j2 E3j j2

�
X
d

aa0daade
ioa0a�ga0að ÞT

o� o3 � oad þ igad
þ
X
c

aa0cacae
ioaa0 �gaa0ð ÞT

o� o3 � oa0c þ iga0c

" #
:

(35)

In the SOS protocol the basis set expansion has to cover the
complete vibrational dynamics under investigation, which can
be tedious for complex reactive systems and the diagonaliza-
tion of the resulting Hamiltonian is non-trivial. Model Hamil-
tonians may be used to truncate the system size and provide an
affordable simulation. For example exciton Hamiltonians are
commonly used to describe multiple excitations in chromo-
phore aggregates.61 Once the exact eigenstates are obtained,
this protocol allows for the straightforward interpretation of the
signals.

5 Third protocol: coupling to a classical bath

A simpler and often more intuitive description can be devel-
oped by treating some (bath) degrees of freedom as classical.
We start with the ultrafast visible pump and the IR probe of the
excited vibrational states. We assume that probe pulse is
impulsive and set E1(t) = E1d(t), and further evaluate the
remaining time integrals using eqn (S10) and (S11), ESI.† The
resulting semiclassical D-dispersed signal (9) and (10) reads

~SIRðo;T ;DÞ ¼ � 2i

�h4

Z 1
�1

dt3

Z 1
t3

dt E1j j2

�eioðt�TÞe�iðoþDÞ t3�Tð Þ
X
a

mag
�� ��2e�gaðtþt3Þ

�
X
c

macj j2e�i
R t

t3
oac t 0ð Þdt 0 þ

X
d

madj j2ei
R t

t3
oad t 0ð Þdt 0

" #
;

(36)

where oab � |oa � ob|. Ensemble averaging h� � �ie over the
classical set of trajectories is performed on the signal level
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SIR(o,T). Similarly one can derive the corresponding SRS result
when the extra pump pulse is a narrow band and can be
approximated as E3(t) = E3e�io3(t�T). The signal (17) and (18)
then reads

~SSRS o� o3;T ;Dð Þ ¼ �2i
�h4

Z 1
�1

dt3

Z 1
t3

dt E1j j2 E3j j2

� ei o�o3ð Þðt�TÞe�iðoþDÞ t3�Tð Þ
X
a

mag
�� ��2e�gaðtþt3Þ

�
X
c

aac2e
�i
R t

t3
oac t 0ð Þdt 0 þ

X
d

aad2e
i
R t

t3
oad t 0ð Þdt 0

" #
:

(37)

Eqn (36) and (37) involve a path integral over the stochastic
vibrational frequency oac(t) and oad(t). The signal depends not
only on the initial and final value of the vibrational frequency
onn0, but rather on the entire pathway from time T to the time
when the polarization decays to zero. The time dependent
frequency onn0(t) can be calculated by running classical MD
trajectories.

In the semiclassical protocol of eqn (36) and (37), the system
is partitioned into a classical bath, retaining only the quantum
character of a few vibrational modes. For non-reactive systems
(i.e. no chemical bonds are broken or formed) evolving on
a single adiabatic potential energy surface (i.e. the Born–
Oppenheimer approximation remains valid) common mole-
cular dynamics simulations can be used which scale by N2 if
all pair-wise electrostatic and van der Waals interactions
are explicitly accounted for. The computational cost can be
further reduced to linear scaling by suitable cutoffs. The
quantum character of the vibrations under investigation can
be retained by collective solvent coordinates which allow us to
map the classical dynamics onto ab initio derived electrostatic
maps.62,63

If the process under investigation is characterized by ultra-
fast relaxation in the vicinity of conical intersection as com-
monly observed in photoreactions the breakdown of the Born–
Oppenheimer approximation requires to treat the system by
non-adiabatic on-the-fly molecular dynamics.64 Based on the
independent trajectory approximation the nuclear wavepacket
is represented by a swarm of independently evolving trajec-
tories where, within the framework of Tullys fewest switches
trajectory surface hopping,65,66 relaxation between different
electronic states is induced by the non-adiabatic coupling
(NAC). Here the numerical effort of the dynamics is shifted to
the calculation of excited state gradients and NACs between
electronic states at an appropriate quantum chemical level but
the construction of global potential energy surfaces is avoided
as only the relevant configuration space is explored during the
dynamics. The quantum character of vibrations is recon-
structed by evaluating the excited state Hessian. The restriction
on a few vibrational degrees of freedom allows for an efficient
algorithm for the calculation of the semiclassical signal which
is based on a mode tracking procedure,67 only the desired
frequencies and normal mode vectors are obtained. As the
construction of the complete Hessian matrix is avoided linear

scaling with the number of considered vibrational modes can
be achieved.68

Rather than calculating the path integral numerically we can
expand the integral in the exponent into the cumulant series
and extract the mean ensemble averaged time dependent
frequency ~onn0(t) and approximate the remaining nuclear motion
by harmonic Gaussian fluctuations. The signal calculated in
Appendix B of the ESI,† may be then expressed in terms of the
spectral density of the harmonic bath

~SIRðo;T ;DÞ ¼ �2i
�h4

Z 1
�1

dt3

Z 1
t3

dt E1j j2

� eioðt�TÞe�iðoþDÞ t3�Tð Þ
X
a

mag
�� ��2e�gaðtþt3Þ

�
X
c

macj j2e�i
R t

t3
�oac t 0ð Þdt 0�gacðT ;tÞþ

X
d

madj j2ei
R t

t3
�oad t 0ð Þdt 0�g�

ad
ðT ;tÞ

" #
;

(38)

~SSRS o� o3;T ;Dð Þ ¼ �2i
�h4

Z 1
�1

dt3

Z 1
t3

dt E1j j2 E3j j2

� ei o�o3ð Þðt�TÞe�iðoþDÞ t3�Tð Þ
X
a

mag
�� ��2e�gaðtþt3Þ

�
X
c

aac2e
�i
R t

t3
�oac t 0ð Þdt 0�gacðT ;tÞ þ

X
d

aad2e
i
R t

t3
�oad t 0ð Þdt 0�g�

ad
ðT ;tÞ

" #
:

(39)

where the Gaussian fluctuations are manifested via the two point
linewidth function g�ajðT ; tÞ, j = c, d given by

gacðT ; tÞ ¼
4lacT
b�hL

þ 2lac
b�hL2

� i
lac
L

� �

� e�Lt þ ðLðt� TÞ � 1Þe�LT
	 


;

(40)

where lac represents the reorganization energy and L corre-
sponds to the fluctuation time scale. Note that the linewidth
function depends on both initial and final times, not only the
difference. This is a consequence of the non-stationary vibra-
tional dynamics.

6 The genuine temporal and spectral
resolution of frequency-gated signals

The picture emerging from our theory is that the effective
temporal and spectral resolution of FDIR and SRS signals is
affected by, but not solely controlled by, experimental knobs.
Achieving ultrafast resolution requires the active involvement
of the entire probe bandwidth. This is eroded when a narrower
slice of the pulse is selected by the system. Below we discuss
how the Fourier uncertainty relationship between spectral and
temporal resolution DoDt > 1 is always satisfied once Do and Dt
are properly defined.

The combined spectral and the temporal resolution of these
IR and Raman techniques stem from two interactions with a
single device: the probe pulse. Nonlinear multidimensional
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spectroscopy signals depend on several time intervals and there
is no conceptual problem in having simultaneous high tem-
poral and spectral resolutions in different independent dimen-
sions.69,70 This is not the case when both dimensions are
associated with the same probe pulse. The issue was addressed
for Raman detection in ref. 71 using a semiclassical treatment
of bath coordinates.

Below we present a more general analysis to elaborate on
this point for the three protocols and identify the factors that
determine the genuine resolution. In the first protocol, the
signals (9), (10), (17) and (18) are given by a sum over paths
spanning both branches of the loop. Naively one can argue that
a short pulse must interact impulsively with the system at a
precisely defined time. This is not necessarily the case for
the following reason: a pulse is a superposition of modes with
well defined phases. The broader the bandwidth, the shorter
can the pulse be. Eqn (9), (10), (17) and (18) show that the
relevant range of frequencies that actually contribute to a given
signal is spanned by the variable D. Thus, only some of the
probe modes contribute to a given signal, and the full band-
width of the pulse may become immaterial in some cases. A
superposition of the relevant modes has a narrow bandwidth
and is necessarily less impulsive than the original pulse, thus
reducing the temporal resolution. The number of contributing
modes is governed by the width of the relevant spectral features
of the system and can be easily understood by the selection of
the relevant pathways in the joint field plus matter space.
Therefore, the resolution is controlled by the pulse, the mea-
suring device as well as the system in (9), (10), (17) and (18). The
relevant range of the t3 integration is controlled by the effective
bandwidth of D, D = 0 implies a CW probe. In both diagrams
(i) and (ii) the probe is frequency-dispersed in the detection.
If only a single mode is selected for detection one can ask why
does the probe duration matter at all? This is apparent from the
diagrams which show that the signal involves two interactions
with the probe. Frequency-dispersed detection only selects the
frequency of the last interaction E�2ðoÞ whereas the other
interaction E2(o + D) can still involve many modes, making
the signal depend on the probe bandwidth. The time resolution
is diminished only if the second interaction also selects a single
mode so that D = 0.

Turning now to the second protocol, we first note that the
time gated measurements (S6), (S7) and (S8) and (S9) (ESI†) are
given by E�2ðtÞE2ðtÞ which are peaked around t = t = T. This
means that in a time-gated measurement the signal represents
a snapshot of the dynamics taken at fixed time t coming from
the flat frequency distribution of the probe pulse. Thus, in the
joint field plus matter space, a time-domain measurement
selects quantum pathways corresponding to the fixed time
measurement that is infinitely broad in frequency. However,
the frequency-dispersed signals (23), (24), (30) and (31) depend
on the product E�2ðoÞE2ðo� oa0a þ iga0aÞ. This creates an uncer-
tainty in the interaction time with the probe which is governed
by the vibrational dynamics time scale (spectral width of oa0a)
and bath dephasing ga0a. Therefore, the quantum pathways
selected by the dynamics of the system yield the effective

bandwidth of the probe pulse that interacts with the system.
This introduces uncertainty to the interaction time t3 in
Fig. 1b and 2b stemming the finite bath dynamics time scale.
The corresponding measurement cannot be viewed as a snap-
shot of the system, but is determined by the vibrational
dynamics that is represented by the coherence between a
and a0. The bandwidth of the pump pulse which prepares the
system in the density matrix raa0 is crucial. The energy spread of
oaa0 is controlled by the pump bandwidth and is also a measure
of the inverse time scale of the matter dynamics initiated by the
pump. If a single state is selected (raa) then there is no
dynamics and the same signal can be generated by a CW pump
tuned generally to level a. The pump duration then becomes
immaterial. A broad distribution of vibrational states will result
in fast dynamics that is affected by the pump duration. The
broadband technique amounts to multiple two-mode experi-
ments in parallel, which is experimentally convenient since it
does not require to scan the frequency, but reveals no addi-
tional information beyond the two mode experiment. With
initiation, which prepares a wave packet with different a, a0

pairs, the technique may be viewed as many four-wave-mixing
(FWM) experiments done in parallel. This is essentially a broad
band FWM which only has three modes. For comparison CARS
is a four-mode process.

SRS that combines a long picosecond pump with a femto-
second probe has low temporal resolution if treated as a 4-field
interaction starting with state a = a0 similar to eqn (26) and (27)
and replacing o - o � o3. In this case, in order to have a
highly resolved frequency gated signal, the energy conservation
law which follows from the time translational invariance
enforces o a o3. In the more general case of a broader pump
pulse, we have two interactions with E2(o3) and E�2ðo03Þ.
The symmetry breaking then involves four modes of the
field and bandwidth of the non-stationary preparation state:
D� o3 þ o03 ¼ oaa0 þ igaa0 .

Finally we turn to the third protocol. It is clear that in a
frequency gated measurement the probe pulse bandwidth
must be broader than the inverse timescale of the vibra-
tional dynamics. The latter is given by the spread of oa0a and
the dephasing rate ga0a. Even if the probe pulse is impulsive
and delayed by T, the fact that it is an infrared pulse requires
to explicitly take into account the pulse shape of E2(t) and
the pulse may not be simply replaced by d function, since
it may not be shorter than the infrared period. The optical
pulses used in the Raman process in contrast can be shorter
than the vibrational period and can be truly impulsive. An
infrared pulse can be at most ‘‘semi impulsive’’ (i.e. short
compared to the vibrational relaxation process but not com-
pared to high frequency vibrations >300 cm�1). In the case of
the Raman signal this large bandwidth can be easily realized for
visible frequencies, and the d-function approximation is well
justified. However, this is not as obvious in the case of an IR
probe since the bandwidth of the IR pulses is naturally smaller
than in the visible range. Therefore, one must keep the
probe pulse envelope and the d-function approximation is not
justified.
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To better illustrate the resolution, we examine the D-dispersed
time-domain signal (S1) dressed by the probe pulse

�Sðt;T ;DÞ ¼
Z 1
�1

dtE2ðt� TÞ ~Sðt;T ; tÞeiðoþDÞt: (41)

and its variation with D. For simplicity in the following we omit
the subscript for t3. Note that in contrast to the t-dispersed
signal S̃(t,T;t), �S(t,T;D) depends on the probe pulse envelope. As
discussed above D may be broadened due to finite timescale of
the bath dynamics. The relevant frequency domain (8) signal
can be calculated using eqn (41)

SIRðo;TÞ ¼ I

Z 1
�1

dD
2p

Z 1
�1

dt
Z 1
0

dt eioðt�TÞ�iDt

� E�2ðoÞ �Sðtþ t;T ;DÞ:
(42)

We first consider a simple example for the bath and calculate
the effective bandwidth D within the semiclassical approxi-
mation. We assume linear time variation in the matter transition
frequency (linear ‘‘matter’’ chirp): oac(t) = o(0)

ac + at, where a is
a chirp rate. Taking into account eqn (38) and assuming a
harmonic potential with single states a, c and d such that
oac = oad, setting mad = mac we obtain for eqn (41)

�Sðt;T ;DÞ ¼ yðtÞ
Z t

0

E2ðt� TÞeiDt�gaðtþtÞ

� mag
�� ��2 macj j2 E1j j2 eio

ð0Þ
ac ðt�tÞþ

1
2
a t2�t2ð Þ þ c:c:

� �
:

(43)

Assuming a Gaussian probe pulse centered around t = T

E2ðt� TÞ ¼ E2e
�ðt�TÞ

2

2spr2
�io0t

; (44)

where o0 is the central frequency and spr is the duration of the
pulse we obtain

�Sðt;T ;DÞ � e
� D�D0ð Þ2

2seff2 (45)

where D0 = o0� o(0)
ac +a(T� spr

2ga) and seff
2 = spr

�2 + a2spr
2. Note

that effective range for D given by seff contains two contributions.
One is the inverse duration of the pulse, and the second is
governed by a – a characteristic timescale of the matter
dynamics. This effect is similar to the broadening of a chirped
pulse compared to the transform-limited pulse with the chirp
added by the matter, instead.

We would like to capture the matter dynamics at a given
time scale a�1. For a long pulse the dominant contribution to
seff comes from the matter which ensures high frequency
resolution. In the limit of resonant CW excitation (o0 = o(0)

ac )
eqn (45) gives d(D). The latter implies that the original D-
dispersed signal (38) has no time resolution with respect to t.
This result is independent of time delay of the probe pulse T. In
the opposite limit when the pulse duration is small the leading
contribution comes from the pulse and seff C spr

�1. Therefore,
high temporal resolution is accompanied by poor spectral
resolution and vice versa. In both limits, the time and frequency

resolution is not independent or solely controlled by external
manipulation of pulse parameters. Rather they are governed by
a combination of pulse and matter parameters. This simple
example provides some basic intuition. However in this linear
matter chirp model the transition frequency is changing in an
unbounded fashion. We next consider a more realistic model
where the transition frequency switches between two values
during a finite time interval. For instance

oacðtÞ ¼ oð0Þac þ
1

2
a F

t0

sm

� �
�F

t0 � t

sm

� �� �
; (46)

where FðtÞ ¼ 2ffiffiffi
p
p
R t
0 dx e�x

2
is the error function. The transition

matter frequency switches from its initial o(0)
ac to its final value

o(0)
ac + a during time interval sm in the vicinity of t0. Fig. 3a

depicts eqn (46) with o(0)
ac = 2000 cm�1, a = 200 cm�1, sm = 20 fs,

t0 = 500 fs. Fig. 3c shows the Fourier transform of the
D-dispersed signal

~Sðo;T ; tÞ ¼
Z 1
�1

dD
2p

~Sðo;T ;DÞe�iðoþDÞt (47)

vs. o and t. For T = 500 fs one can see how the pattern evolves
with dominating emission peak at initial frequency o(0)

ac =
2000 cm�1 for short times t o 500 fs turning into the final
frequency o(0)

ac + a = 2200 cm�1 for longer times t > 500 fs. The
oscillatory region of the plot for times shorter than ga

�1 = 1 ps
shows the frequency beating and matter chirp. At longer times
the signal decays exponentially Be�gat. For slower dynamics,
sm = 200 fs (see Fig. 3b) the D-dispersed signal (47) plotted in
Fig. 3d is similar to Fig. 3c but is stretched according to the
longer time scale sm.

In order to determine the time and frequency resolution for
the system dynamics given by eqn (46) with sm = 20 fs and sm =
200 fs, we plotted the D-dispersed time-domain signal (41) for
different values of the probe pulse duration spr in Fig. 4a–d. For
long probe spr = 400 fs Fig. 4a shows that the slow matter
dynamics results in a single peak at the final frequency o + D =
o(0)

ac + a, whereas fast dynamics gives two peaks which corre-
spond to the initial and final frequencies. Further increase in
the pulse duration [not shown] does not change the fast
dynamics case while for slow dynamics the two peaks become
narrower. It means that the high frequency resolution is
accompanied by poor time resolution in this case. For a shorter
pulse spr = 200 fs both fast and slow dynamics give a single
emission peak centered at final frequency o(0)

ac + a. However fast
dynamics yields a larger bandwidth due to combined pulse and
matter bandwidths (see Fig. 4b). Further decrease in the pulse
duration for spr = 50 (Fig. 4c) and 20 fs (Fig. 4d) shows that the
fast dynamics converges and becomes indistinguishable from
the slow dynamics at spr C sm = 20 fs (Fig. 4d). In this case the
spectrum does not carry any matter information and looses its
frequency resolution. It simply gives the Fourier transform of
the probe pulse. Therefore, for long pulse, the spectrum has
perfect frequency and poor time resolution. This corresponds
to the CW experiment, when the initiation pulse prepares the
system in the equilibrium population state described by raa.
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In this case time translation invariance via (13) yields o1 ¼ o01
and consequently o = o0. In the opposite limit of the short
pulse, the perfect time resolution is accompanied by poor
frequency resolution. The resulting spectrum will not contain

any relevant matter information and will be given by a Fourier
transform of the probe pulse. In both limits the time and the
frequency resolution are not independent and are governed by
a combination of matter and field parameters.

Fig. 4 The D-dispersed signal eqn (41) vs. D for fast (sm = 20 fs, blue) and slow (sm = 200 fs, red) switchover of the vibrational frequency as depicted in Fig. 3(a) and (b),
respectively. We assume resonant excitation o0 = o(0)

ac . Various panels represent different values of the pulse duration spr = 400 fs (a), 200 fs (b), 50 fs (c), and 20 fs (d).

Fig. 3 Frequency profile [eqn (46)] (a) and the corresponding 2D Fourier transform of the D-dispersed signal S̃(o,T = 500 fs,t) in eqn (47) (c) for o(0)
ac = 2000 cm�1, a =

200 cm�1, sm = 20 fs. (b) and (d) same as (a) and (c), respectively, with sm = 200 fs.
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7 Discussion

We have employed superoperator diagrammatic techniques to
derive similar expressions for stimulated signals detected by
frequency-dispersed transmission of a broadband IR probe and
stimulated Raman signals following the broadband visible pump
pulse. The resolution is determined by both field and matter
degrees of freedom and cannot be solely controlled by the
experimental apparatus. The time and frequency resolution
was analyzed using three representations and the corresponding
computational protocols for the signal. Loop diagrams provide a
convenient compact tool for computing and interpreting these
signals in terms of the evolving vibronic wavepacket. The vibra-
tional resonances are generated during a single time interval in
this diagram where the wave function propagates backward from
the observation time corresponding to the ket interaction with the
probe field and further to the previous bra interaction with
the same probe which is close to the delay time T relative to the
preparation field. Note that t–T is a time interval between
two successive interactions along the loop but not in real time.
A completely time ordered description based on ladder diagrams
will separate the loop into several terms.52

The SRS signals may be obtained from the FDIR expressions
by the substitution of Vn - an and E2ðtÞ ! E2ðtÞE�3ðtÞ. Note
that due to the additional narrow band field 3 in frequency
domain SRS the infrared frequency o must be replaced by the
Raman shift o � o3. Both SRS and FDIR are given by two
diagrams which represent different physical processes. Dia-
grams (i) and (ii) in Fig. 1b correspond to emission and
absorption, respectively, of the IR probe pulse, whereas in the
case of Fig. 2b each diagram contains both emission and
absorption (Stokes and anti-Stokes processes). In FDIR we can
make the rotating wave approximation (RWA) for the radiation
matter coupling and obtain eqn (2) where V and V† are non-
Hermitian operators. The RWA does not apply for off resonant
Raman where we have for the Raman part of eqn (16)

H 0ðtÞ ¼ an E�2ðtÞE3ðtÞ þ E2ðtÞE�3ðtÞ
	 


; (48)

where an is a real (Hermitian) operator an = an
† . Both E�2ðtÞE3ðtÞ

and E2ðtÞE�3ðtÞ can excite or de-excite the vibrations (Stokes and
anti-Stokes processes) as permitted by their bandwidths

whereas in the FDIR case (eqn (2)) E2 excites and E
y
2 de-excites

the vibrations. This is an important distinction, especially in
the case of CARS signals (diagram (ii) in Fig. 2b), which involve
four field modes with different wave vectors where the spatial
phase matching becomes crucial.72
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Appendix A: Time-gated signals

Below we present the time gated signals correspond-
ing to the frequency gated expressions given in the main
text. We first read off the FDIR signal from the diagrams
similar to Eqs. (9) - (10) and introduce the τ - dispersed
signal in time domain analogues to Eq. (8)

SIR(t, T ) = I
∫ t

−∞
dτE∗2 (t− T )E2(τ − T )S̃IR(t, T ; τ),

(S1)

where S̃IR(t, T ; τ) = S̃
(i)
IR(t, T ; τ) + S̃

(ii)
IR (t, T ; τ) where

S̃
(i)
IR(t, T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ

−∞
dτ5E∗1 (τ5)E1(τ1)

× 〈VeG†(τ, τ5)V †nG
†(t, τ)VnG(t, τ1)V †e 〉,

(S2)

S̃
(ii)
IR (t, T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ

−∞
dτ5E1(τ5)E∗1 (τ1)

× 〈VeG†(t, τ1)VnG(t, τ)V †nG(τ, τ5)V †e 〉.
(S3)

S̃(t, T ; τ) is the signal at time t resulting from interac-
tion with E2 at time τ − T . The signal is obtained by
integration over τ . The corresponding SRS signal reads

S̃
(i)
SRS(t, T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ3

−∞
dτ5E∗1 (τ5)E1(τ1)×

E3(t− T )E∗3 (τ − T )〈VeG†(τ, τ5)αnG
†(t, τ)αnG(t, τ1)V †e 〉,

(S4)

S̃
(ii)
SRS(t, , T ; τ) =

2

~

∫ t

−∞
dτ1

∫ τ3

−∞
dτ5E1(τ5)E∗1 (τ1)×

E3(t− T )E∗3 (τ − T )〈VeG†(t, τ1)αnG(t, τ)αnG(τ, τ5)V †e 〉.
(S5)

∗kdorfman@uci.edu
†bfingerh@uci.edu

Eqs. (S4) - (S5) are analogue of (17) - (18).
The time-domain FDIR signals Eqs. (S2) - (S3) can

be recast using SOS expansion

S̃
(i)
IR(t, T ; τ) =

2

~
θ(τ)θ(t)

∑
a,a′,d

µga′µ
∗
agµ
∗
a′dµad×

E∗1 (ωa′ + iγa′)E1(ωa − iγa)e−(iωad+γad)t+(iωa′d+γd−γa′ )τ .
(S6)

S̃
(ii)
IR (t, T ; τ) = −2

~
θ(τ)θ(t)

∑
a,a′,c

µga′µ
∗
agµ
∗
a′cµca×

E∗1 (ωa′ + iγa′)E1(ωa − iγa)e−(iωa′c+γa′c)t+(iωac+γc−γa)τ ,
(S7)

that are analogues to Eqs. (23) - (24). The corresponding
SRS signal reads

S
(i)
SRS(t, T ) = I 2i

~4
θ(τ)θ(t)

∑
a,a′,d

µga′µ
∗
agαa′dαad

× E∗1 (ωa′ + iγa′)E1(ωa − iγa)|E3|2

× e−iω3(t−τ)−(iωad+γad)t+(iωa′d+γd−γa′ )τ , (S8)

S
(ii)
SRS(t, T ) = −I 2i

~4
θ(τ)θ(t)

∑
a,a′,c

µga′µ
∗
agαa′cαca

× E∗1 (ωa′ + iγa′)E1(ωa − iγa)|E3|2

× e−iω3(t−τ)−(iωa′c+γa′c)t+(iωac+γc−γa)τ , (S9)

For the ultrafast probe E2(t− T ) = E2δ(t− T ) the τ -
dispersed signal Eq. (S6) - (S7) then results in the full
signal (S1)

SIR(t, T ) = I 2i

~4
θ(t)δ(t− T )

∑
a,a′

µga′µ
∗
ag|E1|2|E2|2

×

[∑
d

µ∗a′dµade
(iωa′a−γa′a)T −

∑
c

µ∗a′cµcae
(iωaa′−γaa′ )T

]
.

(S10)
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The corresponding SRS signal reads

SSRS(t, T ) = I 2i

~4
θ(t)δ(t− T )

∑
a,a′

µga′µ
∗
ag|E1|2|E2|2|E3|2

×

[∑
d

αa′dαade
(iωa′a−γa′a)T −

∑
c

αa′cαcae
(iωaa′−γaa′ )T

]
.

(S11)

Appendix B: Coupling to a classical bath

We assume that the system is coupled to a harmonic
bath. The molecule is represented by the Hamiltonian

H =
∑
α=g,b

|α〉Hα〈α|+ |a〉Ha(q)〈a|+ |c〉Hc(q)〈c|, (S1)

where Hβ(q), β = a, c is an operator in the nuclear
Hilbert space, that is given by

Ha(q) =
∑
j

[
p̃2
j

2mj
+

1

2
mjω

2
j (q̃j)q̃

2
j

]
, (S2)

Hc(q) = ~ω(0)
ac +

∑
j

[
p̃2
j

2mj
+

1

2
mjω

2
j (q̃j)(q̃j + d̃j)

2

]
,

(S3)
where ωj(q̃j) represents the time dependent frequency
profile of the isomerization process. Introducing the
dimensionless coordinate qj = (mjωj/~)1/2q̃j , dis-

placement dj = (mjωj/~)1/2d̃j and momentum pj =

(mjωj~)1/2p̃j , Eqs. (S2) - (S3) read

Ha(q) =
1

2

∑
j

~ωj [p2
j + q2

j ], (S4)

Hc(q) = ~ω(0)
ac +

1

2

∑
j

~ωj [p2
j + (qj + dj)

2]. (S5)

We next define the vibrational frequency ~ωac = ~ω(0)
ac +

1
2

∑
j d

2
jωj(qj) and potential energy

Uac = Hc −Ha − ~ωac = ~
∑
j

ωj(qj)djqj . (S6)

The dipole operator is given by

V =
∑
α,α′

µαα′ |α〉〈α′|, (S7)

where the summation runs over α, α′ = g, a, c, b, and α 6=
α′. Note that at this point we neglect any nuclear of the
dipole operators µαα′ (Condon approximation).

Following the definition of the frequency dispersed sig-
nal (6) we note that the angular brackets 〈...〉 in (6) now

represent the average over the bath degrees of freedom.
Nuclear dynamics can be approximated by a combination
of classical dynamics and additional phases. Introducing
the reference Hamiltonian [S1]

Href (τ) =

{
Hg, if τ < τ1, τ5,

Ha, if τ ≥ τ1, τ5
(S8)

The Green’s function can then be recast with respect to
the reference Hamiltonian

Gα(t1, t2) = θ(t1 − t2) exp+

[
− i
~

∫ t1

t2

dτHref (τ)

]
× exp+

[
− i
~

∫ t1

t2

dτUα(τ)

]
, (S9)

where the “+” subscript correspond to the positive time
ordering. We assume in Eq. (S1) the nuclear dynamics
occurs only in the singly excited manifold (states a and
c). Therefore for α = a, b

Gα(t1, t2) = θ(t1 − t2)e−(iωα+γα)(t1−t2), (S10)

while

G†c(t, τ3) = θ(t− τ3)eiωa(t−τ3) exp−

[
i

~

∫ t

τ3

dτUac(τ)

]
,

(S11)
where

Uac(τ) = e
i
~Haτ [Hc −Ha − ~ωac]e−

i
~Haτ . (S12)

Substituting this in Eqs. (S2) - (S3) and (S4) - (S5) we
then get Eqs. (36) and (37), respectively.

In the reduced description when we treat bath degrees
of freedom separately signals (9) - (10) and (17) - (18)
contain in principle two averaging operations. First is
averaging over statistical ensemble of classical trajecto-
ries 〈...〉e. For a fixed trajectory one has to evaluate the
average over the bath degrees of freedom 〈...〉b. In or-
der to evaluate the correlation function one has to con-
sider the microscopic stochastic dynamics of the nuclei.
For a fixed trajectory we evaluate the bath averaging
〈Uνν′(τ)〉b = ~ωνν′(τ) and obtain Eqs. (36) - (37). We
then note that the frequency averaging over trajectories
〈ωνν′(τ)〉e = ω̄νν′ . One can further add a harmonic fluc-
tuations around the mean value ω̄νν′ via cumulant expan-
sion. Note that for gaussian fluctuations this expansion
is same for all trajectories. We thus obtain〈〈

exp−

(
i

~

∫ t

T

dτUac(τ)

)
ρg

〉
b

〉
e

= ei
∫ t
T
ω̄ac(τ)dτ×[

1 + T−
(
i

~

)2 ∫ t

T

dτ1

∫ τ1

T

dτ2〈Uac(τ1)Uac(τ2)ρg〉b + ...

]
(S13)

Note that the linear term in expansion (S13) does not
depend on time 〈Uac(τ)ρg〉 = 〈Uacρg(τ)〉 = 〈Uacρg(0)〉.
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We further obtain the cumulant expansion by postulat-
ing that expansion (S13) can be written as exponenti-
ated in terms of power of Uac. Introducing the two-time
linewidth function

gac(t1, t2) =

∫ t2

t1

dτ1

∫ τ1

t1

dτ2Cac(τ2), (S14)

where Cac(τ2) = ~−2〈Uac(τ2)Uac(0)ρg〉 represents the
spectral density that contains all the microscopic in-
formation necessary for calculating the optical response
functions within the second order cumulant approxima-
tion. We first note that C(−t) = C∗(t). We next sepa-
rate it into real and imaginary part C(t) = C ′(t)+C ′′(t).
Using the fluctuation-dissipation and detailed balance

theorem one may show that

C̃(ω) = [1 + coth(β~ω/2)]C̃ ′′(ω), (S15)

where C̃(ω) =
∫∞
−∞ dteiωtC(t) and β = 1/kBTa with

the ambient temperature Ta and Boltzmann constant kB .
For the continuous spectrum of harmonic fluctuations one
can use the overdamped Brownian oscillator model, i.e.

C̃ ′′(ω) = 2λ
ωΛ

ω2 + Λ2
, (S16)

where λ represents the reorganization energy and Λ cor-
responds to the fluctuation time scale. In this case the
linewidth function is given by Eq. (40).

[S1] S. Rahav and S. Mukamel, Phys. Rev. A 81, 063810 (Jun
2010), http://link.aps.org/doi/10.1103/PhysRevA.

81.063810.
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